Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = enzyme replacement therapy (ERT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1392 KiB  
Brief Report
Determination of the Epitopes of Alpha-Glucosidase Anti-Drug Antibodies in Pompe Disease Patient Plasma Samples
by Evgeniy V. Petrotchenko, Andreas Hahn and Christoph H. Borchers
Antibodies 2025, 14(3), 64; https://doi.org/10.3390/antib14030064 - 28 Jul 2025
Viewed by 244
Abstract
Pompe disease is a rare autosomal-recessive neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to the pathological accumulation of glycogen and impaired autophagy. Enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA) has been available since 2006, [...] Read more.
Pompe disease is a rare autosomal-recessive neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to the pathological accumulation of glycogen and impaired autophagy. Enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA) has been available since 2006, but may lead to the formation of anti-drug antibodies (ADAs) against the recombinant human enzyme, which, in turn, may adversely affect the response to ERT. Knowledge of the antigenic determinants of rhGAA involved in interaction with ADAs may facilitate the development of strategies to attenuate the anti-drug immune response in patients. Here, we determined the rhGAA ADA epitopes in the plasma of Pompe disease patients using a series of affinity purifications combined with epitope extraction and label free quantitation LC-MS. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Graphical abstract

19 pages, 3112 KiB  
Article
Development of a Lentiviral Vector for High-Yield Production of Synthetic and Recombinant GCase for Gaucher Disease Therapy
by Ana Carolina Coelho, Claudia Emília Vieira Wiezel, Alline Cristina de Campos, Lílian Louise Souza Figueiredo, Gabriela Aparecida Marcondes Suardi, Juliana de Paula Bernardes, Daniela Pretti da Cunha Tirapelli, Vitor Marcel Faça, Kuruvilla Joseph Abraham, Carlos Gilberto Carlotti-Júnior, Velia Siciliano, Ron Weiss, Stanton Gerson and Aparecida Maria Fontes
Int. J. Mol. Sci. 2025, 26(15), 7089; https://doi.org/10.3390/ijms26157089 - 23 Jul 2025
Viewed by 320
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) remains the standard of care for non-neuropathic GD patients, its high cost significantly limits accessibility. To enhance production efficiency, [...] Read more.
Gaucher disease (GD) is an autosomal recessive disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) remains the standard of care for non-neuropathic GD patients, its high cost significantly limits accessibility. To enhance production efficiency, we developed a lentiviral system encoding a codon-optimized GCase gene driven by the human elongation factor 1a (hEF1α) promoter for stable production in human cell lines. A functional lentiviral vector, LV_EF1α_GBA_Opt, was generated at a titer of 7.88 × 108 LV particles/mL as determined by qPCR. Six transduction cycles were performed at a multiplicity of infection of 30–50. The transduced heterogeneous human cell population showed GCase-specific activity of 307.5 ± 53.49 nmol/mg protein/h, which represents a 3.21-fold increase compared to wild-type 293FT cells (95.58 ± 16.5 nmol/mg protein/h). Following single-cell cloning, two clones showed specific activity of 763.8 ± 135.1 and 752.0 ± 152.1 nmol/mg/h (clones 15 and 16, respectively). These results show that codon optimization, a lentiviral delivery system, and clonal selection together enable the establishment of stable human cell lines capable of producing high levels of biologically active, synthetic recombinant GCase in vitro. Further studies are warranted for the functional validation in GD patient-derived fibroblasts and animal models. Full article
(This article belongs to the Special Issue Gaucher Disease: From Molecular Mechanisms to Treatments)
Show Figures

