Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = ether linkages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2314 KiB  
Article
Effects of 2-Hydroxypropyl-β-Cyclodextrin on the Antioxidant Efficiency of Some Gallic Acid Derivatives in Soybean Oil-in-Water Emulsions
by Tamara Martínez-Senra, Sonia Losada-Barreiro and Carlos Bravo-Díaz
Antioxidants 2025, 14(7), 887; https://doi.org/10.3390/antiox14070887 - 18 Jul 2025
Viewed by 282
Abstract
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for [...] Read more.
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for the formation of host–guest complexes, modifying their physicochemical properties and their location in multiphasic systems. Here, we investigated the effects of 2-hydroxypropyl-β-cyclodextrin (HPCD) on the efficiency of a series of gallic acid derivatives (propyl (PG), butyl (BG), octyl (OG), and lauryl (LG) gallates) in inhibiting the oxidation of soybean oil-in-water emulsions. For this purpose, we investigated the effects of HPCD on both the kinetics of lipid oxidation and the distribution of antioxidants in the same intact emulsions. The results show that in an aqueous solution, the antioxidants form 1:1 inclusion complexes with HPCD, with inclusion constants ranging from 383 M−1 (PG) to 1946 M−1 (OG). The results also show that the addition of HPCD to emulsions containing antioxidants does not lead to significant changes in their antioxidant effectiveness, with their efficiency being similar to that when no HPCD molecules are present. The results are interpreted in terms of the blocking effect exerted by the Tween 20 molecules, which act as effective guest competitors capable of removing the antioxidants from the HPCD cavity. The Tween 20 surfactant molecules need to be employed to stabilize the emulsions kinetically. This blocking effect, as a primary consequence, indicates that the interfacial concentration of the antioxidants, which is the region where the inhibition reaction takes place, remains constant; thus, their efficiency is not altered. Full article
(This article belongs to the Special Issue Antioxidants for the Oxidative Stabilisation of Food Lipids)
Show Figures

Figure 1

15 pages, 3748 KiB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Viewed by 453
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

23 pages, 7985 KiB  
Article
Development and Characterization of PBS/EA Cellulose and PCL/EA Cellulose Biocomposites: Structural, Morphological, and Thermal Insights for Sustainable Applications
by Fisokuhle Innocentia Kumalo, Moipone Alice Malimabe, Mafereka Francis Tyson Mosoabisane and Thandi Patricia Gumede
Polymers 2025, 17(7), 971; https://doi.org/10.3390/polym17070971 - 2 Apr 2025
Viewed by 525
Abstract
This study investigates the effect of Eucomis autumnalis (EA) cellulose on the structural, thermal, and crystallization behaviour of polybutylene succinate (PBS) and polycaprolactone (PCL) composites. X-ray diffraction (XRD) results showed that in both matrices, EA cellulose promoted nucleation, as indicated by increased peak [...] Read more.
This study investigates the effect of Eucomis autumnalis (EA) cellulose on the structural, thermal, and crystallization behaviour of polybutylene succinate (PBS) and polycaprolactone (PCL) composites. X-ray diffraction (XRD) results showed that in both matrices, EA cellulose promoted nucleation, as indicated by increased peak intensity, while differential scanning calorimetry (DSC) showed reduced melting enthalpy, suggesting the formation of smaller, less perfect crystals. In PBS composites, EA cellulose acted as a crystallization disruptor, reducing crystallinity and enthalpy. Moreover, it slightly lowered the melting temperature. This is because EA cellulose contains β-(1→4) glycosidic bonds, which introduce –O– (ether) linkages along its polymer backbone. These linkages allow for a degree of rotational flexibility. When the cellulose is incorporated into PBS, this structural characteristic may contribute to a reduction in Tm, likely by disrupting the crystallization of PBS chains. At 1 wt.% EA cellulose, broader, more intense melting peaks indicated imperfect crystal formation, while higher loadings (3 and 5 wt.%) resulted in narrower, less intense peaks, reflecting reduced crystallinity. These results are consistent with cooling-curve results and SEM images showing structural irregularities. In PCL composites, EA cellulose similarly reduced crystallinity and enthalpy without significantly affecting melting or crystallization temperatures. The decrease in the melting enthalpy from 55.6 J/g to 47.6 J/g suggested the formation of thinner lamellae and less organized crystals, a conclusion supported by stable crystallization temperatures and declining peak intensities in cooling curves. The combination of XRD and DSC data highlighted the dual role of EA cellulose: it enhances nucleation while hindering crystal growth, leading to the formation of more amorphous structures in both PBS and PCL matrices. These findings offer valuable insights into the potential use of EA cellulose as a functional modifier to tailor the properties of biopolymer composites for environmentally friendly, biodegradable applications. Full article
Show Figures

