Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = envelope clamp

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 7237 KB  
Review
Classification, Advanced Technologies, and Typical Applications of End-Effector for Fruit and Vegetable Picking Robots
by Chongyang Han, Jinhong Lv, Chengju Dong, Jiehao Li, Yuanqiang Luo, Weibin Wu and Mohamed Anwer Abdeen
Agriculture 2024, 14(8), 1310; https://doi.org/10.3390/agriculture14081310 - 8 Aug 2024
Cited by 7 | Viewed by 4697
Abstract
Fruit- and vegetable-harvesting robots are a great addition to Agriculture 4.0 since they are gradually replacing human labor in challenging activities. In order to achieve the harvesting process accurately and efficiently, the picking robot’s end-effector should be the first part to come into [...] Read more.
Fruit- and vegetable-harvesting robots are a great addition to Agriculture 4.0 since they are gradually replacing human labor in challenging activities. In order to achieve the harvesting process accurately and efficiently, the picking robot’s end-effector should be the first part to come into close contact with the crops. The design and performance requirements of the end-effectors are affected by the fruit and vegetable variety as well as the complexity of unstructured surroundings. This paper summarizes the latest research status of end-effectors for fruit- and vegetable-picking robots. It analyzes the characteristics and functions of end-effectors according to their structural principles and usage, which are classified into clamp, air suction, suction holding, and envelope types. The development and application of advanced technologies, such as the structural design of end-effectors, additional sensors, new materials, and artificial intelligence, were discussed. The typical applications of end-effectors for the picking of different kinds of fruit and vegetables were described, and the advantages, disadvantages, and performance indexes of different end-effectors were given and comparatively analyzed. Finally, challenges and potential future trends of end-effectors for picking robots were reported. This work can be considered a valuable guide to the latest end-effector technology for the design and selection of suitable end-effectors for harvesting different categories of fruit and vegetable crops. Full article
Show Figures

Figure 1

16 pages, 4166 KB  
Article
Electrophysiological Impact of SARS-CoV-2 Envelope Protein in U251 Human Glioblastoma Cells: Possible Implications in Gliomagenesis?
by Lorenzo Monarca, Francesco Ragonese, Andrea Biagini, Paola Sabbatini, Matteo Pacini, Alessandro Zucchi, Roberta Spaccapelo, Paola Ferrari, Andrea Nicolini and Bernard Fioretti
Int. J. Mol. Sci. 2024, 25(12), 6669; https://doi.org/10.3390/ijms25126669 - 18 Jun 2024
Cited by 3 | Viewed by 2009
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, the acute respiratory disease which, so far, has led to over 7 million deaths. There are several symptoms associated with SARS-CoV-2 infections which include neurological and psychiatric disorders, at least in the case of [...] Read more.
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, the acute respiratory disease which, so far, has led to over 7 million deaths. There are several symptoms associated with SARS-CoV-2 infections which include neurological and psychiatric disorders, at least in the case of pre-Omicron variants. SARS-CoV-2 infection can also promote the onset of glioblastoma in patients without prior malignancies. In this study, we focused on the Envelope protein codified by the virus genome, which acts as viroporin and that is reported to be central for virus propagation. In particular, we characterized the electrophysiological profile of E-protein transfected U251 and HEK293 cells through the patch-clamp technique and FURA-2 measurements. Specifically, we observed an increase in the voltage-dependent (Kv) and calcium-dependent (KCa) potassium currents in HEK293 and U251 cell lines, respectively. Interestingly, in both cellular models, we observed a depolarization of the mitochondrial membrane potential in accordance with an alteration of U251 cell growth. We, therefore, investigated the transcriptional effect of E protein on the signaling pathways and found several gene alterations associated with apoptosis, cytokines and WNT pathways. The electrophysiological and transcriptional changes observed after E protein expression could explain the impact of SARS-CoV-2 infection on gliomagenesis. Full article
(This article belongs to the Special Issue New Biological and Immunological Approaches to Cancer Therapy)
Show Figures