Graphical abstract

79 pages, 1083 KiB  
Systematic Review
Clinical Efficacy and Real-World Effectiveness of Fabry Disease Treatments: A Systematic Literature Review
by Ana Jovanovic, Eve Miller-Hodges, Felicia Castriota, Obaro Evuarherhe, Olulade Ayodele, Derralynn Hughes, Guillem Pintos-Morell, Roberto Giugliani, Sandro Feriozzi and Csaba Siffel
J. Clin. Med. 2025, 14(14), 5131; https://doi.org/10.3390/jcm14145131 - 18 Jul 2025
Viewed by 674
Abstract
Objectives: This systematic literature review aimed to identify studies assessing the clinical efficacy and real-world effectiveness of current and emerging treatments for Fabry disease. Methods: Searches of the MEDLINE, EMBASE, and Cochrane library databases, as well as relevant congress proceedings, were conducted to [...] Read more.
Objectives: This systematic literature review aimed to identify studies assessing the clinical efficacy and real-world effectiveness of current and emerging treatments for Fabry disease. Methods: Searches of the MEDLINE, EMBASE, and Cochrane library databases, as well as relevant congress proceedings, were conducted to identify publications reporting on studies in patients of any age, sex, race, or ethnicity who received any approved or experimental treatment for Fabry disease, published before 17 June 2024. Results: Of 1881 publications screened, 234 reported data on renal, cardiac, cerebrovascular, and disease severity outcomes from 225 studies. The majority of reported studies were observational in nature (n = 150; 67%) and involved only adults (n = 172; 74%). Study designs and patient populations were highly heterogeneous, and cross-study conclusions about the effectiveness of different therapies could not be made. Enzyme replacement therapy (ERT) with agalsidase alfa or agalsidase beta stabilized renal function and cardiac structure in patients with Fabry disease. Early initiation of ERT in childhood or young adulthood was associated with better renal and cardiac outcomes than treatment initiation at a later age. The small number of comparator studies of agalsidase alfa and agalsidase beta suggested similar efficacy. Patients treated with migalastat and pegunigalsidase alfa also maintained stable renal function and cardiac structure. Conclusions: Overall, current treatments slow the progression of renal and cardiac decline in patients with Fabry disease. Large cohort studies with long-term follow-up and baseline stratification based on clinical phenotype are needed to address evidence gaps and provide clinicians with robust data to inform treatment decisions. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

31 pages, 3964 KiB  
Article
Integrase-Deficient Lentiviral Vector as a Platform for Efficient CRISPR/Cas9-Mediated Gene Editing for Mucopolysaccharidosis IVA
by Fnu Nidhi and Shunji Tomatsu
Int. J. Mol. Sci. 2025, 26(14), 6616; https://doi.org/10.3390/ijms26146616 - 10 Jul 2025
Viewed by 524
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder causing systemic skeletal dysplasia due to a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) enzyme activity, leading to the impaired degradation and accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate. While treatments such as enzyme [...] Read more.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder causing systemic skeletal dysplasia due to a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) enzyme activity, leading to the impaired degradation and accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate. While treatments such as enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available, they have significant limitations regarding efficacy in skeletal tissues and long-term safety, highlighting the need for more effective therapies. We evaluated a novel gene therapy approach using a dual Integrase-deficient lentiviral vector (IDLV) to deliver an expression cassette that includes human GALNS cDNA and Cas9 sgRNA, targeting the upstream region of the mouse Galns initial codon. This approach leverages the endogenous promoter to drive transgene expression. We assessed in vitro transduction, editing, and functional correction in NIH3T3 and MPS IVA mouse fibroblasts. In vivo efficacy was successfully evaluated via the facial vein injection in MPS IVA newborn mice. In vitro, this IDLV platform demonstrated supraphysiological GALNS activity in cell lysate, resulting in the normalization of KS levels. In vivo direct IDLV platform in newborn MPS IVA mice led to sustained plasma GALNS activity, reduced plasma KS, and favorable biodistribution. Partial correction of heart and bone pathology was observed, with no vector toxicity and minimal antibody responses. This dual IDLV-CRISPR/Cas9 approach effectively mediated targeted GALNS knock-in, yielding sustained enzyme activity, reduced KS storage, and partial pathological amelioration in MPS IVA mice. In conclusion, IDLVs represent an efficient, safe platform for delivering the CRISPR/Cas9 gene editing system for MPS IVA. Full article
Show Figures