Figure 1

18 pages, 24223 KiB  
Article
Impact of Cross-Linking-Monomer Characteristics on Pore-Filling-Membrane Performance and Durability in Anion-Exchange Water Electrolysis
by Jong-Hyeok Park, Yeri Park, Tae-Seok Jeon, Yuna Seo and Jin-Soo Park
Appl. Sci. 2025, 15(3), 1495; https://doi.org/10.3390/app15031495 - 1 Feb 2025
Cited by 1 | Viewed by 1549
Abstract
This study investigates the development of pore-filling anion-exchange membranes (PFAEMs) for water-electrolysis applications. Ionomers using two different cross-linking monomers, namely hydrophilic C10 and hydrophobic C11, along with a common electrolyte monomer, E3, were compared in terms of through-plane ion conductivity, hydrogen permeability, mechanical [...] Read more.
This study investigates the development of pore-filling anion-exchange membranes (PFAEMs) for water-electrolysis applications. Ionomers using two different cross-linking monomers, namely hydrophilic C10 and hydrophobic C11, along with a common electrolyte monomer, E3, were compared in terms of through-plane ion conductivity, hydrogen permeability, mechanical and chemical stability, I-V polarization, and water-electrolysis durability. The results revealed that the E3-C10 PFAEM exhibited 40% higher OH conductivity (98.7 ± 7.0 mS cm−1) than the E3-C11 PFAEM with a similar ion-exchange capacity. This improvement was attributed to improved separation of hydrophobic and hydrophilic domains, creating well-connected ion channels by the hydrophilic C10. Alkaline stability tests demonstrated that the E3-C10 retained higher ion conductivity compared to E3-C11, due to the absence of ether linkages and increased resistance to nucleophilic attack. During water-electrolysis operations, the E3-C10 PFAEMs showed 10% better durability and 87% lower hydrogen permeability, confirming their suitability for anion-exchange-membrane water electrolysis (AEMWE). Despite the higher ion conductivity of the E3-C10 PFAEM, performance was limited by interfacial resistance. It is suggested that ionomer-coated electrodes could further enhance AEMWE performance by leveraging the higher ion conductivity of the E3-C10. Overall, this study provides valuable guidance on strategies for utilizing pore-filling membranes in water electrolysis. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

