Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (682)

Search Parameters:
Keywords = energy tariff

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1317 KiB  
Article
A Stackelberg Game for Co-Optimization of Distribution System Operator Revenue and Virtual Power Plant Costs with Integrated Data Center Flexibility
by Qi Li, Shihao Liu, Bokang Zou, Yulong Jin, Yi Ge, Yan Li, Qirui Chen, Xinye Du, Feng Li and Chenyi Zheng
Energies 2025, 18(15), 4123; https://doi.org/10.3390/en18154123 - 3 Aug 2025
Viewed by 290
Abstract
The increasing penetration of distributed renewable energy and the emergence of large-scale, flexible loads such as data centers pose significant challenges to the economic and secure operation of distribution systems. Traditional static pricing mechanisms are often inadequate, leading to inefficient resource dispatch and [...] Read more.
The increasing penetration of distributed renewable energy and the emergence of large-scale, flexible loads such as data centers pose significant challenges to the economic and secure operation of distribution systems. Traditional static pricing mechanisms are often inadequate, leading to inefficient resource dispatch and curtailment of renewable generation. To address these issues, this paper proposes a hierarchical pricing and dispatch framework modeled as a tri-level Stackelberg game that coordinates interactions among an upstream grid, a distribution system operator (DSO), and multiple virtual power plants (VPPs). At the upper level, the DSO acts as the leader, formulating dynamic time-varying purchase and sale prices to maximize its revenue based on upstream grid conditions. In response, at the lower level, each VPP acts as a follower, optimally scheduling its portfolio of distributed energy resources—including microturbines, energy storage, and interruptible loads—to minimize its operating costs under the announced tariffs. A key innovation is the integration of a schedulable data center within one VPP, which responds to a specially designed wind-linked incentive tariff by shifting computational workloads to periods of high renewable availability. The resulting high-dimensional bilevel optimization problem is solved using a Kriging-based surrogate methodology to ensure computational tractability. Simulation results verify that, compared to a static-pricing baseline, the proposed strategy increases DSO revenue by 18.9% and reduces total VPP operating costs by over 28%, demonstrating a robust framework for enhancing system-wide economic and operational efficiency. Full article
Show Figures

Figure 1

27 pages, 1948 KiB  
Article
Real-World Performance and Economic Evaluation of a Residential PV Battery Energy Storage System Under Variable Tariffs: A Polish Case Study
by Wojciech Goryl
Energies 2025, 18(15), 4090; https://doi.org/10.3390/en18154090 - 1 Aug 2025
Viewed by 333
Abstract
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal [...] Read more.
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal variation was significant; self-sufficiency exceeded 90% in summer, while winter conditions increased grid dependency. The hybrid system reduced electricity costs by over EUR 1400 annually, with battery operation optimized for high-tariff periods. Comparative analysis of three configurations—grid-only, PV-only, and PV + BESS—demonstrated the economic advantage of the integrated solution, with the shortest payback period (9.0 years) achieved with financial support. However, grid voltage instability during high PV production led to inverter shutdowns, highlighting limitations in the infrastructure. This study emphasizes the importance of tariff strategies, environmental conditions, and voltage control when designing residential PV-BESS systems. Full article
(This article belongs to the Special Issue Design, Analysis and Operation of Renewable Energy Systems)
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Viewed by 185
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 289
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

45 pages, 1090 KiB  
Review
Electric Vehicle Adoption in Egypt: A Review of Feasibility, Challenges, and Policy Directions
by Hilmy Awad, Michele De Santis and Ehab H. E. Bayoumi
World Electr. Veh. J. 2025, 16(8), 423; https://doi.org/10.3390/wevj16080423 - 28 Jul 2025
Viewed by 641
Abstract
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption [...] Read more.
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption disparities, lifecycle assessments of EV batteries, and sociocultural barriers, including gender dynamics and entrenched consumer preferences. Its primary contribution is an interdisciplinary framework that integrates technical aspects, such as grid resilience and climate-related battery degradation, with socioeconomic dimensions, providing a holistic overview of EV feasibility in Egypt tailored to Egypt’s context. Key findings reveal infrastructure limitations, inconsistent policy frameworks, and behavioral skepticism as major hurdles, and highlight the untapped potential of renewable energy integration, particularly through synergies between solar PV generation (e.g., Benban Solar Park) and EV charging infrastructure. Recommendations prioritize policy reforms (e.g., tax incentives, streamlined tariffs), solar-powered charging infrastructure expansion, public awareness campaigns, and local EV manufacturing to stimulate economic growth. The study underscores the urgency of stakeholder collaboration to transform EVs into a mainstream solution, positioning Egypt as a regional leader in sustainable mobility and equitable development. Full article
Show Figures