Graphical abstract

23 pages, 2352 KiB  
Review
Mesenchymal Stem Cell-Derived Extracellular Vesicles: Seeking into Cell-Free Therapies for Bone-Affected Lysosomal Storage Disorders
by Andrés Felipe Leal, Harry Pachajoa and Shunji Tomatsu
Int. J. Mol. Sci. 2025, 26(13), 6448; https://doi.org/10.3390/ijms26136448 - 4 Jul 2025
Viewed by 440
Abstract
Lysosomal storage disorders (LSDs) constitute a group of monogenic systemic diseases resulting from deficiencies in specific lysosomal enzymes that cause the intralysosomal accumulation of non- or partially degraded substrates, leading to lysosomal dysfunction. In some cases of LSDs, the bone is more severely [...] Read more.
Lysosomal storage disorders (LSDs) constitute a group of monogenic systemic diseases resulting from deficiencies in specific lysosomal enzymes that cause the intralysosomal accumulation of non- or partially degraded substrates, leading to lysosomal dysfunction. In some cases of LSDs, the bone is more severely affected, thus producing skeletal manifestations in patients. Current therapies, such as enzyme replacement therapy (ERT) and gene therapy (GT), show limited efficacy in correcting skeletal abnormalities. Increasing evidence suggests that microenvironmental disturbances also contribute significantly to disease pathogenesis. Therefore, therapeutic strategies targeting lysosomal dysfunction and microenvironmental dysregulation are needed. Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) are emerging as promising candidates in regenerative medicine due to their immunomodulatory, pro-regenerative, and paracrine properties. MSC-EVs have shown potential to modulate the microenvironment and favor tissue repair in bone-related disorders such as osteoarthritis and osteoporosis. Interestingly, MSC-EVs can be engineered to reach the bone and carry therapeutics, including ERT- and GT-related molecules, enabling targeted delivery to hard-to-reach bone regions. This review describes the main features of MSC-EVs and discusses the therapeutic potential of MSC-EVs as a potential cell-free strategy for bone-affected LSDs. Full article
Show Figures

Figure 1

10 pages, 625 KiB  
Case Report
Increased Lyso-Gb1 Levels in an Obese Splenectomized Gaucher Disease Type 1 Patient Treated with Eliglustat: Unacknowledged Poor Compliance or Underlying Factors
by Evelina Maines, Roberto Franceschi, Giacomo Luppi, Giacomo Marchi, Giovanni Piccoli, Nicola Vitturi, Massimo Soffiati, Annalisa Campomori and Silvana Anna Maria Urru
Metabolites 2025, 15(7), 427; https://doi.org/10.3390/metabo15070427 - 23 Jun 2025
Viewed by 402
Abstract
Eliglustat (Cerdelga®) is a potent and specific inhibitor of the enzyme glucosylceramide synthase and serves as a substrate reduction therapy for adult patients with Gaucher disease type 1 (GD1). It prevents the accumulation of several lipids, including glucosylsphingosine (also known as [...] Read more.
Eliglustat (Cerdelga®) is a potent and specific inhibitor of the enzyme glucosylceramide synthase and serves as a substrate reduction therapy for adult patients with Gaucher disease type 1 (GD1). It prevents the accumulation of several lipids, including glucosylsphingosine (also known as Lyso-Gb1). In addition to its role in diagnostics, Lyso-Gb1 has been proven to be a reliable biomarker for assessing disease severity and monitoring treatment efficacy. We present the case of an obese, splenectomized GD1 patient on long-term enzyme replacement therapy (ERT) who reported worsening fatigue and showed a progressive increase in Lyso-Gb1 levels after switching treatment from ERT to eliglustat. We provide a discussion of the potential clinical factors contributing to this outcome. As seen with ERT, Lyso-Gb1 levels during eliglustat treatment appear to respond earlier than other biochemical and clinical parameters. An increase in Lyso-Gb1 may signal early compromised clinical efficacy of the treatment. Data on biochemical and clinical outcomes in splenectomized or obese patients treated with eliglustat are limited, and the role of specific genotypes requires further clarification. The variability in responses to eliglustat highlights the complexity of GD and underscores the need for personalized approaches to treatment and monitoring. Full article
Show Figures

