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Abstract: Recently, transition metal oxides have been considered for various applications due to their
unique properties. We present the synthesis of a three-component catalyst consisting of zirconium
oxide (ZrO2), nickel oxide (NiO), and reduced graphene oxide (rGO) in the form of ZrO2/NiO/rGO
by a simple one-step hydrothermal method. X-ray powder diffraction (XRD), scanning electron
microscope (SEM), and bright-field transmission electron microscopy (BF-TEM) analyses were per-
formed to accurately characterize the catalysts. Cyclic voltammetry (CV), electrochemical impedance
spectroscopy (EIS), and linear sweep voltammetry (LSV) analyses were also carried out to investigate
the methanol and ethanol alcohol electrooxidation ability of the synthesized nanocatalysts. Inspired
by the good potential of metal oxides in the field of catalysts, especially in fuel-cell anodes, we inves-
tigated the capability of this catalyst in the methanol oxidation reaction (MOR) and ethanol oxidation
reaction (EOR). After proving the successful synthesis and examining the surface morphology of
these materials, detailed electrochemical tests were performed to show the outstanding capability of
this new nanocatalyst for use in the anode of alcohol fuel cells. ZrO2/NiO/rGO indicated a current
density of 26.6 mA/cm2 at a peak potential of 0.52 V and 99.5% cyclic stability in the MOR and a
current density of 17.3 mA/cm2 at a peak potential of 0.52 V and 98.5% cyclic stability in the EOR (at
optimal concentration/scan rate 20 mV/s), representing an attractive option for use in the anode of
alcoholic fuel cells.

Keywords: metal oxides; reduced graphene oxide; ZrO2/NiO/rGO; methanol oxidation reaction;
ethanol oxidation reaction

1. Introduction

Modern society and industry are highly dependent on electricity produced by fossil
fuels for consumer and manufacturing tools [1,2]. Considering the destructive effect of
the excessive use of fossil fuels on the environment and the health of society with the
production of greenhouse gases and also the exhaustibility of these fuel sources, there is a
strong need to find new clean fuels and renewable resources [3,4]. Different types of fuel
cells, solar cells, electrochemical batteries, and supercapacitors are among the latest energy
storage and production tools [5]. The industrialization of these devices and the detailed
understanding of how energy is produced and stored require the involvement of different
sciences. Indeed, this field is at the frontier of modern research and gathers the attention of
many scientists, involved in activities that range from the catalyst and membrane synthesis
to the assembling of equipment to be placed in portable devices and cars, etc.

There are different types of fuel cells, some of the most common ones are direct
methanol fuel cells (DMFCs), polymer electrolyte membranes (PEMs), alkaline fuel cells
(AFCs), phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells (MCFCs), solid
oxide fuel cells (SOFCs), and reversible fuel cells, whose main difference is in the operating
temperature and the type of electro-chemical reactions, electrolytes, and fuel required and
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catalysts used in their anode and cathode. Alcohol fuel cells are particularly popular due
to their low operating temperature [6], high energy density [7], and small dimensions.
Among the fuels used in fuel cells, methanol and ethanol have attracted the attention
of scientists due to their cheapness, availability, easy production, and safe storage and
transportation [8–10]. However, the toxicity of methanol and the relatively low evaporation
temperature of both alcohols are among the disadvantages of these fuels [11].

Fuel cells convert chemical energy into electrical energy [12]. In this regard, the
oxidation of alcohols (methanol and ethanol) occurs in the anode, and oxygen reduction
occurs in the cathode. Between the anode and the cathode, there is a polymer membrane,
usually Nafion, which is responsible for proton exchange [13].

So far, valuable efforts have been made to introduce catalysts for use in the anode
and cathode of alcohol fuel cells. Several efficient and engineered catalysts have been
introduced; however, none of them can compete with catalysts such as platinum, palladium,
and ruthenium. Alcohol fuel cells based on these catalysts are expensive and have a gradual
loss of electrocatalytic activity in alcohol oxidation [14].

