Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = endodormancy break

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 16019 KiB  
Article
Localization of Hydrogen Peroxide in Dormant Buds of Resistant and Susceptible Chestnut Cultivars: Changes During Gall Developmental Stages Induced by the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus)
by Başak Müftüoğlu and Cevriye Mert
Plants 2025, 14(14), 2089; https://doi.org/10.3390/plants14142089 - 8 Jul 2025
Viewed by 372
Abstract
Asian chestnut gall wasp (ACGW) (Dryocosmus kuriphilus Yasumatsu), native to China, is an invasive pest that causes significant economic losses in Castanea species. While some cultivars show full resistance by inhibiting insect development in buds, the underlying defense mechanisms remain unclear. In [...] Read more.
Asian chestnut gall wasp (ACGW) (Dryocosmus kuriphilus Yasumatsu), native to China, is an invasive pest that causes significant economic losses in Castanea species. While some cultivars show full resistance by inhibiting insect development in buds, the underlying defense mechanisms remain unclear. In this study, the accumulation and distribution of hydrogen peroxide (H2O2) were investigated in dormant buds of chestnut cultivars that are resistant and susceptible to D. kuriphilus by using the 3,3′-diaminobenzidine (DAB) staining method. Buds were examined under a stereomicroscope during key stages of pest development, including oviposition, transition from egg to larva, gall induction, and gall development. Baseline levels of H2O2 were detected in all buds; however, these levels varied among cultivars, with resistant cultivars exhibiting lower basal levels. The degree of H2O2 accumulation was found to vary depending on plant–insect interaction, physiological processes, and cultivar-specific traits. Histochemical staining revealed that brown spots indicative of H2O2 accumulation were concentrated in the vascular bundles of leaf primordia and in the apical regions. In resistant hybrid cultivars, the defense response was activated at an earlier stage, while in resistant Castanea sativa Mill. cultivars, the response was delayed but more robust. Although consistently high levels of H2O2 were observed throughout the pest interaction in susceptible cultivars, gall development was not inhibited. During the onset of physiological bud break, increased H2O2 accumulation was observed across all cultivars. This increase was associated with endodormancy in susceptible cultivars and with both defense mechanisms and endodormancy processes in resistant cultivars. These findings highlight the significant role of H2O2 in plant defense responses, while also supporting its function as a multifunctional signaling molecule involved in gall development and the regulation of physiological processes. Full article
(This article belongs to the Special Issue Microscopy Techniques in Plant Studies—2nd Edition)
Show Figures

Graphical abstract

17 pages, 3178 KiB  
Article
A Study of the Molecular Regulatory Network of VcTCP18 during Blueberry Bud Dormancy
by Ruixue Li, Rui Ma, Yuling Zheng, Qi Zhao, Yu Zong, Youyin Zhu, Wenrong Chen, Yongqiang Li and Weidong Guo
Plants 2023, 12(14), 2595; https://doi.org/10.3390/plants12142595 - 9 Jul 2023
Cited by 5 | Viewed by 1862
Abstract
BRANCHED1 (BRC1) is a crucial member of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) gene family and is well known for playing a central role in shoot branching by controlling buds’ paradormancy. However, the expression characteristics and molecular regulatory mechanism of BRC1 during blueberry [...] Read more.
BRANCHED1 (BRