Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = epidermal nerve fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3091 KiB  
Article
Carnosol, a Rosemary Ingredient Discovered in a Screen for Inhibitors of SARM1-NAD+ Cleavage Activity, Ameliorates Symptoms of Peripheral Neuropathy
by Hitoshi Murata, Kazuki Ogawa, Yu Yasui, Toshiki Ochi, Nahoko Tomonobu, Ken-Ichi Yamamoto, Rie Kinoshita, Yoji Wada, Hiromichi Nakamura, Masahiro Nishibori and Masakiyo Sakaguchi
Antioxidants 2025, 14(7), 808; https://doi.org/10.3390/antiox14070808 - 30 Jun 2025
Viewed by 659
Abstract
Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, [...] Read more.
Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents the degeneration; as a result, SARM1 has been attracting attention as a potent therapeutic target. In recent years, the development of several SARM1 inhibitors derived from synthetic chemical compounds has been reported; however, no dietary ingredients with SARM1 inhibitory activity have been identified. Therefore, we here focused on dietary ingredients and found that carnosol, an antioxidant contained in rosemary, inhibits the NAD+-cleavage activity of SARM1. Purified carnosol inhibited the enzymatic activity of SARM1 and suppressed neurite degeneration and cell death induced by the anti-cancer medicine vincristine (VCR). Carnosol also inhibited VCR-induced hyperalgesia symptoms, suppressed the loss of intra-epidermal nerve fibers in vivo, and reduced the blood fluid level of phosphorylated neurofilament-H caused by an axonal degeneration event. These results indicate that carnosol has a neuroprotective effect via SARM1 inhibition in addition to its previously known antioxidant effect via NF-E2-related factor 2 and thus suppresses neurotoxin-induced peripheral neuropathy. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

11 pages, 1447 KiB  
Article
Skin Punch as a Potential Diagnostic Tool for Peripheral Neuropathies of Dogs: Set up of an Indirect Immunofluorescence Protocol on Formalin-Fixed Paraffin-Embedded (FFPE) Biopsy
by Maria Teresa Mandara, Simona Arcaro, Ilaria Porcellato and Giuseppe Giglia
Vet. Sci. 2025, 12(4), 291; https://doi.org/10.3390/vetsci12040291 - 21 Mar 2025
Viewed by 600
Abstract
In veterinary medicine, the diagnosis of peripheral neuropathies is currently performed using semithin sections or nerve fiber teasing from nerve biopsy. However, these methods actually fail to identify more specific length-dependent and somatosensitive neuropathies. In humans, skin punch biopsy is used to diagnose [...] Read more.
In veterinary medicine, the diagnosis of peripheral neuropathies is currently performed using semithin sections or nerve fiber teasing from nerve biopsy. However, these methods actually fail to identify more specific length-dependent and somatosensitive neuropathies. In humans, skin punch biopsy is used to diagnose the latter, through the identification and count of intraepidermal nerve fibers (IENFs) crossing the dermal–epidermal junction, with indirect immunofluorescence (IIF). However, the current need for frozen samples for this technique limits its routine application in clinical practice. In this study, we set up an IIF protocol to identify IENFs in dogs’ skin punch biopsies. Six tests were performed on canine formalin-fixed paraffin-embedded (FFPE) 8 mm skin punches, using an antibody anti-PGP9.5, also known as ubiquitin carboxyl-terminal hydrolase-1. Three parameters were checked: (1) the effectiveness of the co-localization immunoreaction, (2) the thickness of sections, and (3) the magnification for image acquisition. The best IIF results in terms of the sharpness of fiber visualization and the possibility to count them were obtained with 10 µm sections, with a high-power field (×40), without co-localization for nuclei and epithelial structures. Reference data concerning the IENF density of different skin regions in healthy animals of different ages remain to be defined for future diagnostic applications. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Graphical abstract

15 pages, 596 KiB  
Review
Small-Fiber Neuropathy: An Etiology-Oriented Review
by Alessandro Furia, Rocco Liguori and Vincenzo Donadio
Brain Sci. 2025, 15(2), 158; https://doi.org/10.3390/brainsci15020158 - 6 Feb 2025
Cited by 1 | Viewed by 6400
Abstract
Background: Small-fiber neuropathy (SFN), affecting Aδ or C nerve fibers, is characterized by alterations of pain and temperature sensation, as well as autonomic dysfunction. Its diagnosis may still remain challenging as methods specifically assessing small nerve fibers are not always readily available, and [...] Read more.
Background: Small-fiber neuropathy (SFN), affecting Aδ or C nerve fibers, is characterized by alterations of pain and temperature sensation, as well as autonomic dysfunction. Its diagnosis may still remain challenging as methods specifically assessing small nerve fibers are not always readily available, and standard techniques for large-fiber neuropathies, such as electroneuromyography, yield negative results. Still, skin biopsy for epidermal innervation and quantitative sensory testing allow for diagnosis in the presence of a congruent clinical picture. Objectives: Many different etiologies may underlie small-fiber neuropathy, of which metabolic (diabetes mellitus/impaired glucose tolerance) and idiopathic remain prevalent. The aim of this narrative review is to provide a general picture of SFN while focusing on the different etiologies described in the literature in order to raise awareness of the variegated set of different causes of SFN and promote adequate diagnostic investigation. Methods: The term “Small-Fiber Neuropathy” was searched on the PubMed database with its different recognized etiologies: the abstracts of the articles were reviewed and described in the article if relevant for a total of 40 studies. Results: Many different disorders have been associated with SFN, even though often in the form of case reports or small case series. Conclusions: Idiopathic forms of SFN remain the most prevalent in the literature, but association with different disorders (e.g., infectious, autoimmune) should prompt investigation for SFN in the presence of a congruent clinical picture (e.g., pain with neuropathic features). Full article
(This article belongs to the Special Issue Diagnosis, Therapy and Rehabilitation in Neuromuscular Diseases)
Show Figures

Figure 1

26 pages, 2433 KiB  
Article
Effects of Spinal Cord Stimulation in Patients with Small Fiber and Associated Comorbidities from Neuropathy After Multiple Etiologies
by Ángeles Canós-Verdecho, Ara Bermejo, Beatriz Castel, Rosa Izquierdo, Ruth Robledo, Elisa Gallach, Teresa Sevilla, Pilar Argente, Ismael Huertas, Isabel Peraita-Costa and María Morales-Suarez-Varela
J. Clin. Med. 2025, 14(2), 652; https://doi.org/10.3390/jcm14020652 - 20 Jan 2025
Cited by 2 | Viewed by 1971
Abstract
Objectives: The aim of this study was to evaluate the effects of spinal cord stimulation (SCS) on pain, neuropathic symptoms, and other health-related metrics in patients with chronic painful peripheral neuropathy (PN) from multiple etiologies. Methods: A prospective single center observational longitudinal cohort [...] Read more.
Objectives: The aim of this study was to evaluate the effects of spinal cord stimulation (SCS) on pain, neuropathic symptoms, and other health-related metrics in patients with chronic painful peripheral neuropathy (PN) from multiple etiologies. Methods: A prospective single center observational longitudinal cohort study assessed SCS efficacy from April 2023 to May 2024, with follow-ups at 2, 4, 6, and 12 months in 19 patients suffering from the painful polyneuropathy of diverse etiologies: diabetic (DPN), idiopathic (CIAP), chemotherapy-induced (CIPN), and others. Patients were implanted with a neurostimulator (WaveWriter AlphaTM, Boston Scientific Corporation, Valencia, CA, USA) and percutaneous leads targeting the lower limbs (T10–T11) and, if necessary, the upper limbs (C4–C7). Stimulation programming was individualized based on patient preference and best response. Assessments were performed before and after implantation and included pain intensity (VAS and DN4), neuropathic pain symptoms (NPSI and SF-MPQ-2), autonomic symptoms (SFN-SIQ and SAS), sensory and small fiber nerve injury (UENS), functionality (GAF), sleep (CPSI), global impression of change (CGI and PGI), and quality of life (EQ-VAS and EQ-5D). Intra-epidermal nerve fiber density (IENFD) via skin biopsy was also performed at baseline (diagnostic) and after 12 months to assess potential small fiber re-growth. Statistical analyses were conducted to determine the evolution of treatment success. Results: To date, 19 patients have undergone implantation and completed follow-up. SCS produced a significant consistent and sustained improvement in pain intensity by 49% in DN4 and 76% in VAS, in neuropathic pain symptoms by 73%, in autonomic symptoms by 26–30%, in the sensorimotor physical exam by 8%, in functionality by 44%, in sleep by 74%, and in quality of life (69% for EQ-VAS and 134% EQ-5D). Both clinicians and patients had a meaningful global impression of change, at 1.1 and 1.3, respectively. Distal intra-epidermal nerve fiber density improved by 22% at 12 months while proximal intra-epidermal nerve fiber density decreased by 18%. Conclusions: SCS is an effective therapy for managing various types of PN. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