Three categories can be considered in the classification of catalysts for the oxidation
process of alcohols. In the first category, there are catalysts such as platinum, palladium, and
ruthenium in pure form and with different morphologies. Although they are very efficient,
their high price is a big problem for commercialization. In the second category, very small
amounts of expensive catalysts are combined or hybridized with cheap and electroactive
materials such as conductive polymers, carbons, and metal-organic frameworks (MOFs).
In this way, although efficiency decreases, the price of catalysts can be brought down signif-
icantly. The third category of attractive and inexpensive catalysts that cannot compete with
platinum-based catalysts (and other related families) are platinum-free catalysts. In the syn-
thesis process, it should be noted that the proposed catalyst must have two very important
properties: a relatively high electrochemically active surface area and acceptable electrical
conductivity. Among these catalysts, we can mention the combination of various materials
such as metal oxides and sulfides, different types of carbons, conductive polymers, zeolites,
and MOFs [15]. Metal oxides have shown good electrocatalytic activity. Their hybridization
and composition with other materials can improve the electrochemically active surface area
and electrical conductivity, thus paving the way for new inexpensive catalysts. Carbon, as
one of the most abundant elements in nature, is always available, and the synthesis of its
derivatives is not a difficult task. From carbon derivatives, we can mention multi-walled
carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), hollow carbon
spheres (HCNS), biochar carbon, different types of activated carbon, and reduced graphene
oxide (RGO). Each of the mentioned types of carbon when added to the catalyst structure
improves electrical conductivity, increases the electrochemical active surface area of the
catalyst, and generally facilitates the electrochemical processes. Composites consisting
of several metal oxides and their hybrids with reduced graphene oxide (rGO) can be a
suitable choice for the synthesis of new catalysts. In such catalysts, the synergistic effect of
metal oxide and a type of carbon with an excellent active surface area and suitable electrical
conductivity can also be exploited [16–18].

The review of new scientific studies shows that zirconium oxide (ZrO2) [19–22] and
nickel oxide (NiO) [23–25] are among the most widely used catalysts based on metal
oxides in various fields. The use of these catalysts in the structure of various types of
solar cells [26], processes such as water splitting, hydrogen evolution reactions (HERs) [27],
oxygen reduction reactions (ORRs) [28], etc., in the field of energy production, as well as
the wide application of these materials in the structure of the electrodes of various types of
electrochemical batteries, such as lithium, manganese, and zinc-air batteries [29,30], and
in the structure electrodes of supercapacitors [31,32] in the field of energy storage, shows
the wide capability of these materials in modern electrochemistry. In addition, we must
mention the wide application of ZrO2 and NiO in other electrochemical applications such
as electrochemical biosensors [33,34] and electrochemical detection of various drugs [35,36],
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antibacterial and photocatalytic properties [37–39], as well as in the oxidation process of
many materials such as urea, glucose, various sugar alcohols, etc. [40,41].

ZrO2 and NiO as catalysts in the form of composites with other materials (both
expensive catalysts such as platinum and palladium and other inexpensive materials and
substrates, including metal oxides and sulfides or conductive polymers) have been studied
for the oxidation of alcohols [22,42–49]. However, catalysts including both ZrO2 and NiO
have not been tested in the oxidation of methanol and ethanol alcohols. For this purpose,
we synthesized a nanocatalyst consisting of both zirconium and nickel metal oxides by
a hydrothermal method. To simultaneously improve the electrical conductivity and the
electrochemical active surface, a hybrid of ZrO2/NiO with reduced graphene oxide (rGO)
was prepared in the same way and in one step. In this research, in addition to investigating
the ability of ZrO2/NiO nanocatalysts in the oxidation process of methanol and ethanol
alcohols, we investigated the improvement in catalyst performance by adding rGO to the
ZrO2/NiO structure.

2. Materials and Methods
2.1. Materials and Equipment

All the materials used in this research, including zirconium nitrate Zr(NO3)4•5H2O
and nickel nitrate Co(NO3)2•6H2O, PEG, H2O2, methanol, and potassium hydroxide
(KOH) with purity > 99%, were purchased from Aldrich Company (Wyoming, IL, USA).
X-ray diffraction (XRD) analysis was performed with an XRD device, Philips PW1800, and
scanning electron microscope (SEM) images were prepared with SEM—TESCAN. Bright-
field transmission electron microscopy (BF-TEM) was performed with JEM-1400Plus, with
thermionic source (LaB6), operated at 120 kV. Electrochemical analyses were performed
with the potentiostat/galvanostat Autolab 302 N (Herisau, Switzerland) with a three-
electrode system.

