Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = epimutation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 545 KB  
Review
Imprinting Disorders and Epigenetic Alterations in Children Conceived by Assisted Reproductive Technologies: Mechanisms, Clinical Outcomes, and Prenatal Diagnosis
by Antonella Gambadauro, Valeria Chirico, Francesca Galletta, Ferdinando Gulino, Roberto Chimenz, Giorgia Serraino, Immacolata Rulli, Alessandro Manganaro, Eloisa Gitto and Lucia Marseglia
Genes 2025, 16(10), 1242; https://doi.org/10.3390/genes16101242 - 21 Oct 2025
Viewed by 292
Abstract
Assisted reproductive technologies (ARTs) have revolutionized infertility treatment, leading to the birth of over 10 million children worldwide. Despite their success, increasing concerns have been expressed regarding the potential long-term outcomes of ART-conceived individuals, particularly in relation to imprinting disorders (IDs). IDs result [...] Read more.
Assisted reproductive technologies (ARTs) have revolutionized infertility treatment, leading to the birth of over 10 million children worldwide. Despite their success, increasing concerns have been expressed regarding the potential long-term outcomes of ART-conceived individuals, particularly in relation to imprinting disorders (IDs). IDs result from the abnormal expression of imprinted genes, which are expressed in a parent-of-origin-specific manner and regulated by epigenetic mechanisms (e.g., DNA methylation). Disruption of these processes, through environmental, genetic, or procedural factors, can lead to disorders such as Beckwith–Wiedemann syndrome (BWS), Silver–Russell syndrome (SRS), Angelman syndrome (AS), and Prader–Willi syndrome (PWS). These syndromes are characterized by distinct clinical features, including growth abnormalities, neurodevelopmental delay, endocrine dysfunction, and cancer predisposition. ART procedures, especially ovarian hyperstimulation, in vitro fertilization (IVF), and embryo culture, coincide with critical periods of epigenetic reprogramming and may contribute to epimutations in imprinting control regions. In this review, we explored epidemiology, molecular mechanisms, and prenatal diagnostic strategies related to these four IDs in the context of ART. The findings suggest a higher prevalence of BWS and SRS in ART-conceived children. The data regarding AS and PWS are more controversial, with conflicting results across populations and methodologies. Although a causal link between ART and IDs remains debated, evidence suggests the potential contribution of ART procedures to epigenetic dysregulation in susceptible individuals. Further large-scale, methodologically rigorous studies will be essential to clarify this association and inform safer ART practices. Full article
(This article belongs to the Special Issue Genes and Pediatrics)
Show Figures

Figure 1

11 pages, 416 KB  
Article
The Clinical and Diagnostic Characterization of 6q24-Related Transient Neonatal Diabetes Mellitus: A Polish Pediatric Cohort Study
by Michał Pietrusiński, Julia Grzybowska-Adamowicz, Tomasz Płoszaj, Sebastian Skoczylas, Maciej Borowiec, Katarzyna Piekarska, Bogda Skowrońska, Małgorzata Wajda-Cuszlag, Artur Mazur and Agnieszka Zmysłowska
Biomedicines 2025, 13(10), 2492; https://doi.org/10.3390/biomedicines13102492 - 13 Oct 2025
Viewed by 370
Abstract
Background/Objectives: Transient neonatal diabetes mellitus (TNDM) is a form of neonatal diabetes mellitus (NDM) arising in the first weeks of life and remitting in infancy. Epigenetic aberrations at the imprinted 6q24 locus (overexpression of PLAGL1/HYMAI) are the most common causes [...] Read more.
Background/Objectives: Transient neonatal diabetes mellitus (TNDM) is a form of neonatal diabetes mellitus (NDM) arising in the first weeks of life and remitting in infancy. Epigenetic aberrations at the imprinted 6q24 locus (overexpression of PLAGL1/HYMAI) are the most common causes of TNDM. The aim of this study was a retrospective clinical and genetic analysis of a Polish pediatric cohort, emphasizing the role of methylation-specific MLPA (MS-MLPA) in the diagnosis of TNDM. Methods: We conducted a retrospective analysis of the medical records of 22 patients with diabetes diagnosed at 1 year of age. The molecular studies included an analysis of the NDM gene panel by a targeted NGS and MS-MLPA for the 6q24 imprinting region. Results: 6q24-TNDM was confirmed in five patients, with a median age of diabetes remission of 4 months (IQR: 3–6 months). The MS-MLPA identified paternal UPD6 or isolated maternal hypomethylation of PLAGL1 in three patients, and two had a paternal 6q24 duplication. Conclusions: In our group, changes in the 6q24 region were confirmed in 22.7% of NDM patients, indicating the usefulness of the MS-MLPA technique in the diagnosis and detection of imprinting defects. We acknowledge key limitations, including diagnostic delays and incomplete parental testing, which precluded trio-based confirmation of paternal UPD6 versus epimutation in some cases; future diagnostic workflows should incorporate an early trio-based SNP array or STR confirmation. A methylation analysis should be included early in the NDM genetic diagnosis process to provide genetic counseling and monitor patients for diabetes recurrence. Full article
(This article belongs to the Special Issue Molecular and Cellular Research in Diabetes and Metabolic Diseases)
Show Figures