39 pages, 2689 KiB  
Review
Dental Stem Cell-Based Therapy for Glycemic Control and the Scope of Clinical Translation: A Systematic Review and Meta-Analysis
by Pallavi Tonsekar, Vidya Tonsekar, Shuying Jiang and Gang Yue
Int. J. Transl. Med. 2024, 4(1), 87-125; https://doi.org/10.3390/ijtm4010005 - 15 Jan 2024
Cited by 4 | Viewed by 2358
Abstract
Background: The tooth is a repository of stem cells, garnering interest in recent years for its therapeutic potential. The aim of this systematic review and meta-analysis was to test the hypothesis that dental stem cell administration can reduce blood glucose and ameliorate polyneuropathy [...] Read more.
Background: The tooth is a repository of stem cells, garnering interest in recent years for its therapeutic potential. The aim of this systematic review and meta-analysis was to test the hypothesis that dental stem cell administration can reduce blood glucose and ameliorate polyneuropathy in diabetes mellitus. The scope of clinical translation was also assessed. Methods: PubMed, Cochrane, Ovid, Web of Science, and Scopus databases were searched for animal studies that were published in or before July 2023. A search was conducted in OpenGrey for unpublished manuscripts. Subgroup analyses were performed to identify potential sources of heterogeneity among studies. The risk for publication bias was assessed by funnel plot, regression, and rank correlation tests. Internal validity, external validity, and translation potential were determined using the SYRCLE (Systematic Review Center for Laboratory Animal Experimentation) risk of bias tool and comparative analysis. Results: Out of 5031 initial records identified, 17 animal studies were included in the review. There was a significant decrease in blood glucose in diabetes-induced animals following DSC administration compared to that observed with saline or vehicle (SMD: −3.905; 95% CI: −5.633 to −2.177; p = 0.0004). The improvement in sensory nerve conduction velocity (SMD: 4.4952; 95% CI: 0.5959 to 8.3945; p = 0.035) and capillary-muscle ratio (SMD: 2.4027; 95% CI: 0.8923 to 3.9132; p = 0.0095) was significant. However, motor nerve conduction velocity (SMD: 3.1001; 95% CI: −1.4558 to 7.6559; p = 0.119) and intra-epidermal nerve fiber ratio (SMD: 1.8802; 95% CI: −0.4809 to 4.2413; p = 0.0915) did not increase significantly. Regression (p < 0.0001) and rank correlation (p = 0.0018) tests indicated the presence of funnel plot asymmetry. Due to disparate number of studies in subgroups, the analyses could not reliably explain the sources of heterogeneity. Interpretation: The direction of the data indicates that DSCs can provide good glycemic control in diabetic animals. However, methodological and reporting quality of preclinical studies, heterogeneity, risk of publication bias, and species differences may hamper translation to humans. Appropriate dose, mode of administration, and preparation must be ascertained for safe and effective use in humans. Longer-duration studies that reflect disease complexity and help predict treatment outcomes in clinical settings are warranted. This review is registered in PROSPERO (number CRD42023423423). Full article
Show Figures

