Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = envelope protein stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5019 KiB  
Article
Syzygium aromaticum Phytoconstituents Target SARS-CoV-2: Integrating Molecular Docking, Dynamics, Pharmacokinetics, and miR-21 rs1292037 Genotyping
by Mustafa Ahmed Muhmood, Faiza Safi, Mohammed Mukhles Ahmed and Safaa Abed Latef Almeani
Viruses 2025, 17(7), 951; https://doi.org/10.3390/v17070951 - 5 Jul 2025
Viewed by 1444
Abstract
Background and aim: The COVID-19 pandemic, caused by SARS-CoV-2, remains a global health crisis despite vaccination efforts, necessitating novel therapeutic strategies. Natural compounds from Syzygium aromaticum (clove), such as eugenol and β-caryophyllene, exhibit antiviral and anti-inflammatory properties, while host genetic factors, including miR-21 [...] Read more.
Background and aim: The COVID-19 pandemic, caused by SARS-CoV-2, remains a global health crisis despite vaccination efforts, necessitating novel therapeutic strategies. Natural compounds from Syzygium aromaticum (clove), such as eugenol and β-caryophyllene, exhibit antiviral and anti-inflammatory properties, while host genetic factors, including miR-21 rs1292037 polymorphism, may influence disease susceptibility and severity. This study investigates the dual approach of targeting SARS-CoV-2 via Syzygium aromaticum phytoconstituents while assessing the role of miR-21 rs1292037 in COVID-19 pathogenesis. Methods: Firstly, molecular docking and molecular dynamics simulations were employed to assess the binding affinities of eugenol and caryophyllene against seven key SARS-CoV-2 proteins—including Spike-RBD, 3CLpro, and RdRp—using SwissDock (AutoDock Vina) and the Desmond software package, respectively. Secondly, GC-MS was used to characterize the composition of clove extract. Thirdly, pharmacokinetic profiles were predicted using in silico models. Finally, miR-21 rs1292037 genotyping was performed in 100 COVID-19 patients and 100 controls, with cytokine and coagulation markers analyzed. Results: Docking revealed strong binding of eugenol to viral Envelope Protein (−5.267 kcal/mol) and caryophyllene to RdRp (−6.200 kcal/mol). ADMET profiling indicated favorable absorption and low toxicity. Molecular dynamics simulations confirmed stable binding of methyl eugenol and caryophyllene to SARS-CoV-2 proteins, with caryophyllene–7Z4S showing the highest structural stability, highlighting its strong antiviral potential. Genotyping identified the TC genotype as prevalent in patients (52%), correlating with elevated IL-6 and D-dimer levels (p ≤ 0.01), suggesting a hyperinflammatory phenotype. Males exhibited higher ferritin and D-dimer (p < 0.0001), underscoring sex-based disparities. Conclusion: The bioactive constituents of Syzygium aromaticum exhibit strong potential as multi-target antivirals, with molecular simulations highlighting caryophyllene’s particularly stable interaction with the 7Z4S protein. Methyl eugenol also maintained consistent binding across several SARS-CoV-2 targets. Additionally, the miR-21 rs1292037 polymorphism may influence COVID-19 severity through its role in inflammatory regulation. Together, these results support the combined application of phytochemicals and genetic insights in antiviral research, pending further clinical verification. Full article
(This article belongs to the Special Issue Recent Advances in Antiviral Natural Products 2025)
Show Figures

Graphical abstract

17 pages, 2921 KiB  
Article
Coenzyme Q10 Enhances Resilience of Mitochondrial-like Membranes Against Amyloidogenic Peptides
by Raina Marie Seychell, Adam El Saghir, Gianluca Farrugia and Neville Vassallo
Membranes 2025, 15(5), 148; https://doi.org/10.3390/membranes15050148 - 13 May 2025
Viewed by 832
Abstract
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide [...] Read more.
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide aggregation and cytotoxicity. Therefore, we hypothesized that modifying the physicochemical properties of mitochondrial model membranes with a small molecule might act as a countermeasure against the formation of, and damage by, membrane-active amyloid peptides. To investigate this, we inserted the natural ubiquinone Coenzyme Q10 (CoQ10) in model mito-mimetic lipid vesicles, and studied how they interacted with Aβ42 and hIAPP peptide monomers and oligomers. Our results demonstrate that the membrane incorporation of CoQ10 significantly attenuated fibrillization of the peptides, whilst also making the membranes more resilient against peptide-induced permeabilization. Furthermore, these protective effects were linked with the ability of CoQ10 to enhance membrane packing in the inner acyl chain region, which increased the mechanical stability of the vesicle membranes. Based on our collective observations, we propose that mitochondrial resilience against toxic biomolecules implicit in protein misfolding disorders such as Alzheimer’s disease and type-2 diabetes, could potentially be enhanced by increasing CoQ10 levels within mitochondria. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

