Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = ethanol electrooxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2300 KiB  
Article
Electrodegradation of Selected Water Contaminants: Efficacy and Transformation Products
by Borislav N. Malinović, Tatjana Botić, Tijana Đuričić, Aleksandra Borković, Katarina Čubej, Ivan Mitevski, Jasmin Račić and Helena Prosen
Appl. Sci. 2025, 15(15), 8434; https://doi.org/10.3390/app15158434 - 29 Jul 2025
Viewed by 182
Abstract
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important [...] Read more.
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important emission source. EO was performed in a batch reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode. Different supporting electrolytes were tested: NaCl, H2SO4, and Na2SO4. Results were analysed from the point of their efficacy in terms of degradation rate, kinetics, energy consumption, and transformation products. The highest degradation rate, shortest half-life, and lowest energy consumption was observed in the electrolyte H2SO4, followed by Na2SO4 with only slightly less favourable characteristics. In both cases, degradation was probably due to the formation of persulphate or sulphate radicals. Transformation products (TPs) were studied mainly in the sulphate media and several oxidation products were identified with all three contaminants, while some evidence of progressive degradation, e.g., ring-opening products, was observed only with t-OPPE. The possible reasons for the lack of further degradation in BTA and DBP are too short of an EO treatment time and perhaps a lack of detection due to unsuitable analytical methods for more polar TPs. Results demonstrate that BDD-based EO is a robust method for the efficient removal of structurally diverse organic contaminants, making it a promising candidate for advanced water treatment technologies. Full article
Show Figures

Figure 1

13 pages, 4472 KiB  
Article
Boosting Electrooxidation of Ethanol by Nickel Addition to Metallic Glass Ribbon Precursors
by Jingjing Song, Bo Zhang, Yu Chen, Qingzhuo Hu, Fabao Zhang and Langxiang Zhong
Materials 2025, 18(3), 701; https://doi.org/10.3390/ma18030701 - 5 Feb 2025
Viewed by 748
Abstract
A CuNiCe-O nanocomposite was fabricated on the Cu40Ni20Al10Ce26Pt3Ru1 metallic glass (MG) ribbon surface by dealloying. The influences of Ni and dealloying time on the morphology and EOR performance were analyzed. The results [...] Read more.
A CuNiCe-O nanocomposite was fabricated on the Cu40Ni20Al10Ce26Pt3Ru1 metallic glass (MG) ribbon surface by dealloying. The influences of Ni and dealloying time on the morphology and EOR performance were analyzed. The results suggest that the catalytic activity and stability of the dealloyed MG ribbon could be significantly enhanced owing to the alloying of Ni to the Cu60Al10Ce26Pt3Ru1 MG ribbon precursor. The activated D-Cu40Ni20Al10Ce26Pt3Ru1 ribbon obtained at an etching time of 3 h had a better electrochemical ethanol oxidation reaction (EOR) performance than other dealloyed samples due to the formation of abundant active sites and the presence of defects within the CuNiCe-O composite. Full article
Show Figures

Figure 1

15 pages, 5653 KiB  
Article
Thermodynamic Analysis of Size-Dependent Surface Energy in Pd Nanoparticles for Enhanced Alkaline Ethanol Electro-Oxidation
by A. Santoveña-Uribe, J. Maya-Cornejo, M. Estevez and I. Santamaria-Holek
Nanomaterials 2024, 14(23), 1966; https://doi.org/10.3390/nano14231966 - 7 Dec 2024
Cited by 1 | Viewed by 1183
Abstract
This work investigates the relationship between the mean diameter of palladium (Pd) nanoparticles and their surface energy, specifically in the context of alkaline ethanol electro-oxidation for fuel cell applications. Employing a recent generalization of the classical Laviron equation, we derive crucial parameters such [...] Read more.
This work investigates the relationship between the mean diameter of palladium (Pd) nanoparticles and their surface energy, specifically in the context of alkaline ethanol electro-oxidation for fuel cell applications. Employing a recent generalization of the classical Laviron equation, we derive crucial parameters such as surface energy (σ), adsorption–desorption equilibrium constant (Keq), and electron transfer coefficient (α) from linear voltammograms obtained from Pd-based nanoparticles supported on Vulcan carbon. Synthesized using two distinct methods, these nanocatalysts exhibit mean diameters ranging from 10 to 41 nm. Our results indicate that the surface energy of the Pd/C nanocatalysts spans σ ~ 0.5–2.5 J/m2, showing a linear correlation with particle size while remaining independent of ethanol bulk concentration. The adsorption–desorption equilibrium constant varies with nanoparticle size (~0.1–6 × 10−6 mol−1) but is unaffected by ethanol concentration. Significantly, we identify an optimal mean diameter of approximately 28 nm for enhanced electrocatalytic activity, revealing critical size-dependent effects on catalytic efficiency. This research contributes to the ongoing development of cost-effective and durable fuel cell components by optimizing nanoparticle characteristics, thus advancing the performance of Pd-based catalysts in practical applications. Our findings are essential for the continued evolution of nanomaterials in fuel cell technologies, particularly in improving efficiency and reducing reliance on critical raw materials. Full article
(This article belongs to the Special Issue Nanomaterials Applied to Fuel Cells and Catalysts)
Show Figures