Figure 1

14 pages, 7274 KB  
Article
The Mechanical Analysis and Comparative Performance Test of the Roller-Type Pulling Mechanism for the Whole Cotton Stalk Pulling Machine
by Yichao Wang, Jiaxi Zhang, Shilong Shen, Jinming Li, Yanjun Huo and Zhenwei Wang
Agriculture 2024, 14(3), 506; https://doi.org/10.3390/agriculture14030506 - 21 Mar 2024
Cited by 1 | Viewed by 1744
Abstract
In order to address the common difficulties in pulling and harvesting whole cotton stalks, such as high pulling resistance, high miss-pulling rate, and high breakage rate, which severely hinder the recycling of cotton stalks, three different pulling mechanisms with different pulling principles (wrapping-type [...] Read more.
In order to address the common difficulties in pulling and harvesting whole cotton stalks, such as high pulling resistance, high miss-pulling rate, and high breakage rate, which severely hinder the recycling of cotton stalks, three different pulling mechanisms with different pulling principles (wrapping-type pulling mechanism, clamping-type pulling mechanism, transverse roller-type pulling mechanism) were designed. The pulling force on cotton stalks during the pulling process of the three different roller-type pulling mechanisms was compared and analyzed, clarifying the mechanism of roller-type whole cotton stalk pulling mechanisms and identifying situations with optimal pulling force. Field comparative experiments were conducted to compare the working performance of different roller-type pulling mechanisms in the field, and a comprehensive analysis of two key indicators in pulling cotton stalks, miss-pulling rate and breakage rate, was carried out. The results showed that the pulling method and pulling force of the pulling mechanism played a crucial role in the successful pulling of cotton straws. Comparative analysis of the three pulling mechanisms revealed that the clamping-type pulling mechanism had the highest pulling force. The standard deviation means of the missed pull rates for mechanisms X1, X2, and X3 were 0.83%, 0.59%, and 0.43%, respectively, while the standard deviation means of the breakage rates were 1.48%, 1.79%, and 0.49%, respectively. The enveloping-type pulling mechanism had a higher missed pull rate with an average of 8.32%, and the clamping-type pulling mechanism resulted in excessive breakage of cotton straw during operation, with an average breakage rate of 14.10%. In contrast, the transverse roller-type straw pulling mechanism performed the best in the field performance test, as it did not require precise alignment and had an average missed pull rate of 4.55% and an average breakage rate of only 7.55%. Considering the practical needs of agriculture production, the transverse roller-type straw pulling mechanism is recommended as the pulling device for cotton straw harvesting. The research results can provide a reference for the design selection of whole-plant straw pulling mechanisms. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

11 pages, 2857 KB  
Article
Generation and Dynamics of Multiple Pulses in an Ultrafast Fiber Laser with a Single-Mode Fiber–Graded-Index Multimode Fiber–Single-Mode Fiber-Based Saturable Absorber
by Yatao Yang, Qiong Zeng, Yanzhao Yang, Geguo Du, Jianhua Ji, Yufeng Song, Zhenhong Wang and Ke Wang
Photonics 2024, 11(1), 52; https://doi.org/10.3390/photonics11010052 - 4 Jan 2024
Cited by 2 | Viewed by 2091
Abstract
In this study, we have investigated the evolution process and dynamic characteristics of a multi-pulse regime in an erbium-doped fiber ring laser based on a single-mode fiber–graded-index multimode fiber–single-mode fiber (SMF-GIMF-SMF) structure as an optical modulator. By utilizing the excellent nonlinear optical absorption [...] Read more.
In this study, we have investigated the evolution process and dynamic characteristics of a multi-pulse regime in an erbium-doped fiber ring laser based on a single-mode fiber–graded-index multimode fiber–single-mode fiber (SMF-GIMF-SMF) structure as an optical modulator. By utilizing the excellent nonlinear optical absorption of the SMF-GIMF-SMF (SMS) device with a modulation depth of ~8.68%, stable single-pulse mode locking at the frequency of 9.84 MHz can be readily observed at low pump power. In addition, the single-pulse operation can evolve into a multiple-pulse regime on account of the peak-power-clamping effect via suitably raising the pump power and carefully regulating the polarization state. Further, the single-shot temporal evolution of multiple pulses is monitored, indicating that this state shows unique and interesting temporal characteristics with variable pulse separations and inconsistent pulse intensities, which, as far as we know, is the first such observation in ultrafast fiber lasers. Additionally, this study, based on the time-stretch dispersive Fourier transformation method, suggests that these multiple pulses consist of chaotic wave envelopes with erratic intensities and changeable pulse energy. We believe that these findings have profound implications for revealing fascinating nonlinear pulse dynamics in ultrafast fiber optics. Full article
(This article belongs to the Special Issue Recent Progress in Ultrafast Laser)
Show Figures

