Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = energy-absorbing seat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2696 KiB  
Review
Treating Deep-Seated Tumors with Radiodynamic Therapy: Progress and Perspectives
by Shengcang Zhu, Siyue Lin and Rongcheng Han
Pharmaceutics 2024, 16(9), 1135; https://doi.org/10.3390/pharmaceutics16091135 - 28 Aug 2024
Cited by 2 | Viewed by 1685
Abstract
Radiodynamic therapy (RDT), as an emerging cancer treatment method, has attracted attention due to its remarkable therapeutic efficacy using low-dose, high-energy radiation (such as X-rays) and has shown significant potential in cancer treatment. The RDT system typically consists of scintillators and photosensitizers (PSs). [...] Read more.
Radiodynamic therapy (RDT), as an emerging cancer treatment method, has attracted attention due to its remarkable therapeutic efficacy using low-dose, high-energy radiation (such as X-rays) and has shown significant potential in cancer treatment. The RDT system typically consists of scintillators and photosensitizers (PSs). Scintillators absorb X-rays and convert them to visible light, activating nearby PSs to generate cytotoxic reactive oxygen species (ROS). Challenges faced by the two-component strategy, including low loading capacity and inefficient energy transfer, hinder its final effectiveness. In addition, the tumor microenvironment (TME) with hypoxia and immunosuppression limits the efficacy of RDTs. Recent advances introduce one-component RDT systems based on nanomaterials with high-Z metal elements, which effectively inhibit deep-seated tumors. These novel RDT systems exhibit immune enhancement and immune memory, potentially eliminating both primary and metastatic tumors. This review comprehensively analyzes recent advances in the rational construction of RDTs, exploring their mechanisms and application in the treatment of deep-seated tumors. Aimed at providing a practical resource for oncology researchers and practitioners, the review offers new perspectives for potential future directions in RDT research. Full article
Show Figures

Figure 1

30 pages, 5599 KiB  
Article
Development of a Restraint System for Rear-Facing Car Seats
by Samet Yavuz and Selcuk Himmetoglu
Machines 2023, 11(12), 1076; https://doi.org/10.3390/machines11121076 - 8 Dec 2023
Cited by 3 | Viewed by 4009
Abstract
In self-driving vehicles, passengers can set their seats in an unconventional seating position, such as rear-facing. Sitting in such an orientation can increase the risk of whiplash in the head-and-neck system in a frontal impact, as frontal crashes usually have higher severities compared [...] Read more.
In self-driving vehicles, passengers can set their seats in an unconventional seating position, such as rear-facing. Sitting in such an orientation can increase the risk of whiplash in the head-and-neck system in a frontal impact, as frontal crashes usually have higher severities compared with rear-end crashes. This paper shows that a forward-facing front seat optimised for rear-impact protection needs to be redesigned to be used as a rear-facing seat. In the second and main part of this paper, a restraint system for rear-facing car seats is developed, and frontal impact simulations with 64 km/h of delta-V are used to evaluate its performance. The designed seating system comprises two rigid torso plates, a fixed recliner and an energy absorber under the seat pan. Without using the developed restraint system, the 50th percentile male human model is exposed to neck shear forces exceeding 600 N. With the developed restraint system, neck shear forces are less than 350 N in frontal impacts with 64 km/h of delta-V. Apart from whiplash, the risk of head, chest, lower extremity and lower back injuries are also evaluated. The results confirm that the developed restraint system successfully protects the occupant since all assessment criteria values are lower than the injury assessment reference values. Full article
(This article belongs to the Special Issue Recent Analysis and Research in the Field of Vehicle Traffic Safety)
Show Figures