16 pages, 4164 KiB  
Article
Hydrogenolysis of Benzyl Phenyl Ether Using Nickel–Molybdenum Clay Catalysts—A Model for Cleaving Ether Linkages in Lignin
by Indri B. Adilina, Muhammad A. Fitriady, Ferensa Oemry, Fauzan Aulia, Nino Rinaldi, Gagus K. Sunnardianto, Ian P. Silverwood and Stewart F. Parker
Catalysts 2024, 14(12), 953; https://doi.org/10.3390/catal14120953 - 23 Dec 2024
Viewed by 1608
Abstract
The solvent-free hydrogenolysis (HDL) of benzyl phenyl ether (BPE), a model for the C–O (α-O-4) linkage in lignin, was investigated using NiMo-pillared clay catalysts in their reduced (NiMoPR) and sulfided (NiMoPS) forms. NiMoPS show higher activity and selectivity to give an equimolar mixture [...] Read more.
The solvent-free hydrogenolysis (HDL) of benzyl phenyl ether (BPE), a model for the C–O (α-O-4) linkage in lignin, was investigated using NiMo-pillared clay catalysts in their reduced (NiMoPR) and sulfided (NiMoPS) forms. NiMoPS show higher activity and selectivity to give an equimolar mixture of toluene and phenol, demonstrating selective cleavage of the Caliphatic–O of BPE, while non-equimolar amounts were found for NiMoPR. Strong acid sites are dominant in NiMoPS, giving a higher total acidity compared to NiMoPR, which explains the higher selectivity of the sulfided catalyst towards the HDL products and monomeric aromatics. To understand the interaction of BPE on the catalyst surface, we carried out a comprehensive investigation of the 2D potential energy surface (PES) of BPE and the vibrational spectra using neutron scattering and computational studies. The results suggest that BPE is weakly adsorbed on NiMoPS and the pillared clay support (PILC) via a van der Waals or H-bonding interaction, but they are strongly chemisorbed on the NiMoPR due to covalent bonding. Weakly adsorbed BPE allows higher mobility during diffusion to the catalytic site, which promotes the higher activity of NiMoPS for the HDL. This work demonstrates the potential use of clay-supported NiMo catalysts for lignin valorization and the future circular economy. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

12 pages, 2049 KiB  
Article
Transformation of Lignin Under Protection Strategies: Catalytic Oxidation and Depolymerization by Polyoxometalates Catalysts
by Xinyue Ma and Wenbiao Xu
Polymers 2024, 16(24), 3480; https://doi.org/10.3390/polym16243480 - 13 Dec 2024
Viewed by 855
Abstract
The efficient utilization of lignin, a pivotal component of lignocellulosic biomass, is crucial for advancing sustainable biorefinery processes. However, optimizing lignin valorization remains challenging due to its intricate structure and susceptibility to undesirable reactions during processing. In this study, we delve into the [...] Read more.
The efficient utilization of lignin, a pivotal component of lignocellulosic biomass, is crucial for advancing sustainable biorefinery processes. However, optimizing lignin valorization remains challenging due to its intricate structure and susceptibility to undesirable reactions during processing. In this study, we delve into the impact of various pretreatment agents on birch lignin, aiming to enhance its catalytic oxidation and depolymerization under polyoxometalates (POMs) catalysis. Our results reveal that pretreatment with formaldehyde effectively safeguards aryl ether linkages in lignin, leading to a notable increase in aromatic compound yields under POMs catalysis. Furthermore, gel permeation chromatography (GPC) analysis underscores the inhibition of aryl ether linkage hydrolysis upon formaldehyde addition. Gas chromatography–mass spectrometry (GC–MS) analysis demonstrates that formaldehyde pretreatment boosts lignin monomer yield by 2 to 3 times compared to untreated lignin, underscoring the effectiveness of tailored pretreatment strategies. This research underscores the significance of adopting rational pretreatment methods to advance lignin valorization pathways catalyzed by POMs, thereby contributing to the evolution of sustainable biomass conversion technologies. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 18474 KiB  
Article
Application of IgH EtherCAT Master for Ultra-Precision Motion Control of Precision Axes
by Zhihang Pan, Xuesen Zhao, Tianji Xing and Tao Sun
Micromachines 2024, 15(12), 1483; https://doi.org/10.3390/mi15121483 - 10 Dec 2024
Viewed by 1380
Abstract
The EtherCAT fieldbus system is widely applied in different types of computerized numerical control (CNC) machine tools due to its outstanding communication performance. In the field of ultra-precision CNC, some machine tools employ controllers that integrate EtherCAT master functionality to achieve real-time communication [...] Read more.
The EtherCAT fieldbus system is widely applied in different types of computerized numerical control (CNC) machine tools due to its outstanding communication performance. In the field of ultra-precision CNC, some machine tools employ controllers that integrate EtherCAT master functionality to achieve real-time communication with other devices; however, the open-source IgH EtherCAT master has rarely been applied to the CNC systems of ultra-precision machine tools. The feasibility of using the IgH EtherCAT master to meet the communication performance requirements of ultra-precision machine tools remains uncertain; therefore, it is necessary to validate the control effect on precision axes under the application of the IgH EtherCAT master. In this work, EtherCAT applications were developed on a personal computer (PC) to alter it to a bus-type controller with the IgH EtherCAT master function. To provide the EtherCAT master with real-time and accurate motion data of the axes, an interpolation algorithm tailored for control experiments was designed, and a G-code data processing method was proposed. Moreover, precision aerostatic linear axes and servo drivers were chosen as EtherCAT slaves for single-axis motion and dual-axis linkage control experiments. The experimental results showed that the motion controller based on IgH can effectively control the precision axes to execute ultra-precision linear and circular interpolation motion. Full article
Show Figures