Figure 1

15 pages, 1224 KiB  
Article
Degradation-Aware Bi-Level Optimization of Second-Life Battery Energy Storage System Considering Demand Charge Reduction
by Ali Hassan, Guilherme Vieira Hollweg, Wencong Su, Xuan Zhou and Mengqi Wang
Energies 2025, 18(15), 3894; https://doi.org/10.3390/en18153894 - 22 Jul 2025
Viewed by 292
Abstract
Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to [...] Read more.
Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to address the increasing demand for battery energy storage systems (BESSs) for the electric grid, which will also create a robust circular economy for EV batteries. This article proposes a two-layered energy management algorithm (monthly layer and daily layer) for demand charge reduction for an industrial consumer using photovoltaic (PV) panels and BESSs made of retired EV batteries. In the proposed algorithm, the monthly layer (ML) calculates the optimal dispatch for the whole month and feeds the output to the daily layer (DL), which optimizes the BESS dispatch, BESSs’ degradation, and energy imported/exported from/to the grid. The effectiveness of the proposed algorithm is tested as a case study of an industrial load using a real-world demand charge and Real-Time Pricing (RTP) tariff. Compared with energy management with no consideration of degradation or demand charge reduction, this algorithm results in 71% less degradation of BESS and 57.3% demand charge reduction for the industrial consumer. Full article
Show Figures

Figure 1

28 pages, 2612 KiB  
Article
Optimizing Economy with Comfort in Climate Control System Scheduling for Indoor Ice Sports Venues’ Spectator Zones Considering Demand Response
by Zhuoqun Du, Yisheng Liu, Yuyan Xue and Boyang Liu
Algorithms 2025, 18(7), 446; https://doi.org/10.3390/a18070446 - 20 Jul 2025
Viewed by 196
Abstract
With the growing popularity of ice sports, indoor ice sports venues are drawing an increasing number of spectators. Maintaining comfort in spectator zones presents a significant challenge for the operational scheduling of climate control systems, which integrate ventilation, heating, and dehumidification functions. To [...] Read more.
With the growing popularity of ice sports, indoor ice sports venues are drawing an increasing number of spectators. Maintaining comfort in spectator zones presents a significant challenge for the operational scheduling of climate control systems, which integrate ventilation, heating, and dehumidification functions. To explore economic cost potential while ensuring user comfort, this study proposes a demand response-integrated optimization model for climate control systems. To enhance the model’s practicality and decision-making efficiency, a two-stage optimization method combining multi-objective optimization algorithms with the technique for order preference by similarity to an ideal solution (TOPSIS) is proposed. In terms of algorithm comparison, the performance of three typical multi-objective optimization algorithms—NSGA-II, standard MOEA/D, and Multi-Objective Brown Bear Optimization (MOBBO)—is systematically evaluated. The results show that NSGA-II demonstrates the best overall performance based on evaluation metrics including runtime, HV, and IGD. Simulations conducted in China’s cold regions show that, under comparable comfort levels, schedules incorporating dynamic tariffs are significantly more economically efficient than those that do not. They reduce operating costs by 25.3%, 24.4%, and 18.7% on typical summer, transitional, and winter days, respectively. Compared to single-objective optimization approaches that focus solely on either comfort enhancement or cost reduction, the proposed multi-objective model achieves a better balance between user comfort and economic performance. This study not only provides an efficient and sustainable solution for climate control scheduling in energy-intensive buildings such as ice sports venues but also offers a valuable methodological reference for energy management and optimization in similar settings. Full article
Show Figures