Figure 1

16 pages, 5035 KB  
Article
Phylo-Epigenetic Conservation and CpG Erosion in OCT4, SOX2, and hTERT Intragenic CpG Islands: A Waddingtonian Perspective on Mammalian Developmental Evolution
by Simeon Santourlidis
Genes 2025, 16(9), 1102; https://doi.org/10.3390/genes16091102 - 18 Sep 2025
Viewed by 424
Abstract
Background/Objectives: Developmental biologist Conrad Waddington proposed that evolution is shaped not only by genetic mutations and natural selection but also by environmentally responsive developmental mechanisms. Building on this premise, the epigenetic regulation of three master genes central to mammalian embryogenesis—OCT4, SOX2 [...] Read more.
Background/Objectives: Developmental biologist Conrad Waddington proposed that evolution is shaped not only by genetic mutations and natural selection but also by environmentally responsive developmental mechanisms. Building on this premise, the epigenetic regulation of three master genes central to mammalian embryogenesis—OCT4, SOX2, and hTERT—focusing on their intragenic CpG islands (iCpGIs), which are crucial for transcriptional control and chromatin state modulation, were investigated. Methods: By performing a phylo-epigenetic comparison across 12 primate species, strong conservation of CpG-rich regions, punctuated by lineage-specific CpG transitions, particularly CpG→TpG and CpG→CpA was identified. Results: These mutational patterns align with methylation-dependent deamination mechanisms and highlight iCpGIs as evolutionarily constrained, epigenetically plastic elements. Notably, CpG variation alone recapitulated known primate phylogenies, suggesting that methylation-sensitive sites within iCpGIs encode both developmental and evolutionary information. Conclusions: It is proposed that such sites are prone to Environmentally Determined Epimutations (EDEMs)—methylation-driven, nutrition-sensitive changes that persist across generations and modulate gene regulatory capacity. This integrative framework advances Waddington’s concept of canalization by providing a molecular mechanism through which environmental factors can reshape developmental trajectories and contribute to evolutionary innovation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1815 KB  
Review
Paternal Cocaine Exposure and Its Testicular Legacy: Epigenetic, Physiological, and Intergenerational Consequences
by Candela R. González and Betina González
Biology 2025, 14(8), 1072; https://doi.org/10.3390/biology14081072 - 18 Aug 2025
Viewed by 1604
Abstract
Cocaine use remains a major public health concern, with rising global prevalence and a well-established profile of neurotoxicity and addictive potential. While the central nervous system has been the primary focus of cocaine research, emerging evidence indicates that cocaine also disrupts male reproductive [...] Read more.
Cocaine use remains a major public health concern, with rising global prevalence and a well-established profile of neurotoxicity and addictive potential. While the central nervous system has been the primary focus of cocaine research, emerging evidence indicates that cocaine also disrupts male reproductive physiology. In the testis, cocaine alters the endocrine microenvironment, induces cell-specific damage, and disrupts spermatogenesis. Cocaine also interferes with epigenetic programming in germ cells and mature sperm, potentially leading to heritable epimutations. Epidemiology data reveal that approximately two-thirds of regular cocaine users are males of reproductive age, and preclinical models have documented numerous behavioral and molecular alterations in their offspring, often linked to paternal cocaine exposure—such as increased drug resistance or vulnerability, altered anxiety-like behavior, impaired learning/memory, disrupted social behaviors, and shifts in neural circuitry and gene expression in reward-related brain regions. This review aims to integrate findings from studies that have independently examined testicular dysfunction, germline epigenetic reprogramming, and offspring outcomes, offering a unified perspective on their potential interconnections and highlighting future directions for research in the field of epigenetic inheritance. Full article
Show Figures