Figure 1

24 pages, 10809 KB  
Article
Design and Analysis of an Adaptive Cable-Driven Manipulator Capable of Actively Transitioning between Two-Point Clamping and Envelope Grasping
by Huiling Wei, Jin Liu, Qinghua Lu, Weilin Chen, Lufeng Luo and Chengbin Liang
Actuators 2023, 12(12), 461; https://doi.org/10.3390/act12120461 - 11 Dec 2023
Cited by 2 | Viewed by 2538
Abstract
Actively transitioning between clamping and grasping is a challenging problem for most manipulators with limited degrees of freedom. To overcome this problem, a cable-driven rigid–flexible combined manipulator capable of actively transitioning between clamping and grasping is proposed in this paper, which has a [...] Read more.
Actively transitioning between clamping and grasping is a challenging problem for most manipulators with limited degrees of freedom. To overcome this problem, a cable-driven rigid–flexible combined manipulator capable of actively transitioning between clamping and grasping is proposed in this paper, which has a certain adaptability and compliance to achieve adaptive operation. First, the cable-driven unit and compliant unit of the cable-driven rigid–flexible combined manipulator are designed. Then, the sensitivity of the mechanism parameters is analyzed using the Monte Carlo method, and then the structure of the cable-driven rigid–flexible combined manipulator is optimized. After that, the force on the finger in two-point clamping mode is modelled using Newton’s second law. Furthermore, the input–output relationship modelling of the finger in envelope grasping mode is deeply analyzed using the principle of energy conservation. Finally, the stable grasping performance of the cable-driven rigid–flexible combined manipulator is verified using numerical simulation and physical prototype tests. The results show that the cable-driven rigid–flexible combined manipulator has good adaptability and compliance, which verifies the effectiveness and rationality of the design and modelling. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

26 pages, 6010 KB  
Article
Optimization Method of the Clamping Force for Large Cabin Parts
by Shuangji Yao, Yijv Luan, Marco Ceccarelli and Giuseppe Carbone
Appl. Sci. 2023, 13(23), 12575; https://doi.org/10.3390/app132312575 - 22 Nov 2023
Cited by 2 | Viewed by 1764
Abstract
In order to realize the stable clamping of large cabin parts, this paper studied the clamping force optimization of the clamping mechanism for large-mass and large-size cabin parts. Firstly, three kinds of contact models are introduced. Then, a clamping matrix is constructed for [...] Read more.
In order to realize the stable clamping of large cabin parts, this paper studied the clamping force optimization of the clamping mechanism for large-mass and large-size cabin parts. Firstly, three kinds of contact models are introduced. Then, a clamping matrix is constructed for a particular clamping configuration. The nonlinear friction cone constraint at the contact point is transformed into a linear affine constraint in a smooth Riemannian manifold using the special structure of the positive definite symmetric matrix. Finally, a large cabin part used in the aerospace field is used as an example for calculating and simulating the clamping force optimization. Different optimization algorithms are used to calculate the initial value which is put into the gradient flow optimization method of the clamping force for optimization calculation. Meanwhile, the normal clamping force value of a 2 t object is measured using relevant experimental equipment. The simulation results and experimental results show that the gradient flow optimization method of the clamping force can quickly complete the clamping force optimization of large-mass and large-size cabin parts. The actual measured value of the normal clamping force is close to the simulated convergence value. The distribution of the normal force of the clamping mechanisms and the convergence value of the clamping force for each clamping mechanism can provide some references for determining the output clamping force of the clamping mechanism and confirming a reasonable distribution of the clamping mechanism. It also confirms the feasibility and effectiveness of this method applied to the clamping force optimization for a large axial part. Full article
(This article belongs to the Special Issue New Insights into Intelligent Robotics)
Show Figures

Figure 1

19 pages, 12475 KB  
Article
Characterisation of GFAP-Expressing Glial Cells in the Dorsal Root Ganglion after Spared Nerve Injury
by Elena A. Konnova, Alexandru-Florian Deftu, Paul Chu Sin Chung, Marie Pertin, Guylène Kirschmann, Isabelle Decosterd and Marc R. Suter
Int. J. Mol. Sci. 2023, 24(21), 15559; https://doi.org/10.3390/ijms242115559 - 25 Oct 2023
Cited by 16 | Viewed by 4669
Abstract
Satellite glial cells (SGCs), enveloping primary sensory neurons’ somas in the dorsal root ganglion (DRG), contribute to neuropathic pain upon nerve injury. Glial fibrillary acidic protein (GFAP) serves as an SGC activation marker, though its DRG satellite cell specificity is debated. We employed [...] Read more.
Satellite glial cells (SGCs), enveloping primary sensory neurons’ somas in the dorsal root ganglion (DRG), contribute to neuropathic pain upon nerve injury. Glial fibrillary acidic protein (GFAP) serves as an SGC activation marker, though its DRG satellite cell specificity is debated. We employed the hGFAP-CFP transgenic mouse line, designed for astrocyte studies, to explore its expression within the peripheral nervous system (PNS) after spared nerve injury (SNI). We used diverse immunostaining techniques, Western blot analysis, and electrophysiology to evaluate GFAP+ cell changes. Post-SNI, GFAP+ cell numbers increased without proliferation, and were found near injured ATF3+ neurons. GFAP+ FABP7+ SGCs increased, yet 75.5% of DRG GFAP+ cells lacked FABP7 expression. This suggests a significant subset of GFAP+ cells are non-myelinating Schwann cells (nmSC), indicated by their presence in the dorsal root but not in the ventral root which lacks unmyelinated fibres. Additionally, patch clamp recordings from GFAP+ FABP7−cells lacked SGC-specific Kir4.1 currents, instead displaying outward Kv currents expressing Kv1.1 and Kv1.6 channels specific to nmSCs. In conclusion, this study demonstrates increased GFAP expression in two DRG glial cell subpopulations post-SNI: GFAP+ FABP7+ SGCs and GFAP+ FABP7− nmSCs, shedding light on GFAP’s specificity as an SGC marker after SNI. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

23 pages, 30642 KB  
Article
Design, Analysis and Experimental Investigations of a Double-Arm Based Micro-Gripper for Thin and Flexible Metal Wires Manipulation
by Yuezong Wang, Jiqiang Chen and Daoduo Qu
Micromachines 2022, 13(6), 925; https://doi.org/10.3390/mi13060925 - 10 Jun 2022
Cited by 12 | Viewed by 2733
Abstract
A robotic system for the automatic wire pulling of coreless motor winding is designed, including the design of an opening-closing control system and a micro-gripper’s tip structure with a double-armed elastic-beam structure for the support part and an enveloping clamping structure for the [...] Read more.
A robotic system for the automatic wire pulling of coreless motor winding is designed, including the design of an opening-closing control system and a micro-gripper’s tip structure with a double-armed elastic-beam structure for the support part and an enveloping clamping structure for the tip part. The micro-gripper captures the electrode wire from the root, encircles the wire after the envelope region is closed, and the thin and flexible electrode wire is pulled to the top of the electrode pad by the movement of the micro-gripper and released. The mechanical index of the micro-gripper is simulated to obtain the optimal structural parameters. The experimental results show that the electrode wire’s maximum bearing force is about 0.3 N. Under this reaction force, the deformation of the tip-envelope region of the micro-gripper is about 27.5 μm, which is sufficient for electrode wire pulling micro-manipulation. By comparison with the steel micro-gripper, the silicon micro-gripper has more advantages in shape integrity, machinability and mechanical properties. Full article
Show Figures