Figure 1

14 pages, 3401 KiB  
Article
Peripheral Nerve Denervation in Streptozotocin-Induced Diabetic Rats Is Reduced by Cilostazol
by Kuang-Yi Tseng, Hung-Chen Wang, Yi-Hsuan Wang, Miao-Pei Su, Kai-Feng Cheng, Kuang-I Cheng and Lin-Li Chang
Medicina 2023, 59(3), 553; https://doi.org/10.3390/medicina59030553 - 11 Mar 2023
Cited by 5 | Viewed by 2998
Abstract
Background and Objective: Our previous study demonstrated that consistent treatment of oral cilostazol was effective in reducing levels of painful peripheral neuropathy in streptozotocin-induced type I diabetic rats. As diabetic neuropathy is characterized by hyperglycemia-induced nerve damage in the periphery, this study aims [...] Read more.
Background and Objective: Our previous study demonstrated that consistent treatment of oral cilostazol was effective in reducing levels of painful peripheral neuropathy in streptozotocin-induced type I diabetic rats. As diabetic neuropathy is characterized by hyperglycemia-induced nerve damage in the periphery, this study aims to examine the neuropathology as well as the effects of cilostazol treatments on the integrity of peripheral small nerve fibers in type I diabetic rats. Materials and Methods: A total of ninety adult male Sprague-Dawley rats were divided into the following groups: (1) naïve (control) group; (2) diabetic rats (DM) group for 8 weeks; DM rats receiving either (3) 10 mg/kg oral cilostazol (Cilo10), (4) 30 mg/kg oral cilostazol (Cilo30), or (5) 100 mg/kg oral cilostazol (Cilo100) for 6 weeks. Pain tolerance thresholds of hind paws toward thermal and mechanical stimuli were assessed. Expressions of PGP9.5, P2X3, CGRP, and TRPV-1 targeting afferent nerve fibers in hind paw skin and glial cells in the spinal dorsal horn were examined via immunohistochemistry and immunofluorescence. Results: Oral cilostazol ameliorated the symptoms of mechanical allodynia but not thermal analgesia in DM rats. Significant reductions in PGP9.5-, P2X3-, CGRP, and TRPV-1-labeled penetrating nerve fibers in the epidermal layer indicated denervation of sensory nerves in the hind paw epidermis of DM rats. Denervation significantly improved in groups that received Cilo30 and Cilo100 in a dose-dependent manner. Cilostazol administration also suppressed microglial hyperactivation and increased astrocyte expressions in spinal dorsal horns. Conclusions: Oral cilostazol ameliorated hyperglycemia-induced peripheral small nerve fiber damage in the periphery of diabetic rats and effectively mitigated diabetic neuropathic pain via a central sensitization mechanism. Our findings present cilostazol not only as an effective option for managing symptoms of neuropathy but also for deterring the development of diabetic neuropathy in the early phase of type I diabetes. Full article
(This article belongs to the Section Endocrinology)
Show Figures