Figure 1

22 pages, 5103 KiB  
Article
Exploring Multivalent Architectures for Binding and Stabilization of N-Acetylgalactosamine 6-Sulfatase
by Maria Giulia Davighi, Francesca Clemente, Giampiero D’Adamio, Macarena Martínez-Bailén, Alessio Morano, Andrea Goti, Amelia Morrone, Camilla Matassini and Francesca Cardona
Molecules 2025, 30(10), 2222; https://doi.org/10.3390/molecules30102222 - 20 May 2025
Viewed by 686
Abstract
Morquio A syndrome is a lysosomal disorder caused by the deficiency of the lysosomal enzyme N-acetylgalactosamine 6-sulfatase (GALNS, EC 3.1.6.4). Currently, enzyme replacement therapy (ERT) is used to treat Morquio A through the infusion of the recombinant enzyme VIMIZIM® (elosulfase alfa, [...] Read more.
Morquio A syndrome is a lysosomal disorder caused by the deficiency of the lysosomal enzyme N-acetylgalactosamine 6-sulfatase (GALNS, EC 3.1.6.4). Currently, enzyme replacement therapy (ERT) is used to treat Morquio A through the infusion of the recombinant enzyme VIMIZIM® (elosulfase alfa, BioMarin). Unfortunately, the recombinant enzyme exhibits low conformational stability in vivo. A promising approach to address this issue is the coadministration of recombinant human GALNS (rhGALNS) with a pharmacological chaperone (PC), a molecule that selectively binds to the misfolded protein, stabilizes its conformation, and assists in the restoration of the impaired function. We report in this work the synthesis of a library of multivalent glycomimetics exploiting the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between several dendrimeric scaffolds armed with terminal alkynes and azido ending iminosugars of different structures (pyrrolidines, piperidines, and pyrrolizidines) or simple azido ending carbohydrates as bioactive units. The biological evaluation identified pyrrolidine-based nonavalent dendrimers 1 and 36 as the most promising compounds, able both to bind the native enzyme with IC50 in the micromolar range and to act as enzyme stabilizers toward rhGALNS in a thermal denaturation study, thus identifying promising compounds for a combined PC/ERT therapy. Full article
(This article belongs to the Special Issue Glycomimetics: Design, Synthesis and Bioorganic Applications)
Show Figures