Figure 1

20 pages, 3837 KiB  
Article
Modification of a Carboxymethyl Cellulose/Poly(vinyl alcohol) Hydrogel Film with Citric Acid and Glutaraldehyde Crosslink Agents to Enhance the Anti-Inflammatory Effectiveness of Triamcinolone Acetonide in Wound Healing
by Kanticha Pratinthong, Winita Punyodom, Pensak Jantrawut, Kittisak Jantanasakulwong, Wirongrong Tongdeesoontorn, Montira Sriyai, Rangsan Panyathip, Sarinthip Thanakkasaranee, Patnarin Worajittiphon, Nuttapol Tanadchangsaeng and Pornchai Rachtanapun
Polymers 2024, 16(13), 1798; https://doi.org/10.3390/polym16131798 - 25 Jun 2024
Cited by 13 | Viewed by 4262
Abstract
Anti-inflammatory wound healing involves targeted drug delivery to the wound site using hydrogel materials to prolong drug effectiveness. In this work, hydrogel films were fabricated using carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) crosslinked with citric acid (CA) and glutaraldehyde (GA) at different [...] Read more.
Anti-inflammatory wound healing involves targeted drug delivery to the wound site using hydrogel materials to prolong drug effectiveness. In this work, hydrogel films were fabricated using carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) crosslinked with citric acid (CA) and glutaraldehyde (GA) at different concentrations. The crosslinker densities were optimized with various CA (2–10% w/v) and GA (1–5% v/v) concentrations. The optimized crosslink densities in the hydrogel exhibited additional functional group peaks in the FT-IR spectra at 1740 cm−1 for the C=O stretching of the ester linkage in CA and at 1060 cm−1 for the C-O-C stretching of the ether group in GA. Significantly, the internal porous structures of hydrogel composite films improved density, swelling capacities, solubility percentage reduction, and decreased water retention capacities with optimized crosslinker densities. Therefore, these hydrogel composite films were utilized as drug carriers for controlled drug release within 24 h during medical treatment. Moreover, the hydrogel films demonstrated increased triamcinolone acetonide (TAA) absorption with higher crosslinker density, resulting in delayed drug release and improved TAA efficiency in anti-inflammatory activity. As a result, the modified hydrogel showed the capability of being an alternative material with enhanced anti-inflammatory efficiency with hydrogel films. Full article
(This article belongs to the Special Issue Biodegradable Polymers and Their Emerging Applications)
Show Figures