2.2. Synthesis of Nanocatalysts

For the synthesis of ZrO2/NiO, 0.15 g of zirconium nitrate (Zr(NO3)4•5H2O) and
0.25 g of nickel nitrate (Ni(NO3)2·6H2O) were mixed in 30 mL of deionized water for
20 min with a magnetic stirrer. Then, 0.15 mL of PEG-400 solution and 0.1 mL of H2O2
were added to the solution, and stirring was continued for another 10 min. The resulting
solution was poured into a reactor with a capacity of 50 mL and put in the oven for 14 h at
a temperature of 200 ◦C. The reactor was cooled at room temperature. The product was
washed several times with deionized water and ethanol and dried at 80 ◦C for 8 h and
then calcined at 350 ◦C for 3 h. The resulting powder was ZrO2/NiO. For the synthesis of
ZrO2/NiO/rGO, we followed exactly the same method as for the synthesis of ZrO2/NiO,
with the difference that in the first, 0.2 g of graphene oxide (GO) was added to the zirconium
and nickel precursors.

3. Results
3.1. Characterization of Nanocatalysts

To investigate the crystal structure and surface morphology of the synthesized nanocat-
alysts, X-ray diffraction (Figure 1) and SEM analyses (Figure 2) were performed, respectively.
In the X-ray diffraction pattern of ZrO2/NiO (ZN), the characteristic peaks of ZrO2 are
observed at the diffraction angles of 30, 35.2, 50.2, and 60.3, which correspond to the (111),
(200), (220), and (311) crystal planes, which is in complete agreement with (JCPDS, No.49-
1642) [48]. The diffraction angles of NiO are also seen at 37.2, 43.2, 62.9, 75.2, and 79.4,
which correspond to the (111), (200), (220), (311), and (222) crystal planes with (JCPDS, No.
04-0835) [50]. In the XRD pattern of ZrO2/NiO/rGO (ZNR), in addition to observing the
diffraction peaks of ZrO2 and NiO, we see a relatively wide peak at the diffraction angle
around 26 degrees, which belongs to reduced graphene oxide [51].
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Figure 1. XRD pattern of ZrO2/NiO (dark curve) and ZrO2/NiO/rGO (red curve).

Scanning electron microscope (SEM) images of ZrO2/NiO (ZN) and ZrO2/NiO/rGO
(ZNR) catalysts were prepared to investigate the surface morphology. Figure 2a–c, b belong
to the SEM images of ZrO2/NiO on the scale of 200 nm. The relatively porous morphology
of this nanocatalyst is clear in these figures. The presence of porosity in the structure of the
catalysts causes the creation of channels and shortcuts that facilitate the oxidation process
of alcoholic fuels and a faster and deeper contact of the fuel with the core of the catalyst.
The SEM images of the ZrO2/NiO/rGO catalyst are shown in Figure 2d–f at a scale of
500 nm. The ZrO2/NiO nanocatalyst was also analyzed by BF-TEM and mapping related
to this analysis. Figure 2g shows the BF-TEM of the catalyst in two scales of 200 and 150 nm.
By examining the mapping of ZrO2/NiO, which was performed at the scale of 250 nm,
the presence of the zirconium, nickel, and oxygen elements in the structure of the catalyst
is shown. In addition, the existence of two different structures of ZrO2 and NiO in the
catalyst can also be found. The darker parts are related to ZrO2, and the relatively lighter
parts are NiO.

3.2. Electrochemical Studies
3.2.1. Electrode Preparation

To perform electrochemical tests, a glassy carbon electrode (GCE) modified with a
catalyst was used as a working electrode. A Ag/AgCl electrode and platinum wire with
a diameter of 1 mm were used as reference and auxiliary electrodes, respectively. To
prepare the working electrode, 0.08 g of catalysts (ZrO2/NiO and ZrO2/NiO/rGO) was
dispersed in 0.5 mL of a solution containing water, Nafion (5%), and isopropyl alcohol by
ultrasonication for 30 min. Then, 3 microliters of the obtained uniform slurry was put on
the GCE surface.

3.2.2. Investigating the Behavior of ZrO2/NiO and ZrO2/NiO/rGO Nanocatalysts for
MOR and EOR Processes in an Alkaline Environment