Figure 1

13 pages, 3069 KiB  
Article
Sub-10 nm PdNi@PtNi Core–Shell Nanoalloys for Efficient Ethanol Electro-Oxidation
by Qian Su and Lei Yu
Molecules 2024, 29(20), 4853; https://doi.org/10.3390/molecules29204853 - 13 Oct 2024
Cited by 4 | Viewed by 1490
Abstract
By controlling the structure and composition of Pt-based nanoalloys, the ethanol oxidation reaction (EOR) performances of Pt alloy catalysts can be effectively improved. Herein, we successfully synthesis sub-10 nm PdNi@PtNi nanoparticles (PdNi@PtNi NPs) with a core–shell structure by a one-pot method. The sub [...] Read more.
By controlling the structure and composition of Pt-based nanoalloys, the ethanol oxidation reaction (EOR) performances of Pt alloy catalysts can be effectively improved. Herein, we successfully synthesis sub-10 nm PdNi@PtNi nanoparticles (PdNi@PtNi NPs) with a core–shell structure by a one-pot method. The sub 10 nm core–shell nanoparticles possess more effective atoms and exhibit a synergistic effect which can lead to a shift in the d-band center and alter binding energies toward adsorbates. Due to the synergistic effect and unique core–shell structure, the PdNi@PtNi NP catalysts exhibit excellent electrocatalytic performance for ethanol oxidation reactions in alkaline, achieving 9.30 times more mass activity and 7.05 times more specific activity that of the state-of-the-art Pt/C catalysts. Moreover, the stability of PdNi@PtNi NPs was also greatly improved over PtNi nanoparticles, PtPd nanoparticles, and commercial Pt/C. This strategy provides a new idea for improving the electrocatalytic performance of Pt-based catalysts for EORs. Full article
Show Figures

Figure 1

20 pages, 2572 KiB  
Article
Waste Biomass Utilization for the Production of Adsorbent and Value-Added Products for Investigation of the Resultant Adsorption and Methanol Electro-Oxidation
by Hala Mohamed, Abeer Enaiet Allah, Doaa Essam, Ahmed A. Farghali, Ahmed A. Allam, Sarah I. Othman, Abdalla Abdelwahab and Rehab Mahmoud
Catalysts 2024, 14(9), 574; https://doi.org/10.3390/catal14090574 - 29 Aug 2024
Cited by 2 | Viewed by 1547
Abstract
Waste valorization is necessary in today’s society to achieve a sustainable economy and prosperity. In this work, a novel approach to the waste valorization of cuttlebone was investigated. This material was ground and calcined at 900 °C for 5 h in an inert [...] Read more.
Waste valorization is necessary in today’s society to achieve a sustainable economy and prosperity. In this work, a novel approach to the waste valorization of cuttlebone was investigated. This material was ground and calcined at 900 °C for 5 h in an inert atmosphere. The resulting calcined cuttlebone (CCB) was characterized using XRD, SEM, FTIR, BET, TGA, Zetasizer, and potential methods. The main phases in the CCB were determined to be CaO, MgO, Ca3(PO4)2, and residual carbon. CCB was investigated as an adsorbent for the removal of dye from simulated wastewater streams. The maximum adsorption capacities for rhodamine B and crystal violet dyes were estimated to be 519 and 921 mg/g, respectively. For both dyes, the Avrami model was the best-fit model for representing adsorption kinetics. The study of adsorbent regeneration for CV as a representative example involved the use of several chemical solvents. Ethanol solvent was shown to have the highest adsorbent regeneration method efficiency, reaching 65.20%. In addition, CCB was investigated for methanol electro-oxidation for energy generation. As the methanol concentration increased, the maximum current density produced by the CCB increased, reaching approximately 50 mA/cm2. This work paves the way toward waste valorization of natural matter for sustainable production and consumption of material, as per the requirements of the circular economy principles. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