Graphical abstract

21 pages, 1383 KB  
Review
Redox-Driven Epigenetic Modifications in Sperm: Unraveling Paternal Influences on Embryo Development and Transgenerational Health
by Aron Moazamian, Fabrice Saez, Joël R. Drevet, Robert John Aitken and Parviz Gharagozloo
Antioxidants 2025, 14(5), 570; https://doi.org/10.3390/antiox14050570 - 9 May 2025
Cited by 1 | Viewed by 2986
Abstract
Male-factor infertility accounts for nearly half of all infertility cases, and mounting evidence points to oxidative stress as a pivotal driver of sperm dysfunction, genetic instability, and epigenetic dysregulation. In particular, the oxidative DNA lesion 8-hydroxy-2′-deoxyguanosine (8-OHdG) has emerged as a central mediator [...] Read more.
Male-factor infertility accounts for nearly half of all infertility cases, and mounting evidence points to oxidative stress as a pivotal driver of sperm dysfunction, genetic instability, and epigenetic dysregulation. In particular, the oxidative DNA lesion 8-hydroxy-2′-deoxyguanosine (8-OHdG) has emerged as a central mediator at the interface of DNA damage and epigenetic regulation. We discuss how this lesion can disrupt key epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNAs, thereby influencing fertilization outcomes, embryo development, and offspring health. We propose that the interplay between oxidative DNA damage and epigenetic reprogramming is further exacerbated by aging in both the paternal and maternal germlines, creating a “perfect storm” that increases the risk of heritable (epi)mutations. The consequences of unresolved oxidative lesions can thus persist beyond fertilization, contributing to transgenerational health risks. Finally, we explore the promise and potential pitfalls of antioxidant therapy as a strategy to mitigate sperm oxidative damage. While antioxidant supplementation may hold significant therapeutic value for men with subfertility experiencing elevated oxidative stress, a careful, personalized approach is essential to avoid reductive stress and unintended epigenetic disruptions. Recognizing the dual role of oxidative stress in shaping both the genome and the epigenome underscores the need for integrating redox biology into reproductive medicine, with the aim of improving fertility treatments and safeguarding the health of future generations. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Male Infertility)
Show Figures

Figure 1

26 pages, 6539 KB  
Article
Genetic and Epigenetic Changes in Arabidopsis thaliana Exposed to Ultraviolet-C Radiation Stress for 25 Generations
by Andres Lopez Virgen, Narendra Singh Yadav, Boseon Byeon, Yaroslav Ilnytskyy and Igor Kovalchuk
Life 2025, 15(3), 502; https://doi.org/10.3390/life15030502 - 20 Mar 2025
Viewed by 1608
Abstract
Continuous exposure to stress contributes to species diversity and drives microevolutionary processes. It is still unclear, however, whether epigenetic changes, in the form of epimutations such as, for example, differential DNA methylation, are the pre-requisite to speciation events. We hypothesized that continuous stress [...] Read more.
Continuous exposure to stress contributes to species diversity and drives microevolutionary processes. It is still unclear, however, whether epigenetic changes, in the form of epimutations such as, for example, differential DNA methylation, are the pre-requisite to speciation events. We hypothesized that continuous stress exposure would increase epigenetic diversity to a higher extent than genetic diversity. In this work, we have analyzed the effect of 25 consecutive generations of UV-C-stress exposure on the Arabidopsis thaliana genome and epigenome. We found no evidence of increased tolerance to UV-C in the progeny of UV-C-stressed plants (F25UV) as compared to the progeny of control plants (F25C). Genetic analysis showed an increased number of single nucleotide polymorphisms (SNPs) and deletions in F25UV plants. Most common SNPs were mutations in cytosines, C to T, C to A, and C to G. Analysis of cytosine methylation showed a significant increase in the percentage of methylated cytosines at CG context in F25UV as compared to F25C or F2C (parental control). The most significant differences between F25UV and either control group were observed in CHG and CHH contexts; the number of hypomethylated cytosines at CHH contexts was over 10 times higher in the F25UC group. F25UV plants clustered separately from other groups in both genomic and epigenomic analyses. GO term analysis of differentially methylated genes revealed enrichments in “DNA or RNA metabolism”, “response to stress”, “response to biotic and abiotic stimulus”, and “signal transduction”. Our work thus demonstrates that continuous exposure to UV-C increases genomic and epigenomic diversity in the progeny, with epigenetic changes occurring in many stress-responsive pathways. Full article
(This article belongs to the Special Issue Plant Functional Genomics and Breeding)
Show Figures