Figure 1

12 pages, 237 KiB  
Article
Newborn Screening for Gaucher Disease: The New Jersey Experience
by Caitlin Menello, Shaney Pressley, Madeline Steffensen, Sarah Schmidt, Helio Pedro, Reena Jethva, Karen Valdez-Gonzalez, Darius J. Adams, Punita Gupta, Lorien Tambini King, Milen Velinov, Sharon Anderson, Peyman Bizargity, Beth Pletcher, Allysa Tuite, Christina Kresge, Debra Lynn Day-Salvatore, Ryan Kuehl and Can Ficicioglu
Int. J. Neonatal Screen. 2025, 11(2), 34; https://doi.org/10.3390/ijns11020034 - 2 May 2025
Viewed by 902
Abstract
Gaucher disease (GD) is a lysosomal storage disorder (LSD) characterized by glycosphingolipid accumulation. Age of symptomonset and disease progression varies across types of disease. Newborn screening (NBS) for Gaucher disease facilitates early identification of affected individuals and enables pre-symptomatic monitoring with the goal [...] Read more.
Gaucher disease (GD) is a lysosomal storage disorder (LSD) characterized by glycosphingolipid accumulation. Age of symptomonset and disease progression varies across types of disease. Newborn screening (NBS) for Gaucher disease facilitates early identification of affected individuals and enables pre-symptomatic monitoring with the goal of starting therapies early and improving clinical outcomes. This multi-center study involved New Jersey NBS referral centers. Data regarding initial NBS results, confirmatory testing, diagnosis, and treatment were collected. For patients on therapy, monitoring biomarkers and exam findings are available as of the last clinical evaluation. Between July 2019 and December 2023, 438,515 newborns were screened, with 60 screen-positive cases. Of those positive screens, 19 cases with positive screens did not undergo confirmatory testing due to parental refusal, loss to follow-up, or death; 23 cases were false positives; 14 newborns were diagnosed with GD type I; 2 newborns were diagnosed with suspected type I GD; 2 newborns were diagnosed with GD type II; and 1 case is still pending. Three type I GD patients started enzyme replacement therapy, with the youngest starting at 28 months of age. Post-treatment data are available for these individuals. One type II case was referred to experimental gene therapy, and one was started on ERT. Our results demonstrate that NBS for GD is a valuable public health tool that can facilitate early diagnosis and intervention. Full article
21 pages, 2737 KiB  
Review
From Genes to Treatment: Literature Review and Perspectives on Acid Sphingomyelinase Deficiency in Children
by Raluca Maria Vlad, Ruxandra Dobritoiu and Daniela Pacurar
Diagnostics 2025, 15(7), 804; https://doi.org/10.3390/diagnostics15070804 - 21 Mar 2025
Viewed by 961
Abstract
Background: Acid sphingomyelinase deficiency (ASMD), most commonly known as Niemann–Pick disease (NPD), is a rare progressive genetic disorder regarding lipid storage. Subtypes A and B are inherited in an autosomal recessive fashion and consist of a genetic defect which affects the sphingomyelin phosphodiesterase [...] Read more.
Background: Acid sphingomyelinase deficiency (ASMD), most commonly known as Niemann–Pick disease (NPD), is a rare progressive genetic disorder regarding lipid storage. Subtypes A and B are inherited in an autosomal recessive fashion and consist of a genetic defect which affects the sphingomyelin phosphodiesterase 1 gene, leading to residual or lack of enzymatic activity of acid sphingomyelinase (ASM). Materials and Methods: This paper provides a brief history and overview to date of the disease and a comprehensive review of the current literature on ASMD in children, conducted on published papers from the past 10 years. Results: We identified 19 original publications (16 individual case reports and three series of cases—30 patients). The male/female ratio was 1.4. The youngest patient at disease onset was a female newborn with NPD-A. The youngest patient was diagnosed at 4 months. The longest timeframe between onset symptoms and diagnostic moment was 5 years 3 months. A total of nine patients exhibited red cherry macular spots. A total of 13 children exhibited associated lung disease, and four NPD-A patients with pulmonary disease died due to respiratory complications. A total of 11 children exhibited associated growth impairment. Genetic assays were performed in 25 cases (15 homozygous; 9 heterozygous). A total of four children (13.3%) received enzyme replacement therapy (ERT). Therapy outcomes included decreased liver and spleen volumes, improved platelet and leukocytes counts, and body mass index and stature improvement. Conclusions: Sometimes, a small child with a big belly hides a huge dilemma; inherited metabolic disorders are here to challenge clinicians and set the record straight, and genetics is the way of the future in terms of diagnosis and novel treatments. NPD must be considered children with persistent and progressive hepatosplenomegaly and growth failure. Diagnosis requires good clinical skills and access to genetic assays. Since 2022, the FDA has given a green light to a revolutionary enzymatic replacement therapy with human recombinant ASM called Olipudase-alfa. Clinical trial outcomes support its reliability and efficacy in the pediatric population. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Pediatric Diseases)
Show Figures

Figure 1

8 pages, 722 KiB  
Article
Prospective Monitoring of Lyso-Gb1 on DBS Sample in Three Children Recognized at Newborn Screening for Gaucher Disease and Untreated
by Claudia Rossi, Daniela Trotta, Rossella Ferrante, Damiana Pieragostino, Silvia Valentinuzzi, Luca Federici, Liborio Stuppia, Vincenzo De Laurenzi and Maurizio Aricò
Children 2025, 12(3), 350; https://doi.org/10.3390/children12030350 - 11 Mar 2025
Viewed by 751
Abstract
Background: Gaucher disease (GD) is an autosomal recessive lysosomal disease. Extended neonatal screening currently includes GD in several different regions. Decision on when to start enzyme replacement therapy (ERT) upon confirmed diagnosis or upon appearance of first clinical manifestation of the disease remains [...] Read more.
Background: Gaucher disease (GD) is an autosomal recessive lysosomal disease. Extended neonatal screening currently includes GD in several different regions. Decision on when to start enzyme replacement therapy (ERT) upon confirmed diagnosis or upon appearance of first clinical manifestation of the disease remains an unmet need. Methods: We report our preliminary experience in tightly monitoring blood levels of glucosyl-sphingosine (lyso-Gb1), on DBS at birth and then every 4 weeks, in the absence of ERT in three consecutive newborns identified for GD as part of a screening program. Results: Initial lyso-Gb1 values were above cut-off. In two cases, lyso-Gb1 levels showed a reduction during the first 3 months of life and, by month 4, they had reached a value lower than the upper normal value. In the case of the third child, after an initial drop to less than 50% of the initial value, lyso-Gb1 levels remained pretty stable at the following four time-points. At the time of writing, all remain free from any disease manifestation at the age of 20, 11 and 8 months, respectively, with normal physical growth and blood count; therefore, ERT has not been started yet. Conclusions: A specific threshold for lyso-Gb1 value to be considered as associated with non-reversible progression to disease is not yet defined. We hypothesize that a trend toward stable increase of this biomarker, confirmed at repeated evaluation, rather than a single threshold, could be convincing for starting ERT even before clinical manifestation of the disease. Full article
(This article belongs to the Section Pediatric Endocrinology & Diabetes)
Show Figures

