Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Physical and Chemical Characterization
3.2. Electrochemical Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pei, A.; Li, G.; Zhu, L.; Huang, Z.; Ye, J.; Chang, Y.-C.; Osman, S.M.; Pao, C.-W.; Gao, Q.; Chen, B.H.; et al. Nickel Hydroxide-Supported Ru Single Atoms and Pd Nanoclusters for Enhanced Electrocatalytic Hydrogen Evolution and Ethanol Oxidation. Adv. Funct. Mater. 2022, 32, 2208587. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Q.; Li, Y.; Zhou, Z.; Wang, J.; Liu, S.; Wang, C. Electron transfer dynamics and electrocatalytic oxygen evolution activities of the Co3O4 nanoparticles attached to indium tin oxide by self-assembled monolayers. Front. Chem. 2022, 10, 919192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, B.; Sun, K.; Lang, J.; Li, J. Apparent activity and specific activity of lanthanides (La, Ce, Nd) decorated Co-MOF derivatives for electrocatalytic water splitting. Nanotechnology 2023, 34, 185701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, K.; Fan, L.; Liu, H.; Zhu, H.; Yan, S. High-valence metal doped Co2FeAl alloy as efficient noble-metal-free electrocatalyst for alkaline hydrogen evolution reaction. J. Alloys Compd. 2023, 933, 167613. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Guo, Y.; Zhao, X.; Pan, D.; Li, K.; Wen, Z. Electrochemical Hydrogen Generation by Oxygen Evolution Reaction-Alternative Anodic Oxidation Reactions. Adv. Energy Sustain. Res. 2022, 3, 2200005. [Google Scholar] [CrossRef]
- Zhang, C.; Qi, Q.; Mei, Y.; Hu, J.; Sun, M.; Zhang, Y.; Huang, B.; Zhang, L.; Yang, S. Rationally Reconstructed Metal–Organic Frameworks as Robust Oxygen Evolution Electrocatalysts. Adv. Mater. 2023, 35, 2208904. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Ye, Y.; Wang, Y.; Yu, R.; Moskovits, M.; Stucky, G.D. Honeycomb-like MXene/NiFePx–NC with "continuous" single-crystal enabling high activity and robust durability in electrocatalytic oxygen evolution reactions. J. Adv. Ceram. 2023, 12, 553–564. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X.; Song, Y.; Liu, Y.; Wu, D.; Li, J.; Liu, W.; Fu, L.; Shen, Y.; Tian, X. CuInS2-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Int. J. Hydrogen Energy 2023, 48, 3791–3806. [Google Scholar] [CrossRef]
- Tan, F.; Zhou, Y.; Zhang, H.; Sun, P.; Li, H.; Liu, X.; Wågberg, T.; Hu, G. Improving the hydrogen evolution reaction activity of molybdenum-based heterojunction nanocluster capsules via electronic modulation by erbium–nitrogen–phosphorus ternary doping. Chem. Eng. J. 2023, 454, 140079. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Xing, C.; Li, L.; Mu, S.; Han, X.; He, R.; Liang, Z.; Martinez, P.; Yi, Y.; et al. Electrochemical reforming of ethanol with acetate Co-Production on nickel cobalt selenide nanoparticles. Chem. Eng. J. 2022, 440, 135817. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, X.; Zhou, M.; Huang, F.; Owusu, K.A.; Li, J.; Lin, Z.; Sun, Q.; Hong, X.; Sun, C.; et al. Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity. Energy Environ. Mater. 2022. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, R.; Anandhababu, G.; Xie, J.; Lv, J.; Zhao, X.; Wang, X.; Wu, M.; Li, Q.; Wang, Y. Cobalt/Iron(Oxides) Heterostructures for Efficient Oxygen Evolution and Benzyl Alcohol Oxidation Reactions. ACS Energy Lett. 2018, 3, 1854–1860. [Google Scholar] [CrossRef]