12 pages, 5525 KiB  
Article
Investigation of an Ethanol Electroreforming Cell Based on a Pt1Ru1/C Catalyst at the Anode
by Carmelo Lo Vecchio, Erminia Mosca, Stefano Trocino and Vincenzo Baglio
Catalysts 2024, 14(7), 415; https://doi.org/10.3390/catal14070415 - 29 Jun 2024
Cited by 4 | Viewed by 1804
Abstract
The production of H2 from renewable sources represents a crucial challenge for the planet’s future to achieve net zero emissions and store renewable energy. A possible alternative to water electrolysis (WE), which requires high potential (E > 1.48 V) to trigger the [...] Read more.
The production of H2 from renewable sources represents a crucial challenge for the planet’s future to achieve net zero emissions and store renewable energy. A possible alternative to water electrolysis (WE), which requires high potential (E > 1.48 V) to trigger the oxygen evolution reaction (OER), would be alcohol electrochemical reforming (ER), which implies the oxidation of short organic molecules such as methanol or ethanol. In ER, energy must be supplied to the system, but from a thermodynamic point of view, the energy request for the methanol or ethanol oxidation reaction is much lower than that of the OER. To study this process, an in-house 50 wt.% Pt1Ru1/C anodic catalyst was easily synthesized according to the Pt sulphite complex route and the impregnation of a carbon support (Ketjenblack, KB) and a Ru precursor. X-ray diffraction (XRD), X-ray fluorescence (XRF) spectroscopy, and Transmission Electron Microscopy (TEM) were used to characterize the structure, composition, and morphology of the catalyst. It appears that two distinct crystallographic phases of the Pt and Ru nanoparticles were encountered after the synthesis conducted by Ru impregnation. For the electrochemical measurements, ethanol electrooxidation (2 M CH3CH2OH) was studied first in a half cell with a rotating disc electrode (RDE) configuration under acid conditions and then in a direct ethanol electroreforming (or electrolysis) cell, equipped with a proton exchange membrane (PEM) as the electrolyte. The output current density was 0.93 A cm−2 at 1 V and 90 °C in 2 M ethanol. The remarkable current densities obtained in the alcohol electrolyzer at a low voltage are better than the actual state of the art for PEM ethanol ER. Full article
Show Figures

Figure 1

13 pages, 2425 KiB  
Article
Nanoparticulated WO3/NiWO4 Using Cellulose as a Template and Its Application as an Auxiliary Co-Catalyst to Pt for Ethanol and Glycerol Electro-Oxidation
by Munique G. Guimarães, Julio L. Macedo, José J. Linares and Grace F. Ghesti
Int. J. Mol. Sci. 2024, 25(2), 685; https://doi.org/10.3390/ijms25020685 - 5 Jan 2024
Viewed by 1641
Abstract
This work reports the use of cellulose as a template to prepare nanosized WO3 or NiWO4 and its application as a co-catalyst in the electro-oxidation of ethanol and glycerol. Microcrystalline cellulose was hydrolyzed with phosphotungstic acid (H3PW12O [...] Read more.
This work reports the use of cellulose as a template to prepare nanosized WO3 or NiWO4 and its application as a co-catalyst in the electro-oxidation of ethanol and glycerol. Microcrystalline cellulose was hydrolyzed with phosphotungstic acid (H3PW12O40) to prepare the nanocrystalline cellulose template. The latter was air-calcinated to remove the template and obtain nanometric WO3. Tungsten oxide was impregnated with Ni(NO3)2, which was subsequently air-calcinated to obtain the nanometric NiWO4. Elemental analysis confirmed the coexistence of nickel and tungsten, whereas thermal analysis evidenced a high thermal stability for these materials. The X-ray diffractograms displayed crystal facets of WO3 and, when Ni(II) was added, NiWO4. The transmission electron micrographs corroborated the formation of nanosized particles with average particle sizes in the range of 30 to 50 nm. Finally, to apply this material, Pt/WO3-C and Pt/WO3-NiWO4-C were prepared and used in ethanol and glycerol electro-oxidation in an alkaline medium, observing a promotional effect of the oxide and tungstate by reducing the onset potential and increasing the current density. These materials show great potential to produce clean electricity or green hydrogen, contributing to energetic transition. Full article
(This article belongs to the Special Issue Advanced Catalytic Materials)
Show Figures