13 pages, 9470 KiB  
Article
The Binding of Brazilin from C. sappan to the Full-Length SARS-CoV-2 Spike Proteins
by Phonphiphat Bamrung, Borvornwat Toviwek, Firdaus Samsudin, Phoom Chairatana, Peter John Bond and Prapasiri Pongprayoon
Int. J. Mol. Sci. 2025, 26(9), 4100; https://doi.org/10.3390/ijms26094100 - 25 Apr 2025
Viewed by 550
Abstract
The emergence of coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a global issue since 2019. The prominent characteristic of SARS-CoV-2 is the presence of the spike (S) protein protruding from the virus particle envelope. The S protein [...] Read more.
The emergence of coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a global issue since 2019. The prominent characteristic of SARS-CoV-2 is the presence of the spike (S) protein protruding from the virus particle envelope. The S protein is a major drug and vaccine target because it initiates the key step in infection. Medicinal herbs are a potential treatment option to enhance immunity to fight viral infections. Caesalpinia sappan L. has been reported to display promising anti-viral activities. Specifically, brazilin (BRA), a major bioactive compound in C. sappan, was reported to play a role in inhibiting viral infection. Thus, the ability of BRA as a COVID-19 treatment was tested. The S protein was used as the BRA target of this work. Understanding the binding mechanism of BRA to the S protein is crucial for future utilisation of C. sappan as a COVID-19 treatment or other coronavirus-caused pandemics. Here, we performed molecular docking of BRA onto the S protein receptor binding domain (RBD) and multimerisation (MM) pockets. Molecular dynamics (MD) simulations were conducted to study the stability of binding to glycosylated and non-glycosylated S protein constructs. BRA can bind to the Receptor-binding motif (RBM) on an RBD surface stably; however, it is too large to fit into the MM pocket, resulting in dissociation. Nonetheless, BRA is bound by residues near the S1/S2 interface. We found that glycosylation has no effect on BRA binding, as the proposed binding site is far from any glycans. Our results thus indicate that C. sappan may act as a promising preventive and therapeutic alternative for COVID-19 treatment. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

17 pages, 3529 KiB  
Article
Centrifugation-Based Purification Protocol Optimization Enhances Structural Preservation of Nucleopolyhedrovirus Budded Virion Envelopes
by Yong Pan, Jiming Yan, Yinong Zhang, Jiasheng Lin, Zhiquan Liang and Jingchen Sun
Insects 2025, 16(4), 424; https://doi.org/10.3390/insects16040424 - 17 Apr 2025
Viewed by 1097
Abstract
The structural integrity of viral envelopes is a critical determinant of infectivity for enveloped viruses, directly influencing vector stability, functional accuracy of surface-displayed epitopes, and preservation of native conformational states required for membrane protein studies. However, conventional purification methods often disrupt envelope integrity [...] Read more.
The structural integrity of viral envelopes is a critical determinant of infectivity for enveloped viruses, directly influencing vector stability, functional accuracy of surface-displayed epitopes, and preservation of native conformational states required for membrane protein studies. However, conventional purification methods often disrupt envelope integrity and cause envelope proteins to lose their activity. Here, we systematically compared discontinuous, continuous, and optimized continuous sucrose density gradient centrifugation protocols for purifying Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Through cryo-EM, we demonstrated that our optimized continuous sucrose gradient protocol significantly increased the proportion of AcMNPV budded virions with intact envelopes from 36% to 81%, while preserving the metastable prefusion conformation of the fusion protein GP64. This advancement should prove useful for structural studies of viral envelope proteins and may enhance applications in gene therapy and vaccine development utilizing enveloped viruses. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