Figure 1

23 pages, 1332 KB  
Review
Non-Coding RNAs and Innate Immune Responses in Cancer
by Carlos Romero Díaz, María Teresa Hernández-Huerta, Laura Pérez-Campos Mayoral, Miriam Emily Avendaño Villegas, Edgar Zenteno, Margarito Martínez Cruz, Eduardo Pérez-Campos Mayoral, María del Socorro Pina Canseco, Gabriel Mayoral Andrade, Manuel Ángeles Castellanos, José Manuel Matías Salvador, Eli Cruz Parada, Alexis Martínez Barras, Jaydi Nora Cruz Fernández, Daniel Scott-Algara and Eduardo Pérez-Campos
Biomedicines 2024, 12(9), 2072; https://doi.org/10.3390/biomedicines12092072 - 11 Sep 2024
Cited by 1 | Viewed by 2621
Abstract
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including [...] Read more.
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs), with a focus on cancer, innate immunity, and inflammation. We found that ncRNAs are closely related to innate immunity, epigenetics, chronic inflammation, and cancer and share properties such as inducibility, specificity, memory, and transfer. These similarities and interrelationships suggest that ncRNAs and modulators of trained immunity, together with the control of chronic inflammation, can be combined to develop novel therapeutic approaches for personalized cancer treatment. In conclusion, the close relationship between ncRNAs, the innate immune system, and inflammation highlights their importance in cancer pathways and their potential as targets for novel therapeutic strategies. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

2 pages, 154 KB  
Correction
Correction: Corsaro et al. Notch, SUMOylation, and ESR-Mediated Signalling Are the Main Molecular Pathways Showing Significantly Different Epimutation Scores between Expressing or Not Oestrogen Receptor Breast Cancer in Three Public EWAS Datasets. Cancers 2023, 15, 4109
by Luigi Corsaro, Davide Gentilini, Luciano Calzari and Vincenzo Sandro Gambino
Cancers 2024, 16(11), 2037; https://doi.org/10.3390/cancers16112037 - 28 May 2024
Viewed by 838
Abstract
Additional Affiliation(s) [...] Full article
19 pages, 392 KB  
Review
Breast Cancer Exposomics
by Anca-Narcisa Neagu, Taniya Jayaweera, Lilian Corrice, Kaya Johnson and Costel C. Darie
Life 2024, 14(3), 402; https://doi.org/10.3390/life14030402 - 18 Mar 2024
Cited by 8 | Viewed by 4786
Abstract
We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, [...] Read more.
We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial–mesenchymal transition (EMT), disruption of cell–cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC. Full article
(This article belongs to the Special Issue Advances in Breast Cancer Research and Treatment)
14 pages, 1036 KB  
Article
Constitutional BRCA1 and MGMT Methylation Are Significant Risk Factors for Triple-Negative Breast Cancer and High-Grade Serous Ovarian Cancer in Saudi Women
by Nisreen Al-Moghrabi, Maram Al-Showimi, Amal Alqahtani, Osama Almalik, Hamed Alhusaini, Ghdah Almalki, Ajawhara Saad and Elaf Alsunayi
Int. J. Mol. Sci. 2024, 25(6), 3108; https://doi.org/10.3390/ijms25063108 - 7 Mar 2024
Cited by 4 | Viewed by 2980
Abstract
Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC [...] Read more.
Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC among Saudi women. DNA methylation was evaluated using methylation-specific PCR, whereas mRNA expression levels were assessed using qRT-PCR. We evaluated white blood cell (WBC)–BRCA1 methylation in 1958 Saudi women (908 BC patients, 223 OC patients, and 827 controls). MGMT methylation was determined in 1534 of the 1958 women (700 BC patients, 223 OC patients, and 611 controls). BRCA1 methylation was detected in 8.6% of the controls and 11% of the BC patients. This epimutation was linked to 13.8% of the early-onset BC patients (p = 0.003) and 20% of the triple-negative breast cancer (TNBC) patients (p = 0.0001). BRCA1 methylation was also detected in 14% of the OC patients (p = 0.011), 19.4% of patients aged <55 years (p = 0.0007), and 23.4% of high-grade serous ovarian cancer (HGSOC) patients. In contrast, the BRCA1 mutation was detected in 24% of the OC patients, 27.4% of patients aged ≥55 years, and 26.7% of the HGSOC patients. However, MGMT methylation was detected in 10% of the controls and 17.4% of the BC patients (p = 0.0003). This epimutation was linked to 26.4% of the late-onset BC patients (p = 0.0001) and 11% of the TNBC patients. MGMT methylation was also found in 15.2% of the OC patients (p = 0.034) and 19.1% of HGSOC patients (p = 0.054). Furthermore, 36% of the BRCA1-methylated patients and 34.5% of the MGMT-methylated patients had a family history of cancer, including breast and ovarian cancer. Notably, BRCA1 and MGMT mRNA levels were greater in the WBC RNA of the BC patients and cancer-free methylation carriers than in that of the OC patients. Our data indicate that BRCA1 and MGMT epimutations significantly contribute to the development of breast cancer and ovarian cancer in Saudi cancer patients. These blood-based biomarkers could help identify female patients at high risk of developing TNBC and HGSOC at an early age. Full article
(This article belongs to the Special Issue Targeting Epigenetic Network in Cancer)
Show Figures