Figure 1

14 pages, 3027 KiB  
Article
Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol
by Wilian Jesús Pech-Rodríguez, Héctor Manuel García-Lezama and Nihat Ege Sahin
Energies 2023, 16(13), 4986; https://doi.org/10.3390/en16134986 - 27 Jun 2023
Cited by 5 | Viewed by 2203
Abstract
Currently, great importance has been assigned to designing cutting-edge materials for oxygen and hydrogen generation from hybrid water electrolysis as an ideal fuel alternative in energy-conversion devices. This work reports on the electrochemical organic molecule oxidation in alkaline media, intending to promote water [...] Read more.
Currently, great importance has been assigned to designing cutting-edge materials for oxygen and hydrogen generation from hybrid water electrolysis as an ideal fuel alternative in energy-conversion devices. This work reports on the electrochemical organic molecule oxidation in alkaline media, intending to promote water electrolysis at early onset potential with more current densities using Sn-Cu oxidized heterostructures. The electrocatalysts were easily and rapidly synthesized by the microwave-heated synthesis process in the presence of a small quantity of ethylene glycol. The X-ray diffraction and Field Emission Scanning Electron Microscopy analyses confirm the presence of CuO and SnO2 phases, which significantly improves the electrochemical activity of the composite toward the Oxygen Evolution Reaction (OER) in alkaline media in the presence of 1.0 mol L−1 ethanol, yielding 8.0 mA cm−2 at 1.6 V. The charge transfer resistance (Rct) was determined using electrochemical impedance spectroscopy, and the result shows that the Rct of SnO2/CuO drastically decreased. The findings in this work highlight that the designed oxidized heterostructures with non-noble metals are promising candidates for energy conversion devices and sensors. Furthermore, this work confirms the advantages of using an assisted microwave heating process to develop an advanced SnO2/CuO composite with the potential to be used in electro-oxidation processes. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

14 pages, 4556 KiB  
Article
CoNi2O4 Coated on Activated Carbon Wheat Husk (ACWH) as a Novel Nano-Electrocatalyst for Methanol and Ethanol Electro-Oxidation
by Fatemeh Jamali, Majid Seifi and Mohammad Bagher Askari
Coatings 2023, 13(6), 1124; https://doi.org/10.3390/coatings13061124 - 19 Jun 2023
Cited by 1 | Viewed by 2205
Abstract
In this paper, for the first time, a CoNi2O4 nanocatalyst coated on the surface of activated carbon wheat husk (ACWH) was synthesized in the form of CoNi2O4/ACWH through a hydrothermal process. The electrocatalytic activity of this [...] Read more.
In this paper, for the first time, a CoNi2O4 nanocatalyst coated on the surface of activated carbon wheat husk (ACWH) was synthesized in the form of CoNi2O4/ACWH through a hydrothermal process. The electrocatalytic activity of this catalyst was evaluated using methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) processes for use in anodes of alcohol fuel cells. Adding ACWH, as a cheap carbon biomass with an excellent active surface area, improves the performance of the catalyst in the oxidation of alcohols. The current density of CoNi2O4/ACWH in the MOR process is 160 mA/cm2 at an optimal methanol concentration of 2 M; this oxidation current density in the EOR process and at a concentration of 1.5 M ethanol is 150 mA/cm2. The stability of CoNi2O4/ACWH in MOR and EOR processes, after 1000 consecutive CV cycles, is 98.6% and 94.6%, respectively. Full article
Show Figures