Figure 1

15 pages, 3622 KiB  
Article
3D Printing of Flexible Mechanical Metamaterials: Synergistic Design of Process and Geometric Parameters
by Nan Li, Chenhao Xue, Shenggui Chen, Wurikaixi Aiyiti, Sadaf Bashir Khan, Jiahua Liang, Jianping Zhou and Bingheng Lu
Polymers 2023, 15(23), 4523; https://doi.org/10.3390/polym15234523 - 24 Nov 2023
Cited by 14 | Viewed by 3940
Abstract
Mechanical metamaterials with ultralight and ultrastrong mechanical properties are extensively employed in various industrial sectors, with three-periodic minimal surface (TPMS) structures gaining significant research attention due to their symmetry, equation-driven characteristics, and exceptional mechanical properties. Compared to traditional lattice structures, TPMS structures exhibit [...] Read more.
Mechanical metamaterials with ultralight and ultrastrong mechanical properties are extensively employed in various industrial sectors, with three-periodic minimal surface (TPMS) structures gaining significant research attention due to their symmetry, equation-driven characteristics, and exceptional mechanical properties. Compared to traditional lattice structures, TPMS structures exhibit superior mechanical performance. The mechanical properties of TPMS structures depend on the base material, structural porosity (volume fraction), and wall thickness. Hard rigid lattice structures such as Gyroid, diamond, and primitive exhibit outstanding performance in terms of elastic modulus, energy absorption, heat dissipation, and heat transfer. Flexible TPMS lattice structures, on the other hand, offer higher elasticity and recoverable large deformations, drawing attention for use in applications such as seat cushions and helmet impact-absorbing layers. Conventional fabrication methods often fail to guarantee the quality of TPMS structure samples, and additive manufacturing technology provides a new avenue. Selective laser sintering (SLS) has successfully been used to process various materials. However, due to the layer-by-layer manufacturing process, it cannot eliminate the anisotropy caused by interlayer bonding, which impacts the mechanical properties of 3D-printed parts. This paper introduces a process data-driven optimization design approach for TPMS structure geometry by adjusting volume fraction gradients to overcome the elastic anisotropy of 3D-printed isotropic lattice structures. Experimental validation and analysis are conducted using TPMS structures fabricated using TPU material via SLS. Furthermore, the advantages of volume fraction gradient-designed TPMS structures in functions such as energy absorption and heat dissipation are explored. Full article
(This article belongs to the Special Issue Advance in 3D/4D Printing of Polymeric Materials)
Show Figures

Figure 1

20 pages, 5717 KiB  
Article
Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer
by Levan Shoshiashvili, Irma Shamatava, David Kakulia and Fridon Shubitidze
Cancers 2023, 15(6), 1672; https://doi.org/10.3390/cancers15061672 - 8 Mar 2023
Cited by 10 | Viewed by 2678
Abstract
Magnetic nanoparticle (MNP) hyperthermia therapy is a treatment technique that can be used alone or as an adjunct to radiation and/or chemotherapies for killing cancer cells. During treatment, MNPs absorb a part of electromagnetic field (EMF) energy and generate localized heat when subjected [...] Read more.
Magnetic nanoparticle (MNP) hyperthermia therapy is a treatment technique that can be used alone or as an adjunct to radiation and/or chemotherapies for killing cancer cells. During treatment, MNPs absorb a part of electromagnetic field (EMF) energy and generate localized heat when subjected to an alternating magnetic field (AMF). The MNP-absorbed EMF energy, which is characterized by a specific absorption rate (SAR), is directly proportional to AMF frequency and the magnitude of transmitting currents in the coil. Furthermore, the AMF penetrates inside tissue and induces eddy currents in electrically conducting tissues, which are proportional to the electric field (J = σE). The eddy currents produce Joule heating (<J·E> = 0.5·σ·E2) in the normal tissue, the rate of energy transfer to the charge carriers from the applied electric fields. This Joule heating contains only the electric field because the magnetic field is always perpendicular to the velocity of the conduction charges, i.e., it does not produce work on moving charge. Like the SAR due to MNP, the electric field produced by the AMF coil is directly proportional to AMF frequency and the magnitude of transmitting currents in the coil. As a result, the Joule heating is directly proportional to the square of the frequency and transmitter current magnitude. Due to the fast decay of magnetic fields from an AMF coil over distance, MNP hyperthermia treatment of deep-seated tumors requires high-magnitude transmitting currents in the coil for clinically achievable MNP distributions in the tumor. This inevitably produces significant Joule heating in the normal tissue and becomes more complicated for a standard MNP hyperthermia approach for deep-seated tumors, such as pancreatic, prostate, liver, lung, ovarian, kidney, and colorectal cancers. This paper presents a novel human-sized AMF coil and MNP hyperthermia system design for safely and effectively treating deep-seated cancers. The proposed design utilizes the spatial distribution of electric and magnetic fields of circular coils. Namely, it first minimizes the SAR due to eddy currents in the normal tissue by moving the conductors away from the tissue (i.e., increasing coils’ radii), and second, it increases the magnetic field at the targeted area (z = 0) due to elevated coils (|z| > 0) by increasing the radius of the elevated coils (|z| > 0). This approach is a promising alternative aimed at overcoming the limitation of standard MNP hyperthermia for deep-seated cancers by taking advantage of the transmitter coil’s electric and magnetic field distributions in the human body for maximizing AMF in tumor regions and avoiding damage to normal tissue. The human-sized coil’s AMF, MNP activation, and eddy current distribution characteristics are investigated for safe and effective treatment of deep-seated tumors using numerical models. Namely, computational results such as AMF, Joule heating SAR, and temperature distributions are presented for a full-body, 3D human model. The SAR and temperature distributions clearly show that the proposed human-sized AMF coil can provide clinically relevant AMF to the region occupied by deep-seated cancers for the application of MNP hyperthermia therapy while causing less Joule heating in the normal tissues than commonly used AMF techniques. Full article
(This article belongs to the Collection Hyperthermia in Cancer Therapy)
Show Figures