Figure 1

15 pages, 9504 KB  
Article
Understanding DNA Epigenetics by Means of Raman/SERS Analysis for Cancer Detection
by Luca David, Anca Onaciu, Valentin Toma, Rareș-Mario Borșa, Cristian Moldovan, Adrian-Bogdan Țigu, Diana Cenariu, Ioan Șimon, Gabriela-Fabiola Știufiuc, Eugen Carasevici, Brîndușa Drăgoi, Ciprian Tomuleasa and Rareș-Ionuț Știufiuc
Biosensors 2024, 14(1), 41; https://doi.org/10.3390/bios14010041 - 12 Jan 2024
Cited by 4 | Viewed by 3611
Abstract
This study delves into the intricate interaction between DNA and nanosystems, exploring its potential implications for biomedical applications. The focus lies in understanding the adsorption geometry of DNA when in proximity to plasmonic nanoparticles, utilizing ultrasensitive vibrational spectroscopy techniques. Employing a combined Raman-SERS [...] Read more.
This study delves into the intricate interaction between DNA and nanosystems, exploring its potential implications for biomedical applications. The focus lies in understanding the adsorption geometry of DNA when in proximity to plasmonic nanoparticles, utilizing ultrasensitive vibrational spectroscopy techniques. Employing a combined Raman-SERS analysis, we conducted an in-depth examination to clarify the molecular geometry of interactions between DNA and silver nanoparticles. Our findings also reveal distinctive spectral features regarding DNA samples due to their distinctive genome stability. To understand the subtle differences occurring between normal and cancerous DNA, their thermal stability was investigated by means of SERS measurement performed before and after a thermal treatment at 94 °C. It was proved that thermal treatment did not affect DNA integrity in the case of normal cells. On the other hand, due to epimutation pattern that characterizes cancerous DNA, variations between spectra recorded before and after heat treatment were observed, suggesting genome instability. These findings highlight the potential of DNA analysis using SERS for cancer detection. They demonstrate the applicability of this approach to overcoming challenges associated with low DNA concentrations (e.g., circulating tumor DNA) that occur in biofluids. In conclusion, this research contributes significant insights into the nanoscale behavior of DNA in the presence of nanosystems. Full article
(This article belongs to the Special Issue SERS-Based Biosensors: Design and Biomedical Applications)
Show Figures