24 pages, 4388 KiB  
Review
Shedding Light on the Proteinaceous Envelope Protecting Luminescent Gold Nanoclusters: A Review
by Matylda Wacławska and Wojciech Dzwolak
Photochem 2025, 5(1), 3; https://doi.org/10.3390/photochem5010003 - 23 Jan 2025
Viewed by 2462
Abstract
Atomically precise noble metal nanoclusters protected by ligands are broadly discussed in the literature as a promising new class of materials with many interesting properties. Of those, the most prominent is the characteristic luminescence in the visible and near-infrared light. Within the plethora [...] Read more.
Atomically precise noble metal nanoclusters protected by ligands are broadly discussed in the literature as a promising new class of materials with many interesting properties. Of those, the most prominent is the characteristic luminescence in the visible and near-infrared light. Within the plethora of conjugates of metal nanoclusters to various protective ligands, protein-enveloped systems present several unique features arising from an interplay of the nanocluster photophysics and the protein chemistry along its macromolecular dynamics. The specific properties of protein–metal nanocluster conjugates underlie various applications of these systems, especially in bioimaging. This review, in contrast to many already published, focuses on protein-protected gold nanoclusters (AuNCs) from the standpoint of the proteinaceous shell which plays a crucial role in the biocompatibility, solubility, and excellent in-solution stability of such nanohybrid complexes. Factors such as the protein’s size, structural rigidity, amino acid composition, electric charge, and the electron donor properties of composite amino acids are discussed. Full article
Show Figures

Figure 1

21 pages, 3420 KiB  
Article
The Design and Immunogenicity of an HIV-1 Clade C Pediatric Envelope Glycoprotein Stabilized by Multiple Platforms
by Sanjeev Kumar, Iván del Moral-Sánchez, Swarandeep Singh, Maddy L. Newby, Joel D. Allen, Tom P. L. Bijl, Yog Vaghani, Liang Jing, Rakesh Lodha, Eric A. Ortlund, Max Crispin, Anamika Patel, Rogier W. Sanders and Kalpana Luthra
Vaccines 2025, 13(2), 110; https://doi.org/10.3390/vaccines13020110 - 22 Jan 2025
Cited by 1 | Viewed by 1919
Abstract
Background: Elite-neutralizer-derived HIV-1 envelopes (Envs), which induce broadly neutralizing antibodies (bnAbs), can inform HIV-1 vaccine design by serving as templates for bnAb-eliciting vaccines. Since single Env-based immunizations are insufficient to induce bnAb responses, sequential regimens using multivalent immunogens or Env cocktails hold greater [...] Read more.
Background: Elite-neutralizer-derived HIV-1 envelopes (Envs), which induce broadly neutralizing antibodies (bnAbs), can inform HIV-1 vaccine design by serving as templates for bnAb-eliciting vaccines. Since single Env-based immunizations are insufficient to induce bnAb responses, sequential regimens using multivalent immunogens or Env cocktails hold greater promise. This underscores the need to develop stable Env trimers from diverse HIV-1 strains, particularly clade-C, which accounts for 50% of global infections and over 90% in India and South Africa. While various platforms exist to stabilize soluble Env trimers for use as antigenic baits and vaccines, stabilizing clade C trimers remains challenging. Methods: We stabilized an HIV-1 clade C trimer based on an Env isolated from a pediatric elite neutralizer (AIIMS_329) using multiple platforms, including SOSIP.v8.2, ferritin nanoparticles (NPs) and I53-50 two-component NPs, followed by characterization of their biophysical, antigenic, and immunogenic properties. Results: The stabilized 329 Envs showed binding to multiple HIV-1 bnAbs, with negligible binding to non-neutralizing antibodies. Negative-stain electron microscopy confirmed the native-like conformation of the Envs. Multimerization of 329 SOSIP.v8.2 on ferritin and two-component I53-50 NPs improved the affinity to HIV-1 bnAbs and showed higher immunogenicity in rabbits. Conclusions: The soluble 329 Env protein could serve as an antigenic bait, and multimeric 329 NP Envs are potential vaccine candidates. Full article
(This article belongs to the Special Issue Research on HIV/AIDS Vaccine)
Show Figures