- Xiao, G.; Lu, R.; Liu, J.; Liao, X.; Wang, Z.; Zhao, Y. Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Res. 2022, 15, 3073–3081. [Google Scholar] [CrossRef]
- Shi, H.; Sun, X.-Y.; Liu, Y.; Zeng, S.-P.; Zhang, Q.-H.; Gu, L.; Wang, T.-H.; Han, G.-F.; Wen, Z.; Fang, Q.-R.; et al. Multicomponent Intermetallic Nanoparticles on Hierarchical Metal Network as Versatile Electrocatalysts for Highly Efficient Water Splitting. Adv. Funct. Mater. 2023, 2214412. [Google Scholar] [CrossRef]
- Shen, J.; Li, Q.; Cai, Z.; Sun, X.; Liu, J. Metal–Organic Framework-Based Self-Supporting Nanoparticle Arrays for Catalytic Water Splitting. ACS Appl. Nano Mater. 2023, 6, 1965–1974. [Google Scholar] [CrossRef]
- Sha, M.S.; N.Musthafa, F.; Alejli, A.; Alahmad, J.K.; Bhattacharyya, B.; Kumar, B.; Abdullah, A.M.; Sadasivuni, K.K. An Advanced Quaternary Composite for Efficient Water Splitting. Catal. Lett. 2023. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Wang, B.; Pei, S. Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloys Compd. 2021, 886, 161299. [Google Scholar] [CrossRef]
- Choi, W.; Choi, J.H.; Park, H. Electrocatalytic activity of metal-doped SnO2 for the decomposition of aqueous contaminants: Ta-SnO2 vs. Sb-SnO2. Chem. Eng. J. 2021, 409, 128175. [Google Scholar] [CrossRef]
- Jain, S.K.; Fazil, M.; Pandit, N.A.; Ali, S.A.; Naaz, F.; Khan, H.; Mehtab, A.; Ahmed, J.; Ahmad, T. Modified, Solvothermally Derived Cr-doped SnO2 Nanostructures for Enhanced Photocatalytic and Electrochemical Water-Splitting Applications. ACS Omega 2022, 7, 14138–14147. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Yi, Z.; Cheng, Y.; Wu, Y.; Wang, L. Simple preparation of Cu6Sn5/Sn composites as anode materials for lithium-ion batteries. RSC Adv. 2016, 6, 15279–15285. [Google Scholar] [CrossRef]
- Ayesh, A.I.; Alyafei, A.A.; Anjum, R.S.; Mohamed, R.M.; Abuharb, M.B.; Salah, B.; El-Muraikhi, M. Production of sensitive gas sensors using CuO/SnO2 nanoparticles. Appl. Phys. A 2019, 125, 550. [Google Scholar] [CrossRef]
- Sheng, S.; Song, Y.; Sha, L.; Ye, K.; Zhu, K.; Gao, Y.; Yan, J.; Wang, G.; Cao, D. Simultaneous hydrogen evolution and ethanol oxidation in alkaline medium via a self-supported bifunctional electrocatalyst of Ni-Fe phosphide/Ni foam. Appl. Surf. Sci. 2021, 561, 150080. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, J.-W.; Yin, Y.-R.; Wu, D.; Luo, J.-L.; Fu, X.-Z. Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. J. Mater. Chem. A 2019, 7, 25878–25886. [Google Scholar] [CrossRef]
- Li, M.; Deng, X.; Liang, Y.; Xiang, K.; Wu, D.; Zhao, B.; Yang, H.; Luo, J.-L.; Fu, X.-Z. CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 2020, 50, 314–323. [Google Scholar] [CrossRef]
- Garlyyev, B.; Xue, S.; Fichtner, J.; Bandarenka, A.S.; Andronescu, C. Prospects of Value-Added Chemicals and Hydrogen via Electrolysis. ChemSusChem 2020, 13, 2513–2521. [Google Scholar] [CrossRef]
- Liu, W.-J.; Xu, Z.; Zhao, D.; Pan, X.-Q.; Li, H.-C.; Hu, X.; Fan, Z.-Y.; Wang, W.-K.; Zhao, G.-H.; Jin, S.; et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265. [Google Scholar] [CrossRef]