Figure 1

26 pages, 2548 KiB  
Review
Fabry Disease: Insights into Pathophysiology and Novel Therapeutic Strategies
by Sophie Elizabeth Thompson, Ashwin Roy, Tarekegn Geberhiwot, Katja Gehmlich and Richard Paul Steeds
Biomedicines 2025, 13(3), 624; https://doi.org/10.3390/biomedicines13030624 - 4 Mar 2025
Cited by 2 | Viewed by 3278
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by deficiency of α-galactosidase A (α-GalA), leading to the accumulation of glycosphingolipids and multi-organ dysfunction, particularly affecting the cardiovascular and renal systems. Disease-modifying treatments such as enzyme replacement therapy (ERT) and oral chaperone [...] Read more.
Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by deficiency of α-galactosidase A (α-GalA), leading to the accumulation of glycosphingolipids and multi-organ dysfunction, particularly affecting the cardiovascular and renal systems. Disease-modifying treatments such as enzyme replacement therapy (ERT) and oral chaperone therapy (OCT) have limited efficacy, particularly in advanced disease, prompting a need for innovative therapeutic approaches targeting underlying molecular mechanisms beyond glycosphingolipid storage alone. Recent insights into the pathophysiology of FD highlights chronic inflammation and mitochondrial, lysosomal, and endothelial dysfunction as key mediators of disease progression. Adjunctive therapies such as sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) agonists, and mineralocorticoid receptor antagonists (MRAs) demonstrate significant cardiovascular and renal benefits in conditions including heart failure and chronic kidney disease. These drugs also modulate pathways involved in the pathophysiology of FD, such as autophagy, oxidative stress, and pro-inflammatory cytokine signaling. While theoretical foundations support their utility, dedicated trials are necessary to confirm efficacy in the FD-specific population. This narrative review highlights the importance of expanding therapeutic strategies in FD, advocating for a multi-faceted approach involving evidence-based adjunctive treatments to improve outcomes. Tailored research focusing on diverse FD phenotypes, including females and non-classical variants of disease, will be critical to advancing care and improving outcomes in this complex disorder. Full article
Show Figures

Figure 1

32 pages, 8096 KiB  
Article
Reversing Pathology in an Aggravated Fabry Mouse Model Using Low-Dose Engineered Human Alpha-Galactosidase A AAV Gene Therapy
by Wanida Ruangsiriluk, Mugdha Deshpande, Natalia Boukharov, Girija Rajarshi, Shreya Mukherji, Shipeng Yuan, Jennifer Wiseman, Nancy Chen, Eric Park, Hyelim Cho and Rizwana Islam
Biomedicines 2025, 13(3), 577; https://doi.org/10.3390/biomedicines13030577 - 25 Feb 2025
Viewed by 1761
Abstract
Background/Objectives: Fabry disease is an X-linked disorder caused by lysosomal accumulation of glycosphingolipids due to the deficiency of α-Galactosidase (α-GAL), which leads to pathology in multiple organ systems. The standard of care is enzyme replacement therapy (ERT) with recombinant native α-GAL protein. [...] Read more.
Background/Objectives: Fabry disease is an X-linked disorder caused by lysosomal accumulation of glycosphingolipids due to the deficiency of α-Galactosidase (α-GAL), which leads to pathology in multiple organ systems. The standard of care is enzyme replacement therapy (ERT) with recombinant native α-GAL protein. Shortcomings of the native α-GAL include low stability, a short circulating half-life, and inadequate uptake by affected tissues that limits the efficacy of ERT and could potentially reduce AAV gene therapy (GT) benefits. Cross-correction by secreted α-GAL is essential for liver-targeted as well as ubiquitous AAV GT due to poor transduction and/or short half-life of some of the significantly affected cell types. Methods: To overcome potential limitations of AAV GT delivering native α-GAL, we used an engineered GLA transgene product to improve enzyme stability and reduce predicted immunogenicity. Results: The stabilized α-GAL variant, Eng-C, had an extended circulatory half-life, allowing for enhanced distribution and efficient uptake by target organs. AAV gene therapy with Eng-C demonstrated significantly greater substrate reduction in the severe Fabry G3Stg/GlaKO mouse model across all affected tissues. Efficacy of the Eng-C AVV GT was equal to or greater than the efficacy of the higher doses of the AAV GT with native α-GAL. Furthermore, this study is the first to demonstrate that the pre-existing pathology in some tissues in G3Stg/GlaKO mice can be reversed with efficient treatment. Conclusions: Our findings demonstrate that an AAV-based gene therapy expressing an engineered α-GAL with improved stability and lower immunogenicity could be effective at lower doses than other AAV GTs, potentially offering lower safety risks typically associated with high AAV vector doses. Full article
Show Figures