Figure 1

18 pages, 2245 KiB  
Article
Helicobacter pylori HP0135 Is a Small Lipoprotein That Has a Role in Outer Membrane Stability
by Doreen Nguyen, Rachel G. Ivester, Kyle Rosinke and Timothy R. Hoover
Molecules 2025, 30(2), 204; https://doi.org/10.3390/molecules30020204 - 7 Jan 2025
Cited by 1 | Viewed by 1426
Abstract
Helicobacter pylori is a Gram-negative bacterium and human pathogen that is linked to various gastric diseases, including peptic ulcer disease, chronic gastritis, and gastric cancer. The filament of the H. pylori flagellum is surrounded by a membranous sheath that is contiguous with the [...] Read more.
Helicobacter pylori is a Gram-negative bacterium and human pathogen that is linked to various gastric diseases, including peptic ulcer disease, chronic gastritis, and gastric cancer. The filament of the H. pylori flagellum is surrounded by a membranous sheath that is contiguous with the outer membrane. Proteomic analysis of isolated sheathed flagella from H. pylori B128 identified the lipoprotein HP0135 as a potential component of the flagellar sheath. HP0135 is a small protein, with the mature HP0135 lipoprotein only 28 amino acid residues in length. Deletion of hp0135 in H. pylori B128 resulted in morphological abnormalities that included extensive formation of outer membrane vesicles and increased frequency of mini-cells. Introducing a plasmid-borne copy of hp0135 into the H. pylori Δhp0135 mutant suppressed the morphological abnormalities. The phenotype of the Δhp0135 mutant suggests HP0135 has roles in stabilizing the cell envelope and cell division. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

26 pages, 3910 KiB  
Article
LAP1 Interactome Profiling Provides New Insights into LAP1’s Physiological Functions
by Cátia D. Pereira, Guadalupe Espadas, Filipa Martins, Anne T. Bertrand, Laurent Servais, Eduard Sabidó, Philippe Chevalier, Odete A. B. da Cruz e Silva and Sandra Rebelo
Int. J. Mol. Sci. 2024, 25(24), 13235; https://doi.org/10.3390/ijms252413235 - 10 Dec 2024
Viewed by 1223
Abstract
The nuclear envelope (NE), a protective membrane bordering the nucleus, is composed of highly specialized proteins that are indispensable for normal cellular activity. Lamina-associated polypeptide 1 (LAP1) is a NE protein whose functions are just beginning to be unveiled. The fact that mutations [...] Read more.
The nuclear envelope (NE), a protective membrane bordering the nucleus, is composed of highly specialized proteins that are indispensable for normal cellular activity. Lamina-associated polypeptide 1 (LAP1) is a NE protein whose functions are just beginning to be unveiled. The fact that mutations causing LAP1 deficiency are extremely rare and pathogenic is indicative of its paramount importance to preserving human health, anticipating that LAP1 might have a multifaceted role in the cell. Mapping the LAP1 protein interactome is, thus, imperative to achieve an integrated view of its potential biological properties. To this end, we employed in silico- and mass spectrometry-based approaches to identify candidate LAP1-interacting proteins, whose functional attributes were subsequently characterized using bioinformatics tools. Our results reveal the complex and multifunctional network of protein–protein interactions associated to LAP1, evidencing a strong interconnection between LAP1 and cellular processes as diverse as chromatin and cytoskeleton organization, DNA repair, RNA processing and translation, as well as protein biogenesis and turnover, among others. Novel interactions between LAP1 and DNA repair proteins were additionally validated, strengthening the previously proposed involvement of LAP1 in the maintenance of genomic stability. Overall, this study reaffirms the biological relevance of LAP1 and the need to deepen our knowledge about this NE protein, providing new insights about its potential functional partners that will help guiding future research towards a mechanistic understanding of LAP1’s functioning. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1989 KiB  
Article
Fractional-Order Modeling of COVID-19 Transmission Dynamics: A Study on Vaccine Immunization Failure
by Yan Qiao, Yuhao Ding, Denghao Pang, Bei Wang and Tao Lu
Mathematics 2024, 12(21), 3378; https://doi.org/10.3390/math12213378 - 29 Oct 2024
Cited by 1 | Viewed by 1177
Abstract
COVID-19 is an enveloped virus with a single-stranded RNA genome. The surface of the virus contains spike proteins, which enable the virus to attach to host cells and enter the interior of the cells. After entering the cell, the virus exploits [...] Read more.
COVID-19 is an enveloped virus with a single-stranded RNA genome. The surface of the virus contains spike proteins, which enable the virus to attach to host cells and enter the interior of the cells. After entering the cell, the virus exploits the host cell’s mechanisms for replication and dissemination. Since the end of 2019, COVID-19 has spread rapidly around the world, leading to a large-scale epidemic. In response to the COVID-19 pandemic, the global scientific community quickly launched vaccine research and development. Vaccination is regarded as a crucial strategy for controlling viral transmission and mitigating severe cases. In this paper, we propose a novel mathematical model for COVID-19 infection incorporating vaccine-induced immunization failure. As a cornerstone of infectious disease prevention measures, vaccination stands as the most effective and efficient strategy for curtailing disease transmission. Nevertheless, even with vaccination, the occurrence of vaccine immunization failure is not uncommon. This necessitates a comprehensive understanding and consideration of vaccine effectiveness in epidemiological models and public health strategies. In this paper, the basic regeneration number is calculated by the next generation matrix method, and the local and global asymptotic stability of disease-free equilibrium point and endemic equilibrium point are proven by methods such as the Routh–Hurwitz criterion and Lyapunov functions. Additionally, we conduct fractional-order numerical simulations to verify that order 0.86 provides the best fit with COVID-19 data. This study sheds light on the roles of immunization failure and fractional-order control. Full article
Show Figures