Figure 1

23 pages, 31405 KB  
Article
HERV-W Envelope Triggers Abnormal Dopaminergic Neuron Process through DRD2/PP2A/AKT1/GSK3 for Schizophrenia Risk
by Qiujin Yan, Xiulin Wu, Ping Zhou, Yan Zhou, Xuhang Li, Zhongchun Liu, Huawei Tan, Wei Yao, Yaru Xia and Fan Zhu
Viruses 2022, 14(1), 145; https://doi.org/10.3390/v14010145 - 14 Jan 2022
Cited by 26 | Viewed by 4438
Abstract
An increasing number of studies have begun considering human endogenous retroviruses (HERVs) as potential pathogenic phenomena. Our previous research suggests that HERV-W Envelope (HERV-W ENV), a HERV-W family envelope protein, is elevated in schizophrenia patients and contributes to the pathophysiology of [...] Read more.
An increasing number of studies have begun considering human endogenous retroviruses (HERVs) as potential pathogenic phenomena. Our previous research suggests that HERV-W Envelope (HERV-W ENV), a HERV-W family envelope protein, is elevated in schizophrenia patients and contributes to the pathophysiology of schizophrenia. The dopamine (DA) hypothesis is the cornerstone in research and clinical practice related to schizophrenia. Here, we found that the concentration of DA and the expression of DA receptor D2 (DRD2) were significantly higher in schizophrenia patients than in healthy individuals. Intriguingly, there was a positive correlation between HERV-W ENV and DA concentration. Depth analyses showed that there was a marked consistency between HERV-W ENV and DRD2 in schizophrenia. Studies in vitro indicated that HERV-W ENV could increase the DA concentration by regulating DA metabolism and induce the expression of DRD2. Co-IP assays and laser confocal scanning microscopy indicated cellular colocalization and a direct interaction between DRD2 and HERV-W ENV. Additionally, HERV-W ENV caused structural and functional abnormalities of DA neurons. Further studies showed that HERV-W ENV could trigger the PP2A/AKT1/GSK3 pathway via DRD2. A whole-cell patch-clamp analysis suggested that HERV-W ENV enhanced sodium influx through DRD2. In conclusion, we uncovered a relationship between HERV-W ENV and the dopaminergic system in the DA neurons. Considering that GNbAC1, a selective monoclonal antibody to the MSRV-specific epitope, has been promised as a therapy for treating type 1 diabetes and multiple sclerosis (MS) in clinical trials, understanding the precise function of HERV-W ENV in the dopaminergic system may provide new insights into the treatment of schizophrenia. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 7354 KB  
Article
Potential Viroporin Candidates From Pathogenic Viruses Using Bacteria-Based Bioassays
by Prabhat Pratap Singh Tomar, Rivka Oren, Miriam Krugliak and Isaiah T. Arkin
Viruses 2019, 11(7), 632; https://doi.org/10.3390/v11070632 - 9 Jul 2019
Cited by 19 | Viewed by 4767
Abstract
Viroporins are a family of small hydrophobic proteins found in many enveloped viruses that are capable of ion transport. Building upon the ability to inhibit influenza by blocking its archetypical M2 H+ channel, as a family, viroporins may represent a viable target [...] Read more.
Viroporins are a family of small hydrophobic proteins found in many enveloped viruses that are capable of ion transport. Building upon the ability to inhibit influenza by blocking its archetypical M2 H+ channel, as a family, viroporins may represent a viable target to curb viral infectivity. To this end, using three bacterial assays we analyzed six small hydrophobic proteins from biomedically important viruses as potential viroporin candidates. Our results indicate that Eastern equine encephalitis virus 6k, West Nile virus MgM, Dengue virus 2k, Dengue virus P1, Variola virus gp170, and Variola virus gp151 proteins all exhibit channel activity in the bacterial assays, and as such may be considered viroporin candidates. It is clear that more studies, such as patch clamping, will be needed to characterize the ionic conductivities of these proteins. However, our approach presents a rapid procedure to analyze open reading frames in other viruses, yielding new viroporin candidates for future detailed investigation. Finally, if conductivity is proven vital to their cognate viruses, the bio-assays presented herein afford a simple approach to screen for new channel blockers. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

23 pages, 10779 KB  
Article
Analysis and Minimization of Output Current Ripple for Discontinuous Pulse-Width Modulation Techniques in Three-Phase Inverters
by Gabriele Grandi, Jelena Loncarski and Milan Srndovic
Energies 2016, 9(5), 380; https://doi.org/10.3390/en9050380 - 19 May 2016
Cited by 5 | Viewed by 10126
Abstract
This paper gives the complete analysis of the output current ripple in three-phase voltage source inverters considering the different discontinuous pulse-width modulation (DPWM) strategies. In particular, peak-to-peak current ripple amplitude is analytically evaluated over the fundamental period and compared among the most used [...] Read more.
This paper gives the complete analysis of the output current ripple in three-phase voltage source inverters considering the different discontinuous pulse-width modulation (DPWM) strategies. In particular, peak-to-peak current ripple amplitude is analytically evaluated over the fundamental period and compared among the most used DPWMs, including positive and negative clamped (DPWM+ and DPWM−), and the four possible combinations between them, usually named as DPWM0, DPWM1, DPWM2, and DPWM3. The maximum and the average values of peak-to-peak current ripple are estimated, and a simple method to correlate the ripple envelope with the ripple rms is proposed and verified. Furthermore, all the results obtained by DPWMs are compared to the centered pulse-width modulation (CPWM, equivalent to the space vector modulation) to identify the optimal pulse-width modulation (PWM) strategy as a function of the modulation index, taking into account the different average switching frequency. In this way, the PWM technique providing for the minimum output current ripple is identified over the whole modulation range. The analytical developments and the main results are experimentally verified by current ripple measurements with a three-phase PWM inverter prototype supplying an induction motor load. Full article
(This article belongs to the Special Issue Power Electronics Optimal Design and Control)
Show Figures

Graphical abstract

Back to TopTop