Figure 1

13 pages, 5127 KiB  
Article
The Promotional Effect of Rare Earth on Pt for Ethanol Electro-Oxidation and Its Application on DEFC
by Alécio Rodrigues Nunes, José J. Linares, Rudy Crisafulli, Sabrina C. Zignani and Flávio Colmati
Catalysts 2023, 13(6), 1011; https://doi.org/10.3390/catal13061011 - 16 Jun 2023
Cited by 3 | Viewed by 2215
Abstract
Bimetallic Pt3Eu/C, Pt3La/C, and Pt3Ce/C electrocatalysts have been prepared, characterized, and tested for ethanol electro-oxidation (EEO). The materials were synthesized by chemical reduction with NaBH4, rendering nanosized particles with actual compositions close to the nominals [...] Read more.
Bimetallic Pt3Eu/C, Pt3La/C, and Pt3Ce/C electrocatalysts have been prepared, characterized, and tested for ethanol electro-oxidation (EEO). The materials were synthesized by chemical reduction with NaBH4, rendering nanosized particles with actual compositions close to the nominals and no alloy formation. X-ray photoelectron spectroscopy (XPS) confirmed that the auxiliary rare-earth metals were present on the surface in oxide form. The electrochemical analyses in acid and alkaline EEO evidenced that, compared to Pt/C, the addition of rare earth metals in the form of oxides reduced the onset potential, increased the current density, and enhanced the stability. The results were fully confirmed in the DEFC single-cell measurements. Finally, the presence of rare earth metals in the oxidized form increased the percentage of acetic acid as the final product, making the electrocatalysts more selective and efficient than Pt/C, where acetaldehyde was the main product. Full article
Show Figures

Graphical abstract

11 pages, 2522 KiB  
Article
Unexpected Negative Performance of PdRhNi Electrocatalysts toward Ethanol Oxidation Reaction
by Ahmed ElSheikh and James McGregor
Micromachines 2023, 14(5), 957; https://doi.org/10.3390/mi14050957 - 27 Apr 2023
Cited by 2 | Viewed by 1894
Abstract
Direct ethanol fuel cells (DEFCs) need newly designed novel affordable catalysts for commercialization. Additionally, unlike bimetallic systems, trimetallic catalytic systems are not extensively investigated in terms of their catalytic potential toward redox reactions in fuel cells. Furthermore, the Rh potential to break the [...] Read more.
Direct ethanol fuel cells (DEFCs) need newly designed novel affordable catalysts for commercialization. Additionally, unlike bimetallic systems, trimetallic catalytic systems are not extensively investigated in terms of their catalytic potential toward redox reactions in fuel cells. Furthermore, the Rh potential to break the ethanol rigid C-C bond at low applied potentials, and therefore enhance the DEFC efficiency and CO2 yield, is controversial amongst researchers. In this work, two PdRhNi/C, Pd/C, Rh/C and Ni/C electrocatalysts are synthesized via a one-step impregnation process at ambient pressure and temperature. The catalysts are then applied for ethanol electrooxidation reaction (EOR). Electrochemical evaluation is performed using cyclic voltammetry (CV) and chronoamperometry (CA). Physiochemical characterization is pursued using X-ray diffraction (XRD), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Unlike Pd/C, the prepared Rh/C and Ni/C do not show any activity for (EOR). The followed protocol produces alloyed dispersed PdRhNi nanoparticles of 3 nm in size. However, the PdRhNi/C samples underperform the monometallic Pd/C, even though the Ni or Rh individual addition to it enhances its activity, as reported in the literature herein. The exact reasons for the low PdRhNi performance are not fully understood. However, a reasonable reference can be given about the lower Pd surface coverage on both PdRhNi samples according to the XPS and EDX results. Furthermore, adding both Rh and Ni to Pd exercises compressive strain on the Pd lattice, noted by the PdRhNi XRD peak shift to higher angles. Full article
Show Figures