Figure 1

9 pages, 1184 KiB  
Article
Does Early Diagnosis and Treatment Alter the Clinical Course of Wolman Disease? Divergent Trajectories in Two Siblings and a Consideration for Newborn Screening
by Maria Jose de Castro Lopez, Fiona J. White, Victoria Holmes, Jane Roberts, Teresa H. Y. Wu, James A. Cooper, Heather J. Church, Gemma Petts, Robert F. Wynn, Simon A. Jones and Arunabha Ghosh
Int. J. Neonatal Screen. 2025, 11(1), 17; https://doi.org/10.3390/ijns11010017 - 25 Feb 2025
Viewed by 934
Abstract
Wolman disease (WD) is a lethal disorder defined by the deficiency of the lysosomal acid lipase enzyme. Patients present with intestinal failure, malnutrition, and hepatosplenomegaly. Enzyme replacement therapy (ERT) with dietary substrate reduction (DSR) significantly improves survival. We sought to determine the outcomes [...] Read more.
Wolman disease (WD) is a lethal disorder defined by the deficiency of the lysosomal acid lipase enzyme. Patients present with intestinal failure, malnutrition, and hepatosplenomegaly. Enzyme replacement therapy (ERT) with dietary substrate reduction (DSR) significantly improves survival. We sought to determine the outcomes of two siblings with WD treated after the onset of symptoms (sibling 1) and presymptomatic (sibling 2). A chart review was conducted on two siblings with WD treated with ERT and DSR at 4 months of age (sibling 1) and immediately after birth (sibling 2) to determine clinical outcomes based on survival, laboratory results, growth, dietary records, and gut biopsies. Sibling 1 presented with hepatosplenomegaly and liver dysfunction and developed hemophagocytic lymphohistiocytosis despite treatment. She received a bone marrow transplant at 8 months of age but died at 13 months. Sibling 2 is alive at 16 months of age with height, weight, and MUAC above the 95th centile, fully orally fed, with no gastrointestinal symptoms, normal liver function, and normal oxysterols. Sibling 2 duodenal biopsies show normal villus architecture with no foamy macrophage infiltration. Initiation of treatment prior to the onset of symptoms can prevent clinical manifestations and increase survival. The divergent trajectory in these siblings raises the question of WD’s candidacy for newborn screening. Full article
(This article belongs to the Special Issue Neonatal Screening in Europe: On the Brink of a New Era)
Show Figures