Figure 1

16 pages, 3990 KiB  
Article
Research on Optimization Design of Key Energy-Absorbing Structure of a Helicopter Seat Based on Human–Seat Coupling System
by Xingye Wang, Yanjun Li, Yuyuan Cao, Xudong Li, Shixuan Duan and Zejian Zhao
Appl. Sci. 2022, 12(17), 8858; https://doi.org/10.3390/app12178858 - 3 Sep 2022
Viewed by 2630
Abstract
During the process of emergency landing, the energy of the impact in the vertical direction is dissipated through the deformation of the structure. The landing load is transferred to the spine of the occupant through the landing gear, the fuselage and finally the [...] Read more.
During the process of emergency landing, the energy of the impact in the vertical direction is dissipated through the deformation of the structure. The landing load is transferred to the spine of the occupant through the landing gear, the fuselage and finally the seat. This can cause serious damage to the human body. Since the seat is in direct contact with the human body, the energy absorption capacity of the seat is the most direct manifestation of the Crashworthiness of the helicopter. The solutions proposed in the paper may reduce the impact of the seat on the spine of the occupant during the collision by optimizing the key energy-absorbing structure. Taking the seat of the H135 helicopter as a case, the mechanical model of the human–seat coupling system, which is based on the theories of energy methods and structural mechanics, is simplified. Additionally, the simulation was considered reasonable by comparing the simulation results with the results of crashworthiness tests. On the basis of the above, the optimization of the key energy-absorbing structure of the seat was completed by using Latin hypercube sampling and the kriging model. Overall, the optimization effectively enhanced the crashworthiness of this helicopter seat and provided a solution for the passive safety design of aviation seats. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

16 pages, 8055 KiB  
Article
Application of an Additive Manufactured Hybrid Metal/Composite Shock Absorber Panel to a Military Seat Ejection System
by Valerio Acanfora, Chiara Corvino, Salvatore Saputo, Andrea Sellitto and Aniello Riccio
Appl. Sci. 2021, 11(14), 6473; https://doi.org/10.3390/app11146473 - 13 Jul 2021
Cited by 24 | Viewed by 4263
Abstract
In this work, a preliminary numerical assessment on the application of an additive manufactured hybrid metal/composite shock absorber panels to a military seat ejection system, has been carried out. The innovative character of the shock absorber concept investigated is that the absorbing system [...] Read more.
In this work, a preliminary numerical assessment on the application of an additive manufactured hybrid metal/composite shock absorber panels to a military seat ejection system, has been carried out. The innovative character of the shock absorber concept investigated is that the absorbing system has a thickness of only 6 mm and is composed of a pyramid-shaped lattice core that, due to its small size, can only be achieved by additive manufacturing. The mechanical behaviour of these shock absorber panels has been examined by measuring their ability to absorb and dissipate the energy generated during the ejection phase into plastic deformations, thus reducing the loads acting on pilots. In this paper the effectiveness of a system composed of five hybrid shock absorbers, with very thin thickness in order to be easily integrated between the seat and the aircraft floor, has been numerically studied by assessing their ability to absorb the energy generated during the primary ejection phase. To accomplish this, a numerical simulation of the explosion has been performed and the energy absorbed by the shock-absorbing mechanism has been assessed. The performed analysis demonstrated that the panels can absorb more than 60% of the energy generated during the explosion event while increasing the total mass of the pilot-seat system by just 0.8%. Full article
(This article belongs to the Special Issue Additive Manufacturing for Composite Materials)
Show Figures