Figure 1

21 pages, 7190 KiB  
Article
Solitary and Synergistic Effects of Different Hydrophilic and Hydrophobic Phospholipid Moieties on Rat Behaviors
by Shuhei Kikuchi, Yugo Iwasaki, Mina Yoshioka, Kodai Hino, Shin-ya Morita, Ryu Tada, Yasuhiro Uchimura, Yoshinori Kubo, Tomoya Kobayashi, Yusuke Kinoshita, Masahiro Hayashi, Yoshio Furusho, Hitoshi Tamiaki, Hiroaki Ishiyama, Minoru Kuroda and Jun Udagawa
Pharmaceutics 2024, 16(6), 762; https://doi.org/10.3390/pharmaceutics16060762 - 4 Jun 2024
Cited by 2 | Viewed by 1546
Abstract
Glycerophospholipids have hydrophobic and hydrophilic moieties. Previous studies suggest that phospholipids with different moieties have different effects on rodent behavior; however, the relationship between chemical structures and behavioral effects remains unclear. To clarify the functions of phospholipid moieties, we injected male rats with [...] Read more.
Glycerophospholipids have hydrophobic and hydrophilic moieties. Previous studies suggest that phospholipids with different moieties have different effects on rodent behavior; however, the relationship between chemical structures and behavioral effects remains unclear. To clarify the functions of phospholipid moieties, we injected male rats with phospholipids with different moieties and conducted behavioral tests. Exploratory activity was reduced by phosphatidylethanolamine (PE)(18:0/22:6) but not PE(18:0/18:0) or PE(18:0/20:4). Conversely, exploratory activity was increased by plasmanyl PE(16:0/22:6), which harbors an alkyl–ether linkage, but not by phosphatidylcholine (PC)(16:0/22:6) or plasmanyl PC(16:0/22:6). Docosahexaenoic acid (DHA)(22:6) and an alkyl–ether linkage in PE were thus postulated to be involved in exploratory activity. Anxiety-like behavior was reduced by plasmenyl PC(18:0/20:4), which harbors a vinyl–ether linkage, but not by PC(18:0/20:4) or plasmanyl PC(18:0/20:4), suggesting the anxiolytic effects of vinyl–ether linkage. The activation of social interaction was suppressed by PE(18:0/18:0), PE(18:0/22:6), PC(16:0/22:6), plasmanyl PE(16:0/22:6), and plasmanyl PC(16:0/22:6) but not by PE(18:0/20:4), plasmenyl PE(18:0/20:4), or plasmanyl PC(18:0/22:6). DHA may suppress social interaction, whereas arachidonic acid(20:4) or a combination of alkyl–ether linkage and stearic acid(18:0) may restore social deficits. Our findings indicate the characteristic effects of different phospholipid moieties on rat behavior, and may help to elucidate patterns between chemical structures and their effects. Full article
Show Figures

Figure 1

19 pages, 3830 KiB  
Article
Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications
by Adnan Asad Karim, Mᵃ Lourdes Martínez-Cartas and Manuel Cuevas-Aranda
Polymers 2024, 16(11), 1529; https://doi.org/10.3390/polym16111529 - 29 May 2024
Cited by 1 | Viewed by 1812
Abstract
The present study aims to resolve the existing research gaps on olive pomace (OP) hydrochars application as a fuel by evaluating its molecular structures (FTIR and solid NMR analysis), identifying influential characteristics (Pearson correlation analysis), process optimization (response surface methodology), slagging–fouling risks (empirical [...] Read more.
The present study aims to resolve the existing research gaps on olive pomace (OP) hydrochars application as a fuel by evaluating its molecular structures (FTIR and solid NMR analysis), identifying influential characteristics (Pearson correlation analysis), process optimization (response surface methodology), slagging–fouling risks (empirical indices), and combustion performance (TG-DSC analysis). The response surfaces plot for hydrothermal carbonization (HTC) of OP slurry performed in a pressure reactor under varied temperatures (180–250 °C) and residence times (2–30 min) revealed 250 °C for 30 min to be optimal conditions for producing hydrochar fuel with a higher heating value (32.20 MJ·Kg−1) and energy densification ratio (1.40). However, in terms of process efficiency and cost-effectiveness, the optimal HTC conditions for producing the hydrochar with the highest energy yield of 87.9% were 202.7 °C and 2.0 min. The molecular structure of hydrochar was mainly comprised of aromatic rings with methyl groups, alpha-C atoms of esters, and ether bond linkages of lignin fractions. The slagging and fouling risks of hydrochars were comparatively lower than those of raw OP, as indicated by low slagging and fouling indices. The Pearson correlation analysis emphasized that the enrichment of acid-insoluble lignin and extractive contents, carbon densification, and reduced ash content were the main pivotal factors for hydrochar to exhibit better biofuel characteristics for energy applications. Full article
Show Figures