The electrochemical studies were started by performing cyclic voltammetry (CV)
and electrochemical impedance spectroscopy (EIS) analyses in an alkaline environment
(0.5 M potassium hydroxide (KOH)). The CV analysis of the modified electrode with
ZrO2/NiO (ZN) and ZrO2/NiO/rGO (ZNR) nanocatalysts in the potential range of 0 to
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0.8 V with a scan rate of 20 mV/s is shown in Figure 3a. In these graphs, no oxidation
peak is seen, and only a faradic current is observed, whose value for ZNR is higher than
ZN. Figure 3b belongs to the EIS analysis and the equivalent circuit related to ZN and
ZNR nanocatalysts in 0.5 M KOH (without the presence of methanol and ethanol alcohol).
According to this analysis, the charge transfer resistance (Rct) for ZN is approximately
19 Ω, and for ZNR, it is about 12 Ω. Both CV and EIS analyses indicate an improvement in
the electrocatalytic properties of ZNR nanocatalysts compared to ZN. This superiority in
electrocatalytic activity can be related to the effective presence of rGO in the ZNR structure.
rGO facilitates electrochemical processes by increasing the electrochemical active surface
area and improving electrical conductivity [13,25].
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In the next step, the behavior of the catalysts in the presence of 0.1 M methanol was
investigated. According to Figure 3c, both nanocatalysts show an oxidation peak, which
confirms their ability in the MOR process. Moreover, the ability of nanocatalysts in the EOR
process was investigated with the same procedure. The electrochemical behavior of two
nanocatalysts in an alkaline environment and in the presence of ethanol (0.5 M KOH/0.1 M
ethanol) is presented in Figure 3d. Both nanocatalysts have a relatively good potential in
the EOR process as confirmed by the presence of oxidation peaks.

In the following, the concentration of alcohols in the MOR and EOR processes was
optimized by the electrode modified with two ZN and ZNR nanocatalysts. For this purpose,
a solution containing 0.5 M KOH and different concentrations of methanol (0.1, 0.3, 0.5, 0.7,
and 0.9 M) was prepared. Figure 4a shows the behavior of a ZN nanocatalyst in different
concentrations of methanol in CV analysis at a scan rate of 20 mV/s. As can be seen, with
the increase in the concentration of methanol up to 0.7 M, the oxidation peak has an upward
trend, and at the concentration of 0.9 M methanol, the current density of the oxidation peak
decreases; exactly the same trend is observed for ZNR (Figure 4b).

The behavior of both nanocatalysts was investigated in the alkaline environment of
0.5 M KOH and in different concentrations of ethanol (0.1, 0.3, 0.5, 0.7, and 0.9 M) at the
scan rate of 20 mV/s. Figure 4c shows the behavior of ZN in different concentrations of
ethanol. As can be seen, the oxidation current density has an upward behavior up to the
concentration of 0.5 M ethanol, and from this concentration onward, a decrease in the
current density is seen. A similar behavior is observed for ZNR in different concentrations
of ethanol (Figure 4d).
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In general, the behavior of both nanocatalysts in different concentrations of methanol
and ethanol indicates that with the increase in the alcohol concentration up to a critical
concentration, the peak oxidation current density value increases, and after this concen-
tration, the catalyst surface seems to be saturated by the by-products of the ethanol and
methanol oxidation, and as a result, alcohol fuel cannot adsorb well on the surface of the
catalyst and penetrate into the core of the catalyst. By-products of the oxidation of alcohols
by saturating the surface of the catalyst prevent the easy exchange of electrons and, as a
result, avoid the generation of an exchange current between the modified electrode and the
alkaline solution containing alcoholic fuels.

After optimizing the concentration of alcohols, the behavior of nanocatalysts in the
optimal concentration of methanol and ethanol and at different scan rates was investigated.
Figure 5a shows the behavior of ZN in 0.5 M KOH/0.7 M methanol solution at different
scan rates (20, 40, 60, 80, and 100 mV/s). As can be seen, with the increase in the scan
rate, the oxidation peak current density indicates an upward trend, and the same behavior
is seen for ZNR nanocatalysts at different scan rates (Figure 5b). The maximum current
density as a function of the square root of the scan rate (Figure 5c) for two nanocatalysts is
fitted with a straight line with R2 = 0.998 and R2 = 0.996 for ZN and ZNR, indicating the
diffusion-control mechanism in the MOR process.

The mechanism of the MOR by nanocatalysts can be proposed as a six-electron mecha-
nism as follows [52]:

Catalyst + CH3OH → Catalyst− CH3OHads

Catalyst− CH3OHads + 4OH→ Catalyst− (CO)ads + 4H2O + 4e

Catalyst + OH→ Catalyst−OHads + e

Catalyst− COads + Catalyst−OHads + OH → Catalyst + CO2 + H2O + e
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scan rates. The plot of the square root of scan rate in terms of maximum current density for ZrO2/NiO
and ZrO2/NiO/rGO in MOR (c) and in EOR (f).