- Mahanta, J.; Basak, M.; Parmar, P.R.; Saha, D.R.; Mandal, T.K.; Bandyopadhyay, D. Enhanced Hydrogen Production during Electro-Oxidation of Ethanol using Plasmonic Gold Nanoparticles. Energy Technol. 2022, 10, 2200134. [Google Scholar] [CrossRef]
- Wang, Q.; Li, T.; Yan, S.; Zhang, W.; Lv, G.; Xu, H.; Li, H.; Wang, Y.; Liu, J. Boosting Hydrogen Production by Selective Anodic Electrooxidation of Ethanol over Trimetallic PdSbBi Nanoparticles: Composition Matters. Inorg. Chem. 2022, 61, 16211–16219. [Google Scholar] [CrossRef]
- Chen, Y.X.; Lavacchi, A.; Miller, H.A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 2014, 5, 4036. [Google Scholar] [CrossRef]
- Tong, Y.; Yan, X.; Liang, J.; Dou, S.X. Metal-Based Electrocatalysts for Methanol Electro-Oxidation: Progress, Opportunities, and Challenges. Small 2021, 17, 1904126. [Google Scholar] [CrossRef]
- Bai, J.; Liu, D.; Yang, J.; Chen, Y. Nanocatalysts for Electrocatalytic Oxidation of Ethanol. ChemSusChem 2019, 12, 2117–2132. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, D.; Singh, B.; Indra, A. Replacing Anodic Oxygen Evolution Reaction with Organic Oxidation: The Importance of Metal (Oxy)Hydroxide Formation as the Active Oxidation Catalyst. Synlett 2022, 34, 552–560. [Google Scholar] [CrossRef]
- Radinger, H.; Connor, P.; Stark, R.; Jaegermann, W.; Kaiser, B. Manganese Oxide as an Inorganic Catalyst for the Oxygen Evolution Reaction Studied by X-Ray Photoelectron and Operando Raman Spectroscopy. ChemCatChem 2021, 13, 1175–1185. [Google Scholar] [CrossRef]
- Li, Z.; Ning, S.; Xu, J.; Zhu, J.; Yuan, Z.; Wu, Y.; Chen, J.; Xie, F.; Jin, Y.; Wang, N.; et al. In situ electrochemical activation of Co(OH)2@Ni(OH)2 heterostructures for efficient ethanol electrooxidation reforming and innovative zinc–ethanol–air batteries. Energy Environ. Sci. 2022, 15, 5300–5312. [Google Scholar] [CrossRef]
- Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J.-L.; Fu, X.-Z. Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value-Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610. [Google Scholar] [CrossRef]
- Patil, S.A.; Bui, H.T.; Hussain, S.; Rabani, I.; Seo, Y.; Jung, J.; Shrestha, N.K.; Kim, H.; Im, H. Self-standing SnS nanosheet array: A bifunctional binder-free thin film catalyst for electrochemical hydrogen generation and wastewater treatment. Dalton Trans. 2021, 50, 12723–12729. [Google Scholar] [CrossRef]
- Deng, X.; Kang, X.; Li, M.; Xiang, K.; Wang, C.; Guo, Z.; Zhang, J.; Fu, X.-Z.; Luo, J.-L. Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@NiCo-LDH core–shell nanoarray electrocatalysts. J. Mater. Chem. A 2020, 8, 1138–1146. [Google Scholar] [CrossRef]
- Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H. Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode. ACS Catal. 2018, 8, 526–530. [Google Scholar] [CrossRef]
- Zapata-Cruz, J.R.; Armendáriz-Mireles, E.N.; Rocha-Rangel, E.; Suarez-Velazquez, G.; González-Quijano, D.; Pech-Rodríguez, W.J. Implementation of Taguchi method to investigate the effect of electrophoretic deposition parameters of SnO2 on dye sensitised solar cell performance. Mater. Technol. 2019, 34, 549–557. [Google Scholar] [CrossRef]