Figure 1

16 pages, 3964 KiB  
Article
Epidermal RORα Maintains Barrier Integrity and Prevents Allergic Inflammation by Regulating Late Differentiation and Lipid Metabolism
by Xiangmei Hua, Maria K. Ficaro, Nicole L. Wallace and Jun Dai
Int. J. Mol. Sci. 2024, 25(19), 10698; https://doi.org/10.3390/ijms251910698 - 4 Oct 2024
Viewed by 1607
Abstract
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the [...] Read more.
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the epidermis of normal skin. Clinical studies showed that the epidermal RORα expression is significantly reduced in the lesions of multiple inflammatory skin diseases. In this study, we investigate the central roles of RORα in stabilizing skin barrier function using mice with an epidermis-specific Rora gene deletion (RoraEKO). While lacking spontaneous skin lesions or dermatitis, RoraEKO mice exhibited an elevated TEWL rate and skin characteristics of barrier dysfunction. Immunostaining and Western blot analysis revealed low levels of cornified envelope proteins in the RoraEKO epidermis, suggesting disturbed late epidermal differentiation. In addition, an RNA-seq analysis showed the altered expression of genes related to “keratinization” and “lipid metabolism” in RORα deficient epidermis. A lipidomic analysis further uncovered an aberrant ceramide composition in the RoraEKO epidermis. Importantly, epidermal Rora ablation greatly exaggerated percutaneous allergic inflammatory responses to oxazolone in an allergic contact dermatitis (ACD) mouse model. Our results substantiate the essence of epidermal RORα in maintaining late keratinocyte differentiation and normal barrier function while suppressing cutaneous inflammation. Full article
(This article belongs to the Special Issue Molecular Advances in Skin Diseases: 3rd Edition)
Show Figures