Figure 1

17 pages, 4728 KiB  
Article
Stability and Reactivity of Guaiacylglycerol-β-Guaiacyl Ether, a Compound Modeling β-O-4 Linkage in Lignin
by Zeinab Rabiei, Andrew Simons, Magdalena Folkmanova, Tereza Vesela, Ondrej Uhlik, Evguenii Kozliak and Alena Kubátová
Separations 2024, 11(2), 59; https://doi.org/10.3390/separations11020059 - 14 Feb 2024
Cited by 2 | Viewed by 2593
Abstract
Lignin, a complex and abundant biopolymer, is a major constituent of plant cell walls. Due to its chemical and structural complexity, lignin degradation is a challenging task for both natural and engineered systems. Therefore, investigation of lignin degradation using so called “model compounds” [...] Read more.
Lignin, a complex and abundant biopolymer, is a major constituent of plant cell walls. Due to its chemical and structural complexity, lignin degradation is a challenging task for both natural and engineered systems. Therefore, investigation of lignin degradation using so called “model compounds” has been the focus of many research efforts in recent years. This study addresses the utility of guaiacylglycerol-β-guaiacyl ether (Gβ2) as a model compound for evaluating the β-O-4 bond cleavage under diverse thermal and aqueous medium conditions. Experimental conditions included varied pH (3–10), microbial biodegradation, subcritical water environment (150–250 °C), and mild pyrolysis (150–250 °C). A high-performance liquid chromatography with high-resolution mass spectrometry was employed for accurate detection and quantification of both Gβ2 and its degradation/modification products in an aqueous environment. Pyrolysis experiments were performed using gas chromatography-mass spectrometry analysis with a pyrolyzer. The results showed that Gβ2 remained stable under exposure to moderate pH and several bacterial strains, which were successfully used previously for biodegradation of other recalcitrant pollutants. We report, for the first time, differing Gβ2 breakdown pathways for subcritical water treatment vs. pyrolysis under an inert atmosphere. The scientific novelty lies in the presentation of differences in the degradation pathways of Gβ2 during subcritical water treatment compared to pyrolysis in an inert atmosphere, with water playing a key role. The observed differences are ascribed to the suppression of homolytic reactions by water as a solvent. Full article
(This article belongs to the Topic Advances in Chemistry and Chemical Engineering)
Show Figures

Figure 1

15 pages, 1374 KiB  
Article
Asymmetric Synthesis of Methoxylated Ether Lipids: Total Synthesis of Polyunsaturated C18:3 Omega-3 and Omega-6 MEL Triene Derivatives
by Svanur Sigurjónsson and Gudmundur G. Haraldsson
Molecules 2024, 29(1), 223; https://doi.org/10.3390/molecules29010223 - 31 Dec 2023
Cited by 1 | Viewed by 1517
Abstract
The asymmetric synthesis of polyunsaturated triene C18:3 n-3 and C18:3 n-6 methoxylated ether lipids (MEL) of the 1-O-alkyl-sn-glycerol type is described as possible structural candidates for a triene C18:3 MEL of an unknown identity found in a mixture of [...] Read more.
The asymmetric synthesis of polyunsaturated triene C18:3 n-3 and C18:3 n-6 methoxylated ether lipids (MEL) of the 1-O-alkyl-sn-glycerol type is described as possible structural candidates for a triene C18:3 MEL of an unknown identity found in a mixture of shark and dogfish liver oil. Their C18:3 hydrocarbon chains constitute an all-cis methylene skipped n-3 or n-6 triene framework, along with a methoxyl group at the 2′-position and R-configuration of the resulting stereogenic center. The methoxylated polyenes are attached by an ether linkage to the pro-S hydroxymethyl group of the glycerol backbone. The syntheses were based on the polyacetylene approach that involves a semi-hydrogenation of the resulting triynes. Both syntheses were started from our previously described enantio- and diastereomerically pure isopropylidene-protected glyceryl glycidyl ether, a double-C3 building block that was designed as a head group synthon for the synthesis of various types of MELs. Full article
Show Figures