Figure 1

21 pages, 6812 KB  
Review
Transgenerational Epigenetic DNA Methylation Editing and Human Disease
by Joshua D. Tompkins
Biomolecules 2023, 13(12), 1684; https://doi.org/10.3390/biom13121684 - 22 Nov 2023
Cited by 5 | Viewed by 4050
Abstract
During gestation, maternal (F0), embryonic (F1), and migrating primordial germ cell (F2) genomes can be simultaneously exposed to environmental influences. Accumulating evidence suggests that operating epi- or above the genetic DNA sequence, covalent DNA methylation (DNAme) can be recorded onto DNA in response [...] Read more.
During gestation, maternal (F0), embryonic (F1), and migrating primordial germ cell (F2) genomes can be simultaneously exposed to environmental influences. Accumulating evidence suggests that operating epi- or above the genetic DNA sequence, covalent DNA methylation (DNAme) can be recorded onto DNA in response to environmental insults, some sites which escape normal germline erasure. These appear to intrinsically regulate future disease propensity, even transgenerationally. Thus, an organism’s genome can undergo epigenetic adjustment based on environmental influences experienced by prior generations. During the earliest stages of mammalian development, the three-dimensional presentation of the genome is dramatically changed, and DNAme is removed genome wide. Why, then, do some pathological DNAme patterns appear to be heritable? Are these correctable? In the following sections, I review concepts of transgenerational epigenetics and recent work towards programming transgenerational DNAme. A framework for editing heritable DNAme and challenges are discussed, and ethics in human research is introduced. Full article
(This article belongs to the Special Issue DNA Methylation in Human Diseases)
Show Figures

Figure 1

12 pages, 1578 KB  
Article
MLH1 Promoter Methylation Could Be the Second Hit in Lynch Syndrome Carcinogenesis
by Ileana Wanda Carnevali, Giulia Cini, Laura Libera, Nora Sahnane, Sofia Facchi, Alessandra Viel, Fausto Sessa and Maria Grazia Tibiletti
Genes 2023, 14(11), 2060; https://doi.org/10.3390/genes14112060 - 9 Nov 2023
Cited by 17 | Viewed by 4098
Abstract
(1) Background: MLH1 hypermethylation is an epigenetic alteration in the tumorigenesis of colorectal cancer (CRC) and endometrial cancer (EC), causing gene silencing, and, as a consequence, microsatellite instability. Commonly, MLH1 hypermethylation is considered a somatic and sporadic event in cancer, and its detection [...] Read more.
(1) Background: MLH1 hypermethylation is an epigenetic alteration in the tumorigenesis of colorectal cancer (CRC) and endometrial cancer (EC), causing gene silencing, and, as a consequence, microsatellite instability. Commonly, MLH1 hypermethylation is considered a somatic and sporadic event in cancer, and its detection is recognized as a useful tool to distinguish sporadic from inherited conditions (such as, Lynch syndrome (LS)). However, MLH1 hypermethylation has been described in rare cases of CRC and EC in LS patients. (2) Methods: A total of 61 cancers (31 CRCs, 27 ECs, 2 ovarian cancers, and 1 stomach cancer) from 56 patients referred to cancer genetic counselling were selected for loss of MLH1 protein expression and microsatellite instability. All cases were investigated for MLH1 promoter methylation and MLH1/PMS2 germline variants. (3) Results: Somatic MLH1 promoter hypermethylation was identified in 16.7% of CRC and in 40% of EC carriers of MLH1 germline pathogenic variants. In two families, primary and secondary MLH1 epimutations were demonstrated. (4) Conclusions: MLH1 hypermethylation should not be exclusively considered as a sporadic cancer mechanism, as a non-negligible number of LS-related cancers are MLH1 hypermethylated. Current flow charts for universal LS screening, which include MLH1 methylation, should be applied, paying attention to a patient’s family and personal history. Full article
Show Figures