Figure 1

15 pages, 4715 KiB  
Article
Structural Heterogeneity of the Rabies Virus Virion
by Xiaoying Cai, Kang Zhou, Ana Lucia Alvarez-Cabrera, Zhu Si, Hui Wang, Yao He, Cally Li and Z. Hong Zhou
Viruses 2024, 16(9), 1447; https://doi.org/10.3390/v16091447 - 11 Sep 2024
Viewed by 2845
Abstract
Rabies virus (RABV) is among the first recognized viruses of public health concern and has historically contributed to the development of viral vaccines. Despite these significances, the three-dimensional structure of the RABV virion remains unknown due to the challenges in isolating structurally homogenous [...] Read more.
Rabies virus (RABV) is among the first recognized viruses of public health concern and has historically contributed to the development of viral vaccines. Despite these significances, the three-dimensional structure of the RABV virion remains unknown due to the challenges in isolating structurally homogenous virion samples in sufficient quantities needed for structural investigation. Here, by combining the capabilities of cryogenic electron tomography (cryoET) and microscopy (cryoEM), we determined the three-dimensional structure of the wild-type RABV virion. Tomograms of RABV virions reveal a high level of structural heterogeneity among the bullet-shaped virion particles encompassing the glycoprotein (G) trimer-decorated envelope and the nucleocapsid composed of RNA, nucleoprotein (N), and matrix protein (M). The structure of the trunk region of the virion was determined by cryoEM helical reconstruction, revealing a one-start N-RNA helix bound by a single layer of M proteins at an N:M ratio of 1. The N-M interaction differs from that in fellow rhabdovirus vesicular stomatitis virus (VSV), which features two layers of M stabilizing the N-RNA helix at an M:N ratio of 2. These differences in both M-N stoichiometry and binding allow RABV to flex its N-RNA helix more freely and point to different mechanisms of viral assembly between these two bullet-shaped rhabdoviruses. Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

17 pages, 4606 KiB  
Article
Development of Oleogel-in-Water High Internal Phase Emulsions with Improved Physicochemical Stability and Their Application in Mayonnaise
by Jingjing Yu, Mingyue Yun, Jia Li, Yanxiang Gao and Like Mao
Foods 2024, 13(17), 2738; https://doi.org/10.3390/foods13172738 - 29 Aug 2024
Cited by 4 | Viewed by 2667
Abstract
Egg-free mayonnaise is receiving greater attention due to its potential health benefits. This study used whey protein isolate (WPI) as an emulsifier to develop high internal phase emulsions (HIPEs) based on beeswax (BW) oleogels through a simple one-step method. The effects of WPI, [...] Read more.
Egg-free mayonnaise is receiving greater attention due to its potential health benefits. This study used whey protein isolate (WPI) as an emulsifier to develop high internal phase emulsions (HIPEs) based on beeswax (BW) oleogels through a simple one-step method. The effects of WPI, NaCl and sucrose on the physicochemical properties of HIPEs were investigated. A novel simulated mayonnaise was then prepared and characterized. Microstructural observation revealed that WPI enveloped oil droplets at the interface, forming a typical O/W emulsion. Increase in WPI content led to significantly enhanced stability of HIPEs, and HIPEs with 5% WPI had the smallest particle size (11.9 ± 0.18 μm). With the increase in NaCl concentration, particle size was increased and ζ-potential was decreased. Higher sucrose content led to reduced particle size and ζ-potential, and slightly improved stability. Rheological tests indicated solid-like properties and shear-thinning behaviors in all HIPEs. The addition of WPI and sucrose improved the structures and viscosity of HIPEs. Simulated mayonnaises (WE-0.3%, WE-1% and YE) were then prepared based on the above HIPEs. Compared to commercial mayonnaises, the mayonnaises based on HIPEs exhibited higher viscoelastic modulus and similar tribological characteristics, indicating the potential application feasibility of oleogel-based HIPEs in mayonnaise. These findings provided insights into the development of novel and healthier mayonnaise alternatives. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

16 pages, 4177 KiB  
Article
Deciphering the Role of Trehalose in Chroococcidiopsis sp. 029’s High-Desiccation Resistance: Sequence Determination, Structural Modelling and Simulative Analysis of the 30S Ribosomal Subunit
by Davide Pietrafesa, Alessandro Napoli, Federico Iacovelli, Alice Romeo, Fabio Giovanni Tucci, Daniela Billi and Mattia Falconi
Molecules 2024, 29(15), 3486; https://doi.org/10.3390/molecules29153486 - 25 Jul 2024
Viewed by 1335
Abstract
Desert strains of the genus Chroococcidiopsis are among the most desiccation-resistant cyanobacteria capable of anhydrobiosis. The accumulation of two sugars, sucrose and trehalose, facilitates the entrance of anhydrobiotes into a reversible state of dormancy by stabilizing cellular components upon water removal. This study [...] Read more.
Desert strains of the genus Chroococcidiopsis are among the most desiccation-resistant cyanobacteria capable of anhydrobiosis. The accumulation of two sugars, sucrose and trehalose, facilitates the entrance of anhydrobiotes into a reversible state of dormancy by stabilizing cellular components upon water removal. This study aimed to evaluate, at the atomistic level, the role of trehalose in desiccation resistance by using as a model system the 30S ribosomal subunit of the desert cyanobacterium Chroococcidiopsis sp. 029. Molecular dynamic simulations provided atomistic evidence regarding its protective role on the 30S molecular structure. Trehalose forms an enveloping shell around the ribosomal subunit and stabilizes the structures through a network of direct interactions. The simulation confirmed that trehalose actively interacts with the 30S ribosomal subunit and that, by replacing water molecules, it ensures ribosomal structural integrity during desiccation, thus enabling protein synthesis to be carried out upon rehydration. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Figure 1