Figure 1

31 pages, 1708 KiB  
Systematic Review
Circular Economy and Water Sustainability: Systematic Review of Water Management Technologies and Strategies (2018–2024)
by Gary Christiam Farfán Chilicaus, Luis Edgardo Cruz Salinas, Pedro Manuel Silva León, Danny Alonso Lizarzaburu Aguinaga, Persi Vera Zelada, Luis Alberto Vera Zelada, Elmer Ovidio Luque Luque, Rolando Licapa Redolfo and Emma Verónica Ramos Farroñán
Sustainability 2025, 17(14), 6544; https://doi.org/10.3390/su17146544 - 17 Jul 2025
Viewed by 441
Abstract
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant [...] Read more.
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant patterns: (i) rapid diffusion of membrane bioreactors, constructed wetlands, and advanced oxidation processes; (ii) research geographically concentrated in Asia and the European Union; (iii) industry’s marked preference for by-product valorization. Key barriers—high energy costs, fragmented regulatory frameworks, and low social acceptance—converge as critical constraints during scale-up. The following three practical action lines emerge: (1) adopt progressive tariffs and targeted tax credits that internalize environmental externalities; (2) harmonize water-reuse regulations with comparable circularity metrics; (3) create multi-actor platforms that co-design projects, boosting local legitimacy. These findings provide policymakers and water-sector practitioners with a clear roadmap for accelerating Sustainable Development Goals 6, 9, and 12 through circular, inclusive, low-carbon water systems. Full article
Show Figures

Figure 1

29 pages, 2431 KiB  
Article
Expectations Versus Reality: Economic Performance of a Building-Integrated Photovoltaic System in the Andean Ecuadorian Context
by Esteban Zalamea-León, Danny Ochoa-Correa, Hernan Sánchez-Castillo, Mateo Astudillo-Flores, Edgar A. Barragán-Escandón and Alfredo Ordoñez-Castro
Buildings 2025, 15(14), 2493; https://doi.org/10.3390/buildings15142493 - 16 Jul 2025
Viewed by 383
Abstract
This article presents an empirical evaluation of the technical and economic performance of a building-integrated photovoltaic (PV) system implemented at the Faculty of Architecture and Urbanism of the University of Cuenca, Ecuador. This study explores both stages of deployment, beginning with a 7.7 [...] Read more.
This article presents an empirical evaluation of the technical and economic performance of a building-integrated photovoltaic (PV) system implemented at the Faculty of Architecture and Urbanism of the University of Cuenca, Ecuador. This study explores both stages of deployment, beginning with a 7.7 kWp pilot system and later scaling to a full 75.6 kWp configuration. This hourly monitoring of power exchanges with utility was conducted over several months using high-resolution instrumentation and cloud-based analytics platforms. A detailed comparison between projected energy output, recorded production, and real energy consumption was carried out, revealing how seasonal variability, cloud cover, and academic schedules influence system behavior. The findings also include a comparison between billed and actual electricity prices, as well as an analysis of the system’s payback period under different cost scenarios, including state-subsidized and real-cost frameworks. The results confirm that energy exports are frequent during weekends and that daily generation often exceeds on-site demand on non-working days. Although the university benefits from low electricity tariffs, the system demonstrates financial feasibility when broader public cost structures are considered. This study highlights operational outcomes under real-use conditions and provides insights for scaling distributed generation in institutional settings, with particular relevance for Andean urban contexts with similar solar profiles and tariff structures. Full article
Show Figures

Figure 1

22 pages, 3812 KiB  
Article
Optimal Collaborative Scheduling Strategy of Mobile Energy Storage System and Electric Vehicles Considering SpatioTemporal Characteristics
by Liming Sun and Tao Yu
Processes 2025, 13(7), 2242; https://doi.org/10.3390/pr13072242 - 14 Jul 2025
Cited by 1 | Viewed by 296
Abstract
The widespread adoption of electric vehicles introduces significant challenges to power grid stability due to uncoordinated large-scale charging and discharging behaviors. By addressing these challenges, mobile energy storage systems emerge as a flexible resource. To maximize the synergistic potential of jointly scheduling electric [...] Read more.
The widespread adoption of electric vehicles introduces significant challenges to power grid stability due to uncoordinated large-scale charging and discharging behaviors. By addressing these challenges, mobile energy storage systems emerge as a flexible resource. To maximize the synergistic potential of jointly scheduling electric vehicles and mobile energy storage systems, this study develops a collaborative scheduling model incorporating the prediction of geographically and chronologically varying distributions of electric vehicles. Non-dominated sorting genetic algorithm-III is then applied to solve this model. Validation through case studies, conducted on the IEEE-69 bus system and an actual urban road network in southern China, demonstrates the model’s efficacy. Case studies reveal that compared to the initial disordered state, the optimized strategy yields a 122.6% increase in profits of the electric vehicle charging station operator, a 44.7% reduction in costs to the electric vehicle user, and a 62.5% decrease in voltage deviation. Furthermore, non-dominated sorting genetic algorithm-III exhibits superior comprehensive performance in multi-objective optimization when benchmarked against two alternative algorithms. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