Graphical abstract

14 pages, 3841 KiB  
Article
Methanol and Ethanol Electrooxidation on ZrO2/NiO/rGO
by Mohammad Bagher Askari, Hadi Beitollahi and Antonio Di Bartolomeo
Nanomaterials 2023, 13(4), 679; https://doi.org/10.3390/nano13040679 - 9 Feb 2023
Cited by 20 | Viewed by 2677
Abstract
Recently, transition metal oxides have been considered for various applications due to their unique properties. We present the synthesis of a three-component catalyst consisting of zirconium oxide (ZrO2), nickel oxide (NiO), and reduced graphene oxide (rGO) in the form of ZrO [...] Read more.
Recently, transition metal oxides have been considered for various applications due to their unique properties. We present the synthesis of a three-component catalyst consisting of zirconium oxide (ZrO2), nickel oxide (NiO), and reduced graphene oxide (rGO) in the form of ZrO2/NiO/rGO by a simple one-step hydrothermal method. X-ray powder diffraction (XRD), scanning electron microscope (SEM), and bright-field transmission electron microscopy (BF-TEM) analyses were performed to accurately characterize the catalysts. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) analyses were also carried out to investigate the methanol and ethanol alcohol electrooxidation ability of the synthesized nanocatalysts. Inspired by the good potential of metal oxides in the field of catalysts, especially in fuel-cell anodes, we investigated the capability of this catalyst in the methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). After proving the successful synthesis and examining the surface morphology of these materials, detailed electrochemical tests were performed to show the outstanding capability of this new nanocatalyst for use in the anode of alcohol fuel cells. ZrO2/NiO/rGO indicated a current density of 26.6 mA/cm2 at a peak potential of 0.52 V and 99.5% cyclic stability in the MOR and a current density of 17.3 mA/cm2 at a peak potential of 0.52 V and 98.5% cyclic stability in the EOR (at optimal concentration/scan rate 20 mV/s), representing an attractive option for use in the anode of alcoholic fuel cells. Full article
(This article belongs to the Special Issue Synthesis of Nanocomposites and Catalysis Applications II)
Show Figures

Figure 1

9 pages, 2051 KiB  
Article
Lignin Electrolysis at Room Temperature on Nickel Foam for Hydrogen Generation: Performance Evaluation and Effect of Flow Rate
by Mohmmad Khalid, Biswajit Samir De, Aditya Singh and Samaneh Shahgaldi
Catalysts 2022, 12(12), 1646; https://doi.org/10.3390/catal12121646 - 15 Dec 2022
Cited by 13 | Viewed by 4788
Abstract
Water electrolysis is a thermodynamically energy-intensive process. One approach employed to make water electrolysis kinetically favorable is replacing the oxygen evolution reaction (OER) at the anode by facile electrooxidation of biomass-feedstocks such as ethanol, methanol, glycerol, and lignin due to the presence of [...] Read more.
Water electrolysis is a thermodynamically energy-intensive process. One approach employed to make water electrolysis kinetically favorable is replacing the oxygen evolution reaction (OER) at the anode by facile electrooxidation of biomass-feedstocks such as ethanol, methanol, glycerol, and lignin due to the presence of readily oxidizable functional groups. In this work, we report a simplistic approach for hydrogen generation by lignin electrolysis, utilizing a low-cost nickel foam as both anode and cathode sandwiched with hydroxide ion (OH-) exchange membrane in a 3D printed reactor. The performance of the lignin electrolysis was analyzed under various flow rates of anolyte (lignin)/catholyte (KOH) in the anode and cathode chambers. The lignin electrolysis outcompetes traditional water electrolysis by achieving higher current density in the applied voltage range from 0 to 2.5 V at room temperature. The charge transfer resistance for the lignin electrolysis is lower than that of the water electrolysis characterized by impedance spectroscopy. The enhanced current density from the lignin electrolysis at low overvoltage has been presumed from the oxidation of reactive functional groups present in the lignin, facilitating faster electron transfer. Moreover, the hydrogen production rate calculated from the chronoamperometry test of the lignin electrolysis is 2.7 times higher than that of water electrolysis. Thus, the electrochemical oxidation of lignin can potentially lower the capital cost of renewable hydrogen production. Full article
Show Figures