- Al Baroot, A.; Alheshibri, M.; Drmosh, Q.A.; Akhtar, S.; Kotb, E.; Elsayed, K.A. A novel approach for fabrication ZnO/CuO nanocomposite via laser ablation in liquid and its antibacterial activity. Arab. J. Chem. 2022, 15, 103606. [Google Scholar] [CrossRef]
- Osuntokun, J.; Onwudiwe, D.C.; Ebenso, E.E. Biosynthesis and Photocatalytic Properties of SnO2 Nanoparticles Prepared Using Aqueous Extract of Cauliflower. J. Cluster Sci. 2017, 28, 1883–1896. [Google Scholar] [CrossRef]
- Weinrich, H.; Rutjens, B.; Basak, S.; Schmid, B.; Camara, O.; Kretzschmar, A.; Kungl, H.; Tempel, H.; Eichel, R.-A. CO2 Electroreduction to Formate—Comparative Study Regarding the Electrocatalytic Performance of SnO2 Nanoparticles. Catalysts 2023, 13, 903. [Google Scholar] [CrossRef]
- Pavitra, V.; Udayabhanu; Harini, R.; Viswanatha, R.; Praveen, B.M.; Nagaraju, G. Sonochemical synthesis of SnO2–CuO nanocomposite: Diverse applications on Li-ion battery, electrochemical sensing and photocatalytic activity. J. Mater. Sci. Mater. Electron. 2020, 31, 8737–8749. [Google Scholar] [CrossRef]
- Nga, N.K.; Thuy Chau, N.T.; Viet, P.H. Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution. J. Sci. Adv. Mater. Devices 2020, 5, 65–72. [Google Scholar] [CrossRef]
- Khaleel, W.A.; Sadeq, S.A.; Alani, I.A.M.; Ahmed, M.H.M. Magnesium oxide (MgO) thin film as saturable absorber for passively mode locked erbium-doped fiber laser. Opt. Laser Technol. 2019, 115, 331–336. [Google Scholar] [CrossRef]
- Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Hayakawa, Y.; Loganathan, A.; Ravi, G. Improved photocatalytic performance of nanostructured SnO2 via addition of alkaline earth metals (Ba2+, Ca2+ and Mg2+) under visible light irradiation. Appl. Phys. A 2020, 126, 265. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, S.; Singh, P.; Deckert, V.; Chatterjee, S.; Ghosh, A.K.; Singh, R.K. Surface-enhanced Raman scattering characteristics of CuO : Mn/Ag heterojunction probed by methyl orange: Effect of Mn2+ doping. J. Raman Spectrosc. 2016, 47, 813–818. [Google Scholar] [CrossRef]
- Kaur, J.; Shah, J.; Kotnala, R.K.; Verma, K.C. Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles. Ceram. Int. 2012, 38, 5563–5570. [Google Scholar] [CrossRef]
- Chuai, M.; Chen, X.; Zhang, K.; Zhang, J.; Zhang, M. CuO–SnO2 reverse cubic heterojunctions as high-performance supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 1160–1167. [Google Scholar] [CrossRef]
- Li, J.; Zuo, Y.; Liu, J.; Wang, X.; Yu, X.; Du, R.; Zhang, T.; Infante-Carrió, M.F.; Tang, P.; Arbiol, J.; et al. Superior methanol electrooxidation performance of (110)-faceted nickel polyhedral nanocrystals. J. Mater. Chem. A 2019, 7, 22036–22043. [Google Scholar] [CrossRef]
- Miao, J.; Zhao, X.; Hu, H.-Y.; Huang, H.; Ding, Y.; Liu, Z.-H.; Chen, Y. Trimetallic RhNiFe Phosphide Nanosheets for Electrochemical Reforming of Ethanol. ACS Appl. Nano Mater. 2022, 5, 4948–4957. [Google Scholar] [CrossRef]
- Devi, S.; Devi, S.; Sunaina; Wadhwa, R.; Yadav, K.K.; Jha, M. Understanding the origin of ethanol oxidation from ultrafine nickel manganese oxide nanosheets derived from spent alkaline batteries. J. Clean. Prod. 2022, 376, 134147. [Google Scholar] [CrossRef]