Similarly, the behavior of ZN and ZNR nanocatalysts in a 0.5 M KOH/0.5 M ethanol
solution and at different scan rates was evaluated. Here too, the peak oxidation current
density of both nanocatalysts increases with an increasing scan rate in the range of 20 to
100 mV/s (Figure 5d,e). The straight-line fit (with R2 = 0.996 and R2 = 0.994 for ZN and
ZNR, respectively) of the maximum current density versus the square of the scan rate in
the EOR process shows the diffusion-control mechanism (Figure 5f).

The proposed mechanism of ethanol oxidation by nanocatalysts can be suggested as
follows [53]:

CH3CH2OH + 16OH− → 2CO2−
3 + 11H2O + 12e−

CH3CH2OH + 5OH− → CH3COO− + 4H2O + 4e−

The stability of ZN and ZNR nanocatalysts in the MOR and EOR processes was deter-
mined by performing 1000 consecutive CV cycles in a 0.5 M KOH/optimal concentration
of alcohols and at a scan rate of 20 mV/s. Figure 6a,b are related to the stability of ZN and
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ZNR in the MOR process. ZN has 98.3% stability after 1000 consecutive cycles, and ZNR
shows 99.5% stability, which are very good values.

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 

of the stability of nanocatalysts in the MOR and EOR processes shows the relative superi-
ority of ZNR nanocatalysts compared to ZN in terms of cyclic stability. This superiority 
can be related to the presence of RGO in the catalyst structure. By increasing the electro-
chemically active surface, rGO facilitates the oxidation process of alcohols, and by making 
its active surface available to the fuel, it causes faster cyclic stability of the nanocatalyst in 
the oxidation process. 

 
Figure 6. Cyclic stability for ZrO2/NiO (a) and ZrO2/NiO/rGO (b) in MOR and cyclic stability for 
ZrO2/NiO (c) and ZrO2/NiO/rGO (d) in EOR. 

The behavior of catalysts in the process of methanol and ethanol oxidation at differ-
ent temperatures was investigated by performing linear sweep voltammetry (LSV) anal-
ysis at a scan rate of 20 mV/s and in the temperature range of ambient temperature up to 
45 °C. An increase in temperature improves the oxidation process of alcohols, and accord-
ing to the linear relationship between temperature and current density, an increase in the 
peak oxidation current density is observed with increasing temperature. Figure 7a,b show 
the behavior of ZN and ZNR nanocatalysts at different temperatures. The increase in tem-
perature facilitates the kinetics of the MOR and, as a result, increases current density. In 
the process of ethanol oxidation, the same behavior is observed for ZN and ZNR nanocat-
alysts at different temperatures (Figure 7c,d). The linear relationship between temperature 
and current density can be observed in the LSV diagrams. Hence, an increase in the oxi-
dation current density occurs in both methanol and ethanol oxidation processes with the 
rising temperature. 

In Table 1, the efficiency of the ZrO2/NiO/rGO nanocatalyst in the methanol and eth-
anol oxidation process is compared with other recent articles. The oxidation peak poten-
tial and current density of ZrO2/NiO/rGO are comparable with other similar works. 

Figure 6. Cyclic stability for ZrO2/NiO (a) and ZrO2/NiO/rGO (b) in MOR and cyclic stability for
ZrO2/NiO (c) and ZrO2/NiO/rGO (d) in EOR.

Figure 6c,d show the stability of ZN and ZNR nanocatalysts in the EOR process after
1000 consecutive CV cycles. Cyclic stability after this number of cycles is 97.9% for ZN and
98.5% for ZNR.

By investigating the cyclic stability of nanocatalysts in the MOR and EOR processes, a
drop in current density is observed in the initial cycles, but, after that, with the complete
penetration of methanol and ethanol into the core and structure of the catalyst and full
contact between them, very good stability in current density is achieved. The comparison of
the stability of nanocatalysts in the MOR and EOR processes shows the relative superiority
of ZNR nanocatalysts compared to ZN in terms of cyclic stability. This superiority can be
related to the presence of RGO in the catalyst structure. By increasing the electrochemically
active surface, rGO facilitates the oxidation process of alcohols, and by making its active
surface available to the fuel, it causes faster cyclic stability of the nanocatalyst in the
oxidation process.