19 pages, 910 KiB  
Article
Robust Gas Demand Prediction Using Deep Neural Networks: A Data-Driven Approach to Forecasting Under Regulatory Constraints
by Kostiantyn Pavlov, Olena Pavlova, Tomasz Wołowiec, Svitlana Slobodian, Andriy Tymchyshak and Tetiana Vlasenko
Energies 2025, 18(14), 3690; https://doi.org/10.3390/en18143690 - 12 Jul 2025
Viewed by 313
Abstract
Accurate gas consumption forecasting is critical for modern energy systems due to complex consumer behavior and regulatory requirements. Deep neural networks (DNNs), such as Seq2Seq with attention, TiDE, and Temporal Fusion Transformers, are promising for modeling complex temporal relationships and non-linear dependencies. This [...] Read more.
Accurate gas consumption forecasting is critical for modern energy systems due to complex consumer behavior and regulatory requirements. Deep neural networks (DNNs), such as Seq2Seq with attention, TiDE, and Temporal Fusion Transformers, are promising for modeling complex temporal relationships and non-linear dependencies. This study compares state-of-the-art architectures using real-world data from over 100,000 consumers to determine their practical viability for forecasting gas consumption under operational and regulatory conditions. Particular attention is paid to the impact of data quality, feature attribution, and model reliability on performance. The main use cases for natural gas consumption forecasting are tariff setting by regulators and system balancing for suppliers and operators. The study used monthly natural gas consumption data from 105,527 households in the Volyn region of Ukraine from January 2019 to April 2023 and meteorological data on average monthly air temperature. Missing values were replaced with zeros or imputed using seasonal imputation and the K-nearest neighbors. The results showed that previous consumption is the dominant feature for all models, confirming their autoregressive origin and the high importance of historical data. Temperature and category were identified as supporting features. Improvised data consistently improved the performance of all models. Seq2SeqPlus showed high accuracy, TiDE was the most stable, and TFT offered flexibility and interpretability. Implementing these models requires careful integration with data management, regulatory frameworks, and operational workflows. Full article
Show Figures

Figure 1

33 pages, 1609 KiB  
Article
Estimation and Forecasting of the Average Unit Cost of Energy Supply in a Distribution System Using Multiple Linear Regression and ARIMAX Modeling in Ecuador
by Pablo Alejandro Mendez-Santos, Nathalia Alexandra Chacón-Reino, Luis Fernando Guerrero-Vásquez, Jorge Osmani Ordoñez-Ordoñez and Paul Andrés Chasi-Pesantez
Energies 2025, 18(14), 3659; https://doi.org/10.3390/en18143659 - 10 Jul 2025
Viewed by 408
Abstract
The accurate estimation of electricity supply costs has become increasingly relevant due to growing demand, variable generation sources, and regulatory changes in emerging power systems. This study models the average unit cost of electricity supply (USD/kWh) in Ecuador using multiple linear regression techniques [...] Read more.
The accurate estimation of electricity supply costs has become increasingly relevant due to growing demand, variable generation sources, and regulatory changes in emerging power systems. This study models the average unit cost of electricity supply (USD/kWh) in Ecuador using multiple linear regression techniques and ARIMAX forecasting, based on monthly data from 2018 to 2024. The regression models incorporate variables such as energy demand, generation mix, transmission costs, and regulatory indices. To enhance model robustness, we apply three variable selection strategies: correlation analysis, PCA, and expert-driven selection. Results show that all models explain over 70% of price variability, with the highest-performing regression model achieving R2=0.9887. ARIMAX models were subsequently implemented using regression-based forecasts as exogenous inputs. The ARIMAX model based on highly correlated variables achieved a MAPE below 5%, showing high predictive accuracy. These findings support the use of hybrid statistical models for informed policy-making, tariff planning, and operational cost forecasting in structurally constrained energy markets. Full article
Show Figures