Figure 1

36 pages, 2715 KiB  
Review
From Molecular Therapies to Lysosomal Transplantation and Targeted Drug Strategies: Present Applications, Limitations, and Future Prospects of Lysosomal Medications
by Adel A. Alhowyan and Gamaleldin I. Harisa
Biomolecules 2025, 15(3), 327; https://doi.org/10.3390/biom15030327 - 24 Feb 2025
Cited by 3 | Viewed by 2110
Abstract
Lysosomes are essential intracellular organelles involved in plentiful cellular processes such as cell signaling, metabolism, growth, apoptosis, autophagy, protein processing, and maintaining cellular homeostasis. Their dysfunction is linked to various diseases, including lysosomal storage disorders, inflammation, cancer, cardiovascular diseases, neurodegenerative conditions, and aging. [...] Read more.
Lysosomes are essential intracellular organelles involved in plentiful cellular processes such as cell signaling, metabolism, growth, apoptosis, autophagy, protein processing, and maintaining cellular homeostasis. Their dysfunction is linked to various diseases, including lysosomal storage disorders, inflammation, cancer, cardiovascular diseases, neurodegenerative conditions, and aging. This review focuses on current and emerging therapies for lysosomal diseases (LDs), including small medicines, enzyme replacement therapy (ERT), gene therapy, transplantation, and lysosomal drug targeting (LDT). This study was conducted through databases like PubMed, Google Scholar, Science Direct, and other research engines. To treat LDs, medicines target the lysosomal membrane, acidification processes, cathepsins, calcium signaling, mTOR, and autophagy. Moreover, small-molecule therapies using chaperones, macro-therapies like ERT, gene therapy, and gene editing technologies are used as therapy for LDs. Additionally, endosymbiotic therapy, artificial lysosomes, and lysosomal transplantation are promising options for LD management. LDT enhances the therapeutic outcomes in LDs. Extracellular vesicles and mannose-6-phosphate-tagged nanocarriers display promising approaches for improving LDT. This study concluded that lysosomes play a crucial role in the pathophysiology of numerous diseases. Thus, restoring lysosomal function is essential for treating a wide range of conditions. Despite endosymbiotic therapy, artificial lysosomes, lysosomal transplantation, and LDT offering significant potential for LD control, there are ample challenges regarding safety and ethical implications. Full article
(This article belongs to the Special Issue Feature Papers in Cellular Biochemistry)
Show Figures

Figure 1

13 pages, 2158 KiB  
Article
Five-Year Outcomes of Patients with Pompe Disease Identified by the Pennsylvania Newborn Screen
by Hayley A. Ron, Owen Kane, Rose Guo, Caitlin Menello, Nicole Engelhardt, Shaney Pressley, Brenda DiBoscio, Madeline Steffensen, Sanmati Cuddapah, Kim Ng, Can Ficicioglu and Rebecca C. Ahrens-Nicklas
Int. J. Neonatal Screen. 2025, 11(1), 16; https://doi.org/10.3390/ijns11010016 - 24 Feb 2025
Viewed by 983
Abstract
Pennsylvania started newborn screening for Pompe disease (PD) in 2016. As a result, the prevalence of PD has increased with early detection, primarily of late-onset Pompe disease (LOPD). No clear guidelines exist regarding if and when to initiate enzyme replacement therapy (ERT) in [...] Read more.
Pennsylvania started newborn screening for Pompe disease (PD) in 2016. As a result, the prevalence of PD has increased with early detection, primarily of late-onset Pompe disease (LOPD). No clear guidelines exist regarding if and when to initiate enzyme replacement therapy (ERT) in patients identified through a newborn screen (NBS). To help define the natural history and indications for starting ERT, we present the long-term follow-up data of 45 patients identified through NBS from 2016 to 2021. These patients were evaluated at regular intervals through our multi-disciplinary clinic at the Children’s Hospital of Philadelphia (CHOP) with physical examinations, physical therapy evaluations, muscle biomarkers including creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and hexosaminidase 4 levels (Hex4), as well as cardiac evaluation at certain points in time. We found that newborn screening of acid alpha-glucosidase (GAA) enzyme detected primarily LOPD. One case of infantile-onset PD (IOPD) was detected. Muscle biomarkers in LOPD were elevated at birth and showed a general downward trend over time. NBS GAA levels and initial CK levels helped to differentiate LOPD cases from unaffected infants (carriers, pseudodeficiency alleles), while Hex4 was not a meaningful discriminator. On repeat NBS, there was a significant difference between mean GAA levels for the unaffected vs. compound heterozygote groups and unaffected vs. homozygote groups for the common splice site pathogenic variant (c.-32-13T>G). Echocardiogram and electrocardiogram (EKG) are essentially normal at the first evaluation in LOPD. One LOPD patient was started on ERT at age 4.5 months. Continued data collection on these patients is critical for developing management guidelines, including timing of ERT and improved genotype–phenotype correlation. Full article
Show Figures

Figure 1

Back to TopTop