Figure 1

11 pages, 3380 KiB  
Article
Effects of Dupilumab on Itch-Related Events in Atopic Dermatitis: Implications for Assessing Treatment Efficacy in Clinical Practice
by Ryoma Kishi, Sumika Toyama, Mitsutoshi Tominaga, Yayoi Kamata, Eriko Komiya, Takahide Kaneko, Yasushi Suga and Kenji Takamori
Cells 2023, 12(2), 239; https://doi.org/10.3390/cells12020239 - 5 Jan 2023
Cited by 11 | Viewed by 5790
Abstract
Dupilumab attenuates itch and skin inflammation in patients with atopic dermatitis (AD). However, itch-related events that are improved by dupilumab remain unclear. Therefore, the present study investigated changes in clinical scores, serum biomarkers, and the number of intraepidermal nerve fibers (IENFs) using skin [...] Read more.
Dupilumab attenuates itch and skin inflammation in patients with atopic dermatitis (AD). However, itch-related events that are improved by dupilumab remain unclear. Therefore, the present study investigated changes in clinical scores, serum biomarkers, and the number of intraepidermal nerve fibers (IENFs) using skin biopsies and blood samples from 12 patients with moderate to severe AD before and after treatment with dupilumab. Clinical manifestations were assessed using eczema area and severity index (EASI) and visual analogue scale (VAS) scores at baseline and after 8 and 16 weeks of treatment. Serum levels of total immunoglobulin E (IgE), thymus and activation-regulated chemokine (TARC), interleukin (IL)-4, IL-13, IL-22, and IL-31 were examined by electrochemiluminescence, chemiluminescent enzyme immunoassays, ProQuantum immunoassays, and enzyme-linked immunosorbent assays (ELISA) at baseline and after 8 and 16 weeks of treatment. In skin biopsies from AD patients at baseline and after 16 weeks of treatment, IENFs were examined immunohistochemically with the anti-protein gene product (PGP) 9.5 antibody. The dupilumab treatment significantly improved EASI and VAS scores and decreased serum levels of TARC, IgE, and IL-22, whereas those of IL-13 and IL-31, and the number of IENFs remained unchanged and those of IL-4 increased. VAS scores were positively correlated with serum TARC, IL-22, and IgE levels and the degree of epidermal thickening. Serum IL-31 levels were positively correlated with the number of IENFs. These results suggest that serum TARC, IL-22, and IgE levels and epidermal thickness are itch-related events associated with dupilumab treatment and that serum IL-31 levels may reflect the degree of IENF density in AD patients. Therefore, dynamic changes may be used to assess the efficacy of dupilumab treatment to treat itching and inflammation in patients with AD. Full article
(This article belongs to the Special Issue Atopic Dermatitis: Pathogenesis and Emerging Therapies)
Show Figures

Figure 1

16 pages, 1931 KiB  
Article
Gabapentin Increases Intra-Epidermal and Peptidergic Nerve Fibers Density and Alleviates Allodynia and Thermal Hyperalgesia in a Mouse Model of Acute Taxol-Induced Peripheral Neuropathy
by Michal Klazas, Majdi Saleem Naamneh, Wenhua Zheng and Philip Lazarovici
Biomedicines 2022, 10(12), 3190; https://doi.org/10.3390/biomedicines10123190 - 8 Dec 2022
Cited by 3 | Viewed by 3102
Abstract
The clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may [...] Read more.
The clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may protect against Taxol-induced neuropathic pain in association with an effect on intra-epidermal nerve fibers density in the TIPN mice model. A TIPN study schedule was induced in mice by daily injection of Taxol during the first week of the experiment. Gabapentin therapy was performed during the 2nd and 3rd weeks. The neuropathic pain was evaluated during the whole experiment by the Von Frey, tail flick, and hot plate tests. Intra-epidermal nerve fibers (IENF) density in skin biopsies was measured at the end of the experiment by immunohistochemistry of ubiquitin carboxyl-terminal hydrolase PGP9.5 pan-neuronal and calcitonin gene-related (CGRP) peptides-I/II- peptidergic markers. Taxol-induced neuropathy was expressed by 80% and 73% reduction in the paw density of IENFs and CGPR, and gabapentin treatment corrected by 83% and 46% this reduction, respectively. Gabapentin-induced increase in the IENF and CGRP nerve fibers density, thus proposing these evaluations as an additional objective end-point tool in TIPN model studies using gabapentin as a reference compound. Full article
(This article belongs to the Special Issue Animal Models of Human Pathology: Revision, Relevance and Refinements)
Show Figures