Figure 1

17 pages, 4497 KiB  
Article
Validation of Numerical Models of a Rotorcraft Crashworthy Seat and Subfloor
by Paolo Astori, Mauro Zanella and Matteo Bernardini
Aerospace 2020, 7(12), 174; https://doi.org/10.3390/aerospace7120174 - 10 Dec 2020
Cited by 16 | Viewed by 7072
Abstract
The present work explores some critical aspects of the numerical modeling of a rotorcraft seat and subfloor equipped with energy-absorbing stages, which are paramount in crash landing conditions. To limit the vast complexity of the problem, a purely vertical impact is considered as [...] Read more.
The present work explores some critical aspects of the numerical modeling of a rotorcraft seat and subfloor equipped with energy-absorbing stages, which are paramount in crash landing conditions. To limit the vast complexity of the problem, a purely vertical impact is considered as a reference scenario for an assembly made of a crashworthy helicopter seat and a subfloor section, including an anthropomorphic dummy. A preliminary lumped mass model is used to drive the design of the experimental drop test. Some additional static and dynamic tests are carried out at the coupon and sub-component levels to characterize the seat cushion, the seat pan and the honeycomb elements that were introduced in the structure as energy absorbers. The subfloor section is designed and manufactured with a simplified technique, yet representative of this structural component. Eventually, a finite element model representing the full drop test was created and, together with the original lumped mass model, finally validated against the experimental test, outlining the advantage of using both the numerical techniques for design assistance. Full article
Show Figures

Figure 1

23 pages, 4188 KiB  
Article
New Design Concept for Bridge Restrainers with Rubber Cushion Considering Dynamic Action: A Preliminary Study
by Hiroki Tamai, Chi Lu and Yoichi Yuki
Appl. Sci. 2020, 10(19), 6847; https://doi.org/10.3390/app10196847 - 29 Sep 2020
Cited by 2 | Viewed by 5024
Abstract
A bridge unseating prevention system is a safety system for bridge collapses caused by large earthquakes, beyond the assumption of aseismic design specifications. Presently, the system is generally adopted for newly constructed bridges and the seismic retrofitting of existing bridges. Cable type bridge [...] Read more.
A bridge unseating prevention system is a safety system for bridge collapses caused by large earthquakes, beyond the assumption of aseismic design specifications. Presently, the system is generally adopted for newly constructed bridges and the seismic retrofitting of existing bridges. Cable type bridge restrainers are included in the system, and they are expected to prevent superstructures from exceeding the seat length of substructures. Although the bridge restrainer works during an earthquake, it is designed to be static in the current design. In addition, although the constituent elements of bridge restrainers include a rubber cushion to absorb energy during an earthquake, the effect is not included in the design. Thus, the current design lacks the dynamic effects of earthquakes and the cushioning effect of the rubber. Furthermore, in the case of a multi-span bridge, there is no particular decision as to where the restrainers should be placed or what kind of specifications they should have. Therefore, in this paper, a new design concept that considers the dynamic action of the earthquake and the cushioning effect of the rubber is proposed by coupling dynamic response analysis using a frame finite element (FE) model and a simple genetic algorithm (SGA). Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

7 pages, 337 KiB  
Article
Cabin Heat Removal from an Electric Car
by J.C. Leong, C.-Y. Tseng, B.-D. Tsai and Y.-F. Hsiao
World Electr. Veh. J. 2010, 4(4), 760-766; https://doi.org/10.3390/wevj4040760 - 31 Dec 2010
Cited by 7 | Viewed by 1501
Abstract
This work studies the feasibility of reducing the temperature in an electric car cabin through a ventilation device. The temperature and velocity fields in the cabin were simultaneously solved for through CFD means. Current results show that most of the solar irradiation energy [...] Read more.
This work studies the feasibility of reducing the temperature in an electric car cabin through a ventilation device. The temperature and velocity fields in the cabin were simultaneously solved for through CFD means. Current results show that most of the solar irradiation energy is absorbed by the seats especially when they are directly hit by the sun beam. However, the seat temperature can be significantly brought down with the help of a ventilation device. There exists a flow rate which is sufficient enough to bring down the seat temperature. Full article
Back to TopTop