Figure 1

12 pages, 2132 KiB  
Article
Reaction Kinetics-Based Modeling and Parameter Sensitivity Analysis of Direct Ethanol Fuel Cells
by Deborah S. B. L. de Oliveira, Flavio Colmati and Ruy de Sousa
Energies 2022, 15(23), 9143; https://doi.org/10.3390/en15239143 - 2 Dec 2022
Cited by 4 | Viewed by 1549
Abstract
Ethanol is considered an alternative fuel to power fuel cells, especially due to its ease of transport and storage and renewable production on a large scale. However, its use in direct ethanol fuel cells (DEFC) is still limited by incomplete electro-oxidation and slow [...] Read more.
Ethanol is considered an alternative fuel to power fuel cells, especially due to its ease of transport and storage and renewable production on a large scale. However, its use in direct ethanol fuel cells (DEFC) is still limited by incomplete electro-oxidation and slow reaction kinetics. Modeling approaches have focused on investigating different reaction mechanisms, but so far, no formal analysis of model parameter sensitivity has been conducted. This work modeled and identified sensitive parameters for different types of Pt–Sn catalysts previously prepared by our research group that displayed good performance in the 5–15 mW/cm2 range (relative to a performance of 12 mW/cm2 achieved by a commercial ETEK catalyst). Analyses to study the effect of these parameters on coverage fraction distribution, reaction rates and possible correlations were also performed. The model was developed based on Butler–Volmer kinetics and on a reaction mechanism previously reported in the literature. Statistical developments were considered to compute parameter uncertainties for a non-linear system with non-linear restrictions. The model achieved very good fits to experimental data, with low RMSE values between 0.22 × 10−4 and 4.2 × 10−4 A/cm2, while also showing surface coverage fraction distributions in agreement with other experiment-based works from the literature. All catalysts taken into account, the most sensitive parameters were the reaction rate constants associated with the formation of adsorbed CH3CO, and the direct and reverse water dissociative adsorption reactions, respectively. Additional analyses suggested that there is not much correlation between the parameters. The results from this work could contribute to the state-of-the-art DEFC models by providing insights into which variables may be assumed constant or which ones have the greatest impact on the model output, thus helping to reduce the model size and computational time for future broader DEFC models. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

12 pages, 3085 KiB  
Article
Ethanol Electrooxidation at 1–2 nm AuPd Nanoparticles
by Juliette W. Strasser and Richard M. Crooks
Nanomaterials 2022, 12(22), 4093; https://doi.org/10.3390/nano12224093 - 21 Nov 2022
Cited by 3 | Viewed by 1725
Abstract
We report a systematic study of the electrocatalytic properties and stability of a series of 1–2 nm Au, Pd, and AuPd alloy nanoparticles (NPs) for the ethanol oxidation reaction (EOR). Following EOR electrocatalysis, NP sizes and compositions were characterized using aberration-corrected scanning transmission [...] Read more.
We report a systematic study of the electrocatalytic properties and stability of a series of 1–2 nm Au, Pd, and AuPd alloy nanoparticles (NPs) for the ethanol oxidation reaction (EOR). Following EOR electrocatalysis, NP sizes and compositions were characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and energy dispersive spectroscopy (EDS). Two main findings emerge from this study. First, alloyed AuPd NPs exhibit enhanced electrocatalytic EOR activity compared to either monometallic Au or Pd NPs. Specifically, NPs having a 3:1 ratio of Au:Pd exhibit an ~8-fold increase in peak current density compared to Pd NPs, with an onset potential shifted ~200 mV more to the negative compared to Au NPs. Second, the size and composition of AuPd alloy NPs do not (within experimental error) change following 1.0 or 2.0 h chronoamperometry experiments, while monometallic Au NPs increase in size from 2 to 5 nm under the same conditions. Notably, this report demonstrates the importance of post-catalytic ac-STEM/EDS characterization for fully evaluating NP activity and stability, especially for 1–2 nm NPs that may change in size or structure during electrocatalysis. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology for Electrocatalytic Applications)
Show Figures

Figure 1

Back to TopTop