The behavior of catalysts in the process of methanol and ethanol oxidation at different
temperatures was investigated by performing linear sweep voltammetry (LSV) analysis at
a scan rate of 20 mV/s and in the temperature range of ambient temperature up to 45 ◦C.
An increase in temperature improves the oxidation process of alcohols, and according
to the linear relationship between temperature and current density, an increase in the
peak oxidation current density is observed with increasing temperature. Figure 7a,b show
the behavior of ZN and ZNR nanocatalysts at different temperatures. The increase in
temperature facilitates the kinetics of the MOR and, as a result, increases current density.
In the process of ethanol oxidation, the same behavior is observed for ZN and ZNR
nanocatalysts at different temperatures (Figure 7c,d). The linear relationship between
temperature and current density can be observed in the LSV diagrams. Hence, an increase
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in the oxidation current density occurs in both methanol and ethanol oxidation processes
with the rising temperature.
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In Table 1, the efficiency of the ZrO2/NiO/rGO nanocatalyst in the methanol and
ethanol oxidation process is compared with other recent articles. The oxidation peak
potential and current density of ZrO2/NiO/rGO are comparable with other similar works.

Table 1. Comparison of MOR and EOR performances of ZrO2/NiO/rGO nanocatalyst with other research.

Electrocatalyst Electrolyte Composition Peak Potential
(V)

Current Density
(mA cm–2)

Scan Rate
(mV/s) Reference

ZrO2/NiO/rGO 0.7 M Methanol/0.5 M KOH 0.52 26.6 20 This work
ZrO2/NiO/rGO 0.5 M Ethanol/0.5 M KOH 0.52 17.3 20 This work
ZnFe2O4-ZrO2/Pt 1 M Methanol/0.5 M KOH 0.35 104.75 50 [54]
Zr-MOF@PANI/Ni-NPs/GCE 0.5 M Methanol/1 M NaOH 0.75 291.6 100 [55]
Ni@Au@Pd/rGO 1 M Ethanol/2 M KOH 0.6 8.85 50 [56]
NiO-Y2O3/FTO 0.6 M Methanol/0.5 M NaOH 0.65 6.2 100 [57]
NiO-ZrO2/FTO 0.6 M Methanol/0.5 M NaOH 0.65 10 100 [57]
MOF-74(Ni)/NiOOH 1 M Methanol/1 M KOH 0.6 27.62 50 [58]
Mn3O4-CeO2-rGO 0.8 M Methanol/1 M KOH 0.51 17.7 90 [5]
Mn3O4-Co3O4-rGO 1 M Methanol/1 M KOH 0.48 16.5 100 [59]
Mn3O4-Co3O4-rGO 0.7 M Eethanol/1 M KOH 0.55 5.7 60 [59]
MnCo2O4/NiCo2O4/rGO 2 M Methanol/2 M KOH 0.58 24.76 20 [60]
Au-NiOx/g-C3N4 0.5 M Methanol/1 M KOH 0.35 32.5 Not Reported [61]
MnO2–NiO–MWCNTs 0.5 M EtOH/1 M KOH 0.55 148 µA/cm2 50 [62]
Pd–Ni–Fe/MnO2/Vulcan 1 M Ethanol/0.2 M KOH +0.05–+0.3 3.03 100 [63]
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4. Conclusions

Due to their high electrocatalytic activities, zirconium oxide and nickel oxide were
combined with reduced graphene oxide to form novel catalysts. Adding rGO to the catalyst
structure facilitates the oxidation process of alcohols. We investigated the behavior of
ZrO2/NiO and ZrO2/NiO/rGO in the MOR and EOR processes. We demonstrated that
ZrO2/NiO/rGO is an attractive, cheap, and stable nanocatalyst with a relatively easy
synthesis. It is worth mentioning that although these new nanocatalysts cannot compete
yet with catalysts based on noble and expensive metals, such as platinum, ruthenium,
and palladium, they can offer a good option for alcohol oxidation in fuel cells. The
methanol and ethanol current densities obtained for ZrO2/NiO/rGO were 26.6 mA/cm2

and 17.3 mA/cm2, respectively. The interesting point is that the potential peak for both
processes is seen at approximately 0.52 V, and the proposed catalyst has very good stability
in both MOR and EOR processes. Considering that ZrO2 and NiO have always been
prominent in the field of catalysts and have shown very good electrocatalytic activity, our
research team aims to investigate the capability of these catalysts in different fields of energy
and electrochemical determination of some drugs and alcohol in our future studies. The
preliminary results of the performed electrochemical analyses show the excellent potential
of this catalyst in the process of oxidation and sensing of sorbitol, urea, glycerol, and glucose.
Moreover, the ability of this material as a supercapacitor electrode and electrochemical
battery can also be evaluated.
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