Graphical abstract

12 pages, 36913 KiB  
Article
Increased Epidermal Nerve Growth Factor without Small-Fiber Neuropathy in Dermatomyositis
by Lai-San Wong, Chih-Hung Lee and Yu-Ta Yen
Int. J. Mol. Sci. 2022, 23(16), 9030; https://doi.org/10.3390/ijms23169030 - 12 Aug 2022
Cited by 5 | Viewed by 2625
Abstract
Small-fiber neuropathy (SFN) is suggested to be involved in the pathogenesis of some types of autoimmune connective tissue diseases. SFN with a reduction in epidermal nerve fibers might affect sensory fibers and cause neuropathic symptoms, such as pruritus and pain, which are common [...] Read more.
Small-fiber neuropathy (SFN) is suggested to be involved in the pathogenesis of some types of autoimmune connective tissue diseases. SFN with a reduction in epidermal nerve fibers might affect sensory fibers and cause neuropathic symptoms, such as pruritus and pain, which are common in both dermatomyositis (DM) and cutaneous lupus erythematosus (CLE). Nerve growth factor (NGF) has been recognized as important in nociception by regulating epidermal nerve fiber density and sensitizing the peripheral nervous system. The present study aimed to investigate whether SFN was associated with the cutaneous manifestations of DM and CLE. We also investigated the relationship between SFN and axon guidance molecules, such as NGF, amphiregulin (AREG), and semaphorin (Sema3A) in DM and CLE. To explore the molecular signaling, interleukin (IL)-18 and IL-31, which have been implicated in the cutaneous manifestation and neuropathic symptoms in DM, were examined in keratinocytes. Our results revealed that intraepidermal nerve fiber density (IENFD) was unchanged in patients with DM, but significantly reduced in IENFD in patients with CLE compared with healthy control. Increased epidermal expression of NGF and decreased expression of Sema3A were demonstrated in patients with DM. Furthermore, IL-18 and IL-31 both induced the production of NGF from keratinocytes. Taken together, IL-18 and IL-31 mediated epidermal NGF expression might contribute to the cutaneous neuropathic symptoms in DM, while SFN might be important for CLE. Full article
Show Figures

Figure 1

12 pages, 1616 KiB  
Article
Corneal Confocal Microscopy Identifies People with Type 1 Diabetes with More Rapid Corneal Nerve Fibre Loss and Progression of Neuropathy
by Uazman Alam, Georgios Ponirakis, Omar Asghar, Ioannis N. Petropoulos, Shazli Azmi, Maria Jeziorska, Andrew Marshall, Andrew J. M. Boulton, Nathan Efron and Rayaz A. Malik
J. Clin. Med. 2022, 11(8), 2249; https://doi.org/10.3390/jcm11082249 - 18 Apr 2022
Cited by 6 | Viewed by 2620
Abstract
There is a need to accurately identify patients with diabetes at higher risk of developing and progressing diabetic peripheral neuropathy (DPN). Fifty subjects with Type 1 Diabetes Mellitus (T1DM) and sixteen age matched healthy controls underwent detailed neuropathy assessments including symptoms, signs, quantitative [...] Read more.
There is a need to accurately identify patients with diabetes at higher risk of developing and progressing diabetic peripheral neuropathy (DPN). Fifty subjects with Type 1 Diabetes Mellitus (T1DM) and sixteen age matched healthy controls underwent detailed neuropathy assessments including symptoms, signs, quantitative sensory testing (QST), nerve conduction studies (NCS), intra epidermal nerve fiber density (IENFD) and corneal confocal microscopy (CCM) at baseline and after 2 years of follow-up. Overall, people with type 1 diabetes mellitus showed no significant change in HbA1c, blood pressure, lipids or neuropathic symptoms, signs, QST, neurophysiology, IENFD and CCM over 2 years. However, a sub-group (n = 11, 22%) referred to as progressors, demonstrated rapid corneal nerve fiber loss (RCNFL) with a reduction in corneal nerve fiber density (CNFD) (p = 0.0006), branch density (CNBD) (p = 0.0002), fiber length (CNFL) (p = 0.0002) and sural (p = 0.04) and peroneal (p = 0.05) nerve conduction velocities, which was not related to a change in HbA1c or cardiovascular risk factors. The majority of people with T1DM and good risk factor control do not show worsening of neuropathy over 2 years. However, CCM identifies a sub-group of people with T1DM who show a more rapid decline in corneal nerve fibers and nerve conduction velocity. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