Figure 1

24 pages, 1216 KiB  
Article
Establishing Solar Energy Cooperatives in Ukraine: Regional Considerations and a Practical Guide
by Galyna Trypolska, Oleksandra Kubatko and Olha Prokopenko
Energies 2025, 18(14), 3623; https://doi.org/10.3390/en18143623 - 9 Jul 2025
Viewed by 649
Abstract
The energy system of Ukraine needs to be decentralized, which aligns entirely with its intention to join the EU. The study focuses on regional peculiarities in establishing solar energy cooperatives and provides practical guidance on developing an energy cooperative in Ukraine. The article [...] Read more.
The energy system of Ukraine needs to be decentralized, which aligns entirely with its intention to join the EU. The study focuses on regional peculiarities in establishing solar energy cooperatives and provides practical guidance on developing an energy cooperative in Ukraine. The article studies the different elements of electricity tariff composition for households, compares the existing support schemes (feed-in tariff and net metering), and defines which regions are the most suitable for establishing energy cooperatives (using solar installation). The primary methods employed are descriptive analysis, net present value analysis, and the integral assessment method, which collectively provide a comprehensive framework for evaluating both the economic viability and regional suitability of solar energy cooperatives. The findings indicate that the most suitable regions for solar energy cooperatives in Ukraine are located in the northeast and southwest of the country. The study highlights the importance of tailoring regional programs for energy cooperatives to enhance energy security and support the country’s low-carbon energy transition. The findings may be of interest and applicable in Ukraine and beyond. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

16 pages, 2761 KiB  
Article
Evaluating the Stacked Economic Value of Load Shifting and Microgrid Control
by Arnel Garcesa, Nathan G. Johnson and James Nelson
Buildings 2025, 15(13), 2378; https://doi.org/10.3390/buildings15132378 - 7 Jul 2025
Viewed by 389
Abstract
Microgrids and load shifting can improve resilience and lower costs for electricity customers. The costs to deploy each have decreased and helped accelerate their deployment in the U.S. and globally. However, previous research has focused minimally on the combined benefit or “stacked economic [...] Read more.
Microgrids and load shifting can improve resilience and lower costs for electricity customers. The costs to deploy each have decreased and helped accelerate their deployment in the U.S. and globally. However, previous research has focused minimally on the combined benefit or “stacked economic value” that these assets could provide jointly. This article evaluates the financial value when those assets are combined and optimized jointly. The methods are demonstrated for a U.S. government facility with an existing microgrid and building automation system, with optimizations that vary the percentage load shifted and the duration of time the load can be shifted. The economic benefits of load shifting are greater when combined with a microgrid and coordinated dispatch of loads and microgrid assets. The methods and case study results illustrate “stacked economic value” showing energy charge reductions are 56–252% greater and demand charge reductions are 96–226% greater when load shifting is combined with a microgrid as compared to load shifting without a microgrid. Increasing the amount and duration of load shifting improves the stacked economic value as more loads are scheduled coincident with on-site generation to offset or completely avoid utility purchases during peak pricing periods, an underlying behavior that enables stacked economic value and increased financial savings. The percentage reduction in demand charges is greater than energy charges—a generalizable finding—but the relative impact on utility expenditures is dependent on the utility tariff structure and composition of demand charges and energy charges in the utility bill. In this case study, demand charge reductions were four times greater than energy charge reductions, but the financial savings of demand charges are less due to their smaller proportion of utility charges. This suggests that the stacked economic value of microgrids and load control may be even more significant in locations with electricity tariffs that more heavily weight billing towards demand charges than energy charges. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 2642 KiB  
Article
Optimising Manufacturing Efficiency: A Data Analytics Solution for Machine Utilisation and Production Insights
by Saleh Seyedzadeh, Vyron Christodoulou, Adam Turner and Saeid Lotfian
J. Manuf. Mater. Process. 2025, 9(7), 210; https://doi.org/10.3390/jmmp9070210 - 24 Jun 2025
Viewed by 916
Abstract
This paper proposes a non-invasive, data-driven methodology for monitoring and optimising machine utilisation in manufacturing environments. By analysing high-resolution power consumption data, the system automatically classifies machine states (off, idling, and working, and segments operational periods into discrete production events. Unsupervised learning techniques [...] Read more.
This paper proposes a non-invasive, data-driven methodology for monitoring and optimising machine utilisation in manufacturing environments. By analysing high-resolution power consumption data, the system automatically classifies machine states (off, idling, and working, and segments operational periods into discrete production events. Unsupervised learning techniques enable the identification of production patterns, product typologies, and anomalies, supporting improvements in operational efficiency and quality control. The approach also estimates energy consumption and cost using time-of-use tariffs, offering insights into both performance and sustainability. Experimental evaluations across multiple industrial settings demonstrate the method’s robustness, with high agreement with production records and significant potential for reducing idle time, improving scheduling, and enhancing resource allocation. This work presents a scalable and interpretable analytics framework to support data-driven decision-making in modern manufacturing operations. Full article
Show Figures

Figure 1

Back to TopTop