Figure 1

12 pages, 2177 KB  
Article
11p15 Epimutations in Pediatric Embryonic Tumors: Insights from a Methylome Analysis
by Felipe Luz Torres Silva, Juliana Silveira Ruas, Mayara Ferreira Euzébio, Iva Loureiro Hoffmann, Thais Junqueira, Helder Tedeschi, Luiz Henrique Pereira, Alejandro Enzo Cassone, Izilda Aparecida Cardinalli, Ana Luiza Seidinger, Patricia Yoshioka Jotta and Mariana Maschietto
Cancers 2023, 15(17), 4256; https://doi.org/10.3390/cancers15174256 - 25 Aug 2023
Cited by 1 | Viewed by 1650
Abstract
Embryonic tumors share few recurrent mutations, suggesting that other mechanisms, such as aberrant DNA methylation, play a prominent role in their development. The loss of imprinting (LOI) at the chromosome region 11p15 is the germline alteration behind Beckwith–Wiedemann syndrome that results in an [...] Read more.
Embryonic tumors share few recurrent mutations, suggesting that other mechanisms, such as aberrant DNA methylation, play a prominent role in their development. The loss of imprinting (LOI) at the chromosome region 11p15 is the germline alteration behind Beckwith–Wiedemann syndrome that results in an increased risk of developing several embryonic tumors. This study analyzed the methylome, using EPIC Beadchip arrays from 99 sporadic embryonic tumors. Among these tumors, 46.5% and 14.6% presented alterations at imprinted control regions (ICRs) 1 and 2, respectively. Based on the methylation levels of ICR1 and ICR2, four clusters formed with distinct methylation patterns, mostly for medulloblastomas (ICR1 loss of methylation (LOM)), Wilms tumors, and hepatoblastomas (ICR1 gain of methylation (GOM), with or without ICR2 LOM). To validate the results, the methylation status of 29 cases was assessed with MS-MLPA, and a high level of agreement was found between both methodologies: 93% for ICR1 and 79% for ICR2. The MS-MLPA results indicate that 15 (51.7%) had ICR1 GOM and 11 (37.9%) had ICR2 LOM. To further validate our findings, the ICR1 methylation status was characterized via digital PCR (dPCR) in cell-free DNA (cfDNA) extracted from peripheral blood. At diagnosis, we detected alterations in the methylation levels of ICR1 in 62% of the cases, with an agreement of 76% between the tumor tissue (MS-MLPA) and cfDNA methods. Among the disagreements, the dPCR was able to detect ICR1 methylation level changes presented at heterogeneous levels in the tumor tissue, which were detected only in the methylome analysis. This study highlights the prevalence of 11p15 methylation status in sporadic embryonic tumors, with differences relating to methylation levels (gain or loss), location (ICR1 or ICR2), and tumor types (medulloblastomas, Wilms tumors, and hepatoblastomas). Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

26 pages, 7163 KB  
Article
Notch, SUMOylation, and ESR-Mediated Signalling Are the Main Molecular Pathways Showing Significantly Different Epimutation Scores between Expressing or Not Oestrogen Receptor Breast Cancer in Three Public EWAS Datasets
by Luigi Corsaro, Davide Gentilini, Luciano Calzari and Vincenzo Sandro Gambino
Cancers 2023, 15(16), 4109; https://doi.org/10.3390/cancers15164109 - 15 Aug 2023
Cited by 2 | Viewed by 2232 | Correction
Abstract
Oestrogen receptor expression in breast cancer (BC) cells is a marker of high cellular differentiation and allows the identification of two BC groups (ER-positive and ER-negative) that, although not completely homogeneous, differ in biological characteristics, clinical behaviour, and therapeutic options. The study, based [...] Read more.
Oestrogen receptor expression in breast cancer (BC) cells is a marker of high cellular differentiation and allows the identification of two BC groups (ER-positive and ER-negative) that, although not completely homogeneous, differ in biological characteristics, clinical behaviour, and therapeutic options. The study, based on three publicly available EWAS (Epigenetic Wide Association Study) datasets, focuses on the comparison between these two groups of breast cancer using an epimutation score. The score is calculated not only based on the presence of the epimutation, but also on the deviation amplitude of the methylation outlier value. For each dataset, we performed a functional analysis based first on the functional gene region of each annotated gene (we aggregated the data per gene region TSS1500, TSS200, first-exon, and body-gene identified by the information from the Illumina Data Sheet), and then, we performed a pathway enrichment analysis through the REACTOME database based on the genes with the highest epimutation score. Thus, we blended our results and found common pathways for all three datasets. We found that a higher and significant epimutation score due to hypermethylation in ER-positive BC is present in the promoter region of the genes belonging to the SUMOylation pathway, the Notch pathway, the IFN-γ signalling pathway, and the deubiquitination protease pathway, while a higher and significant level of epimutation due to hypomethylation in ER-positive BC is present in the promoter region of the genes belonging to the ESR-mediated pathway. The presence of this state of promoter hypomethylation in the ESR-mediated signalling genes is consistent and coherent with an active signalling pathway mediated by oestrogen function in the group of ER-positive BC. The SUMOylation and Notch pathways are associated with BC pathogenesis and have been found to play distinct roles in the two BC subgroups. We speculated that the altered methylation profile may play a role in regulating signalling pathways with specific functions in the two subgroups of ER BC. Full article
(This article belongs to the Special Issue Advances in Cancer Epigenetics)
Show Figures

Figure 1

Back to TopTop