14 pages, 4597 KiB  
Article
Effects of Sigma-1 Receptor Ligands on Peripheral Nerve Regeneration
by Patrick Cottilli, Núria Gaja-Capdevila and Xavier Navarro
Cells 2022, 11(7), 1083; https://doi.org/10.3390/cells11071083 - 23 Mar 2022
Cited by 3 | Viewed by 3659
Abstract
Peripheral nerve injuries lead to the loss of motor, sensory and autonomic functions in the territories supplied by the injured nerve. Currently, nerve injuries are managed by surgical repair procedures, and there are no effective drugs in the clinic for improving the capacity [...] Read more.
Peripheral nerve injuries lead to the loss of motor, sensory and autonomic functions in the territories supplied by the injured nerve. Currently, nerve injuries are managed by surgical repair procedures, and there are no effective drugs in the clinic for improving the capacity of axonal regeneration. Sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperon protein involved in many functions, including neuroprotection and neuroplasticity. A few previous studies using Sig-1R ligands reported results that suggest this receptor as a putative target to enhance regeneration. The aim of this study was to evaluate the possible effects of Sig-1R ligands on axonal regeneration in a sciatic nerve section and repair model in mice. To this end, mice were treated either with the Sig-1R agonist PRE-084 or the antagonist BD1063, and a Sig-1R knock-out (KO) mice group was also studied. The electrophysiological and histological data showed that treatment with Sig-1R ligands, or the lack of this protein, did not markedly modify the process of axonal regeneration and target reinnervation after sciatic nerve injury. Nevertheless, the nociceptive tests provided results indicating a role of Sig-1R in sensory perception after nerve injury, and immunohistochemical labeling indicated a regulatory role in inflammatory cell infiltration in the injured nerve. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

15 pages, 300 KiB  
Review
Intraepidermal Nerve Fiber Density as Measured by Skin Punch Biopsy as a Marker for Small Fiber Neuropathy: Application in Patients with Fibromyalgia
by Mary A. Kelley and Kevin V. Hackshaw
Diagnostics 2021, 11(3), 536; https://doi.org/10.3390/diagnostics11030536 - 17 Mar 2021
Cited by 12 | Viewed by 5630
Abstract
Small fiber neuropathy (SFN) is a type of peripheral neuropathy that occurs from damage to the small A-delta and C nerve fibers that results in the clinical condition known as SFN. This pathology may be the result of metabolic, toxic, immune-mediated, and/or genetic [...] Read more.
Small fiber neuropathy (SFN) is a type of peripheral neuropathy that occurs from damage to the small A-delta and C nerve fibers that results in the clinical condition known as SFN. This pathology may be the result of metabolic, toxic, immune-mediated, and/or genetic factors. Small fiber symptoms can be variable and inconsistent and therefore require an objective biomarker confirmation. Small fiber dysfunction is not typically captured by diagnostic tests for large-fiber neuropathy (nerve conduction and electromyographic study). Therefore, skin biopsies stained with PGP 9.5 are the universally recommended objective test for SFN, with quantitative sensory tests, autonomic function testing, and corneal confocal imaging as secondary or adjunctive choices. Fibromyalgia (FM) is a heterogenous syndrome that has many symptoms that overlap with those found in SFN. A growing body of research has shown approximately 40–60% of patients carrying a diagnosis of FM have evidence of SFN on skin punch biopsy. There is currently no clearly defined phenotype in FM at this time to suggest whom may or may not have SFN, though research suggests it may correlate with severe cases. The skin punch biopsy provides an objective tool for use in quantifying small fiber pathology in FM. Skin punch biopsy may also be repeated for surveillance of the disease as well as measuring response to treatments. Evaluation of SFN in FM allows for better classification of FM and guidance for patient care as well as validation for their symptoms, leading to better use of resources and outcomes. Full article
(This article belongs to the Special Issue Rheumatic Diseases: Diagnosis, Treatment and Management)
8 pages, 272 KiB  
Review
Sensitive Skins May Be Neuropathic Disorders: Lessons from Studies on Skin and Other Organs
by Laurent Misery
Cosmetics 2021, 8(1), 14; https://doi.org/10.3390/cosmetics8010014 - 9 Feb 2021
Cited by 8 | Viewed by 5937
Abstract
Sensitive skin can be considered a neuropathic disorder. Sensory disorders and the decrease in intra-epidermal nerve ending density are strong arguments for small-fiber neuropathies. Sensitive skin is frequently associated with irritable bowel syndrome or sensitive eyes, which are also considered neuropathic disorders. Consequently, [...] Read more.
Sensitive skin can be considered a neuropathic disorder. Sensory disorders and the decrease in intra-epidermal nerve ending density are strong arguments for small-fiber neuropathies. Sensitive skin is frequently associated with irritable bowel syndrome or sensitive eyes, which are also considered neuropathic disorders. Consequently, in vitro co-cultures of skin and neurons are adequate models for sensitive skin. Full article
13 pages, 4205 KiB  
Article
Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity
by Cristina Meregalli, Laura Monza, Alessia Chiorazzi, Carla Scali, Chiara Guarnieri, Giulia Fumagalli, Paola Alberti, Eleonora Pozzi, Annalisa Canta, Elisa Ballarini, Virginia Rodriguez-Menendez, Norberto Oggioni, Guido Cavaletti and Paola Marmiroli
Int. J. Mol. Sci. 2021, 22(3), 1058; https://doi.org/10.3390/ijms22031058 - 21 Jan 2021
Cited by 20 | Viewed by 4290
Abstract
The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors’ quality of life. While recent [...] Read more.
The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors’ quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation. Full article
(This article belongs to the Special Issue Immunoglobulins in Inflammation)
Show Figures