38 pages, 24395 KiB  
Article
Computational Exploration of Potential Pharmacological Inhibitors Targeting the Envelope Protein of the Kyasanur Forest Disease Virus
by Sharanappa Achappa, Nayef Abdulaziz Aldabaan, Shivalingsarj V. Desai, Uday M. Muddapur, Ibrahim Ahmed Shaikh, Mater H. Mahnashi, Abdullateef A. Alshehri, Basheerahmed Abdulaziz Mannasaheb and Aejaz Abdullatif Khan
Pharmaceuticals 2024, 17(7), 884; https://doi.org/10.3390/ph17070884 - 3 Jul 2024
Cited by 1 | Viewed by 2043
Abstract
The limitations of the current vaccination strategy for the Kyasanur Forest Disease virus (KFDV) underscore the critical need for effective antiviral treatments, highlighting the crucial importance of exploring novel therapeutic approaches through in silico drug design. Kyasanur Forest Disease, caused by KFDV, is [...] Read more.
The limitations of the current vaccination strategy for the Kyasanur Forest Disease virus (KFDV) underscore the critical need for effective antiviral treatments, highlighting the crucial importance of exploring novel therapeutic approaches through in silico drug design. Kyasanur Forest Disease, caused by KFDV, is a tick-borne disease with a mortality of 3–5% and an annual incidence of 400 to 500 cases. In the early stage of infection, the envelope protein plays a crucial role by facilitating host–virus interactions. The objective of this research is to develop effective antivirals targeting the envelope protein to disrupt the virus–host interaction. In line with this, the 3D structure of the envelope protein was modeled and refined through molecular modeling techniques, and subsequently, ligands were designed via de novo design and pharmacophore screening, yielding 12 potential hits followed by ADMET analysis. The top five candidates underwent geometry optimization and molecular docking. Notably, compounds L4 (SA28) and L3 (CNP0247967) are predicted to have significant binding affinities of −8.91 and −7.58 kcal/mol, respectively, toward the envelope protein, based on computational models. Both compounds demonstrated stability during 200 ns molecular dynamics simulations, and the MM-GBSA binding free-energy values were −85.26 ± 4.63 kcal/mol and −66.60 ± 2.92 kcal/mol for the envelope protein L3 and L4 complexes, respectively. Based on the computational prediction, it is suggested that both compounds have potential as drug candidates for controlling host–virus interactions by targeting the envelope protein. Further validation through in-vitro assays would complement the findings of the present in silico investigations. Full article
(This article belongs to the Special Issue Computer-Aided Molecular Modeling and Simulation in Drug Design)
Show Figures

Figure 1

14 pages, 1974 KiB  
Article
Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein
by Raquel Ortiz, Ana Barajas, Anna Pons-Grífols, Benjamin Trinité, Ferran Tarrés-Freixas, Carla Rovirosa, Víctor Urrea, Antonio Barreiro, Anna Gonzalez-Tendero, Maria Rovira-Rigau, Maria Cardona, Laura Ferrer, Bonaventura Clotet, Jorge Carrillo, Carmen Aguilar-Gurrieri and Julià Blanco
Viruses 2024, 16(6), 987; https://doi.org/10.3390/v16060987 - 19 Jun 2024
Viewed by 1931
Abstract
The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses [...] Read more.
The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine. Full article
Show Figures

Graphical abstract

Back to TopTop