- Ghouri, Z.K.; Elsaid, K.; Abdel-Wahab, A.; Abdala, A.; Farhad, M.Z. Electrooxidation behavior of ethanol toward carbon microbead-encapsulated ZnO particles derived from coffee waste. J. Mater. Sci. Mater. Electron. 2020, 31, 6530–6537. [Google Scholar] [CrossRef]
- López-Fernández, E.; Gómez-Sacedón, C.; Gil-Rostra, J.; Espinós, J.P.; González-Elipe, A.R.; Yubero, F.; de Lucas Consuegra, A. Nanostructured nickel based electrocatalysts for hybrid ethanol-water anion exchange membrane electrolysis. J. Environ. Chem. Eng. 2022, 10, 107994. [Google Scholar] [CrossRef]
- Ruiz-López, E.; Amores, E.; Raquel de la Osa, A.; Dorado, F.; de Lucas-Consuegra, A. Electrochemical reforming of ethanol in a membrane-less reactor configuration. Chem. Eng. J. 2020, 379, 122289. [Google Scholar] [CrossRef]
- Naito, T.; Shinagawa, T.; Nishimoto, T.; Takanabe, K. Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide. Inorg. Chem. Front. 2021, 8, 2900–2917. [Google Scholar] [CrossRef]
- Pech-Rodríguez, W.J.; Ordóñez, L.C.; Valdez-Ramírez, F.E.; Pérez-Mata, H. A fast and inexpensive strategy to fabricate ZnO–Cu composites as non-precious electrocatalysts for ethanol oxidation reaction in alkaline media. J. Appl. Electrochem. 2023. [Google Scholar] [CrossRef]
- El Attar, A.; Oularbi, L.; Chemchoub, S.; El Rhazi, M. Preparation and characterization of copper oxide particles/polypyrrole (Cu2O/PPy) via electrochemical method: Application in direct ethanol fuel cell. Int. J. Hydrogen Energy 2020, 45, 8887–8898. [Google Scholar] [CrossRef]
Catalyst | Potential E (V vs. RHE) | Rs (Ω cm2) | R1 (Ω cm2) | QCPE1,film (F s(α1−1) cm2) | α1 | R2 (Ω cm2) | QCPE2 (F s(α2−1) cm2) | α2 |
---|---|---|---|---|---|---|---|---|
SnO2 | 1.5 | 2.034 | 71.75 | 0.72 × 10−3 | 0.831 | 891.9 | 0.23 × 10−3 | 0.95 |
SnO2CuO | 1.5 | 2.179 | 2.91 | 48.56 × 10−3 | 0.463 | 203 | 6.88 × 10−3 | 0.90 |
Catalyst | Scan Rate | Current Density | Electrolyte | Reference |
---|---|---|---|---|
CM-ZnO | 50 mV s−1 | 10 mA cm−2 at 1.7 V vs. RHE | 2 mol L−1 C2H5OH + 1 mol L−1 KOH | [53] |
Cu2O/PPY/CPE | 50 mV s−1 | 10 mA cm−2 at 1.7 V vs. RHE | 5 mol L−1 C2H5OH + 0.1 mol L−1 KOH | [58] |
ZnOCu | 20 mV s−1 | 10 mA cm−2 at 1.56V vs. RHE | 0.5 mol L−1 C2H5OH + 0.5 mol L−1 KOH | [57] |
Ni6MnO8 | 50 mV s−1 | 10 mA cm−2 at 1.6V vs. RHE | 1 mol L−1 C2H5OH + 1 mol L−1 KOH | [52] |
SnO2/CuO | 20 mV s−1 | 10 mA cm−2 at 1.62V vs. RHE | 1 mol L−1 C2H5OH + 0.5 mol L−1 NaOH | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pech-Rodríguez, W.J.; García-Lezama, H.M.; Sahin, N.E. Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol. Energies 2023, 16, 4986. https://doi.org/10.3390/en16134986
Pech-Rodríguez WJ, García-Lezama HM, Sahin NE. Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol. Energies. 2023; 16(13):4986. https://doi.org/10.3390/en16134986
Chicago/Turabian StylePech-Rodríguez, Wilian Jesús, Héctor Manuel García-Lezama, and Nihat Ege Sahin. 2023. "Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol" Energies 16, no. 13: 4986. https://doi.org/10.3390/en16134986
APA StylePech-Rodríguez, W. J., García-Lezama, H. M., & Sahin, N. E. (2023). Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol. Energies, 16(13), 4986. https://doi.org/10.3390/en16134986