Graphical abstract

25 pages, 9542 KiB  
Article
Hepatic Transcriptome Comparative In Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- and Polyfluoroalkyl Substances in Mice
by Dakota R. Robarts, Jiayin Dai, Christopher Lau, Udayan Apte and J. Christopher Corton
Toxics 2023, 11(12), 963; https://doi.org/10.3390/toxics11120963 - 28 Nov 2023
Cited by 9 | Viewed by 3442
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to [...] Read more.
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS. Full article
Show Figures

Figure 1

16 pages, 5168 KiB  
Article
Exploration of the Linkages between Lignin and Carbohydrates in Kraft Pulp from Wheat Straw Using a 13C/2H Isotopic Tracer
by Hujun Niu, Xudong Chen, Yunbo Zhao, Junyi Zhou and Yimin Xie
Molecules 2023, 28(22), 7493; https://doi.org/10.3390/molecules28227493 - 9 Nov 2023
Cited by 1 | Viewed by 1518
Abstract
To further our understanding of the change in association between lignin and carbohydrates after kraft pulping, isotope-labeled kraft pulp (KP) was prepared using 13C and D double-isotope-labeled wheat straw, and it was subjected to enzymatic hydrolysis and ionic liquid treatment to explore [...] Read more.
To further our understanding of the change in association between lignin and carbohydrates after kraft pulping, isotope-labeled kraft pulp (KP) was prepared using 13C and D double-isotope-labeled wheat straw, and it was subjected to enzymatic hydrolysis and ionic liquid treatment to explore the linkages between lignin and carbohydrate complexes in wheat straw. Isotope abundance determination showed that 13C and D abundances in the experimental groups were substantially higher than those in the control group, indicating that the injected exogenous coniferin-[α-13C], coniferin-[γ-13C], and d-glucose-[6-D2] were effectively absorbed and metabolized during wheat internode growth. Solid-state CP/MAS 13C-NMR spectroscopy showed that lignin was mainly linked to polysaccharides via acetal, benzyl ether, and benzyl ester bonds. Kraft pulp (KP) from the labeled wheat straw was degraded by cellulase. The obtained residue was fractionated using the ionic liquid DMSO/TBAH to separate the cellulose–lignin complex (KP-CLC) and xylan–lignin complex (KP-XLC). X-ray diffractometer determination showed that the KP-CLC regenerated cellulose type II from type I after the ionic liquid conversion. The 13C-NMR spectrum of Ac-En-KP-CLC showed that the cellulose–lignin complex structure was chemically bonded between the lignin and cellulose through acetal and benzyl ether bonds. The 13C-NMR spectrum of En-KP-XLC showed a lignin–hemicellulose complex structure, wherein lignin and xylan were chemically bonded by benzyl ether and acetal bonds. These results indicate that the cross-linking between lignin and carbohydrates exists in lignocellulosic fibers even after kraft pulping. Full article
(This article belongs to the Topic Green and Sustainable Chemistry)
Show Figures

Graphical abstract

21 pages, 14897 KiB  
Article
Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling
by Giulia Guidotti, Michelina Soccio, Chiara Argentati, Francesca Luzi, Annalisa Aluigi, Luigi Torre, Ilaria Armentano, Carla Emiliani, Francesco Morena, Sabata Martino and Nadia Lotti
Nanomaterials 2023, 13(16), 2330; https://doi.org/10.3390/nano13162330 - 14 Aug 2023
Cited by 5 | Viewed by 1493
Abstract
Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer [...] Read more.
Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications. Full article
Show Figures

Figure 1

Back to TopTop