Figure 1

21 pages, 4981 KiB  
Article
A Fenofibrate Diet Prevents Paclitaxel-Induced Peripheral Neuropathy in Mice
by Martial Caillaud, Nipa H. Patel, Wisam Toma, Alyssa White, Danielle Thompson, Jared Mann, Tammy H. Tran, Jane L. Roberts, Justin L. Poklis, John W. Bigbee, Xianjun Fang, David A. Gewirtz and M. Imad Damaj
Cancers 2021, 13(1), 69; https://doi.org/10.3390/cancers13010069 - 29 Dec 2020
Cited by 24 | Viewed by 4718
Abstract
Background: Paclitaxel-induced peripheral neuropathy (PIPN) is a major adverse effect of this chemotherapeutic agent that is used in the treatment of a number of solid malignancies. PIPN leads notably to burning pain, cold and mechanical allodynia. PIPN is thought to be a consequence [...] Read more.
Background: Paclitaxel-induced peripheral neuropathy (PIPN) is a major adverse effect of this chemotherapeutic agent that is used in the treatment of a number of solid malignancies. PIPN leads notably to burning pain, cold and mechanical allodynia. PIPN is thought to be a consequence of alterations of mitochondrial function, hyperexcitability of neurons, nerve fiber loss, oxidative stress and neuroinflammation in dorsal root ganglia (DRG) and spinal cord (SC). Therefore, reducing neuroinflammation could potentially attenuate neuropathy symptoms. Peroxisome proliferator-activated receptor-α (PPAR-α) nuclear receptors that modulate inflammatory responses can be targeted by non-selective agonists, such as fenofibrate, which is used in the treatment of dyslipidemia. Methods: Our studies tested the efficacy of a fenofibrate diet (0.2% and 0.4%) in preventing the development of PIPN. Paclitaxel (8 mg/kg) was administered via 4 intraperitoneal (i.p.) injections in C57BL/6J mice (both male and female). Mechanical and cold hypersensitivity, wheel running activity, sensory nerve action potential (SNAP), sciatic nerve histology, intra-epidermal fibers, as well as the expression of PPAR-α and neuroinflammation were evaluated in DRG and SC. Results: Fenofibrate in the diet partially prevented the development of mechanical hypersensitivity but completely prevented cold hypersensitivity and the decrease in wheel running activity induced by paclitaxel. The reduction in SNAP amplitude induced by paclitaxel was also prevented by fenofibrate. Our results indicate that suppression of paclitaxel-induced pain by fenofibrate involves the regulation of PPAR-α expression through reduction in neuroinflammation. Finally, co-administration of paclitaxel and the active metabolite of fenofibrate (fenofibric acid) did not interfere with the suppression of tumor cell growth or clonogenicity by paclitaxel in ovarian and breast cancer cell lines. Conclusions: Taken together, our results show the therapeutic potential of fenofibrate in the prevention of PIPN development. Full article
(This article belongs to the Special Issue Efforts to Mitigate the Toxicity of Cancer Therapeutics)
Show Figures

Figure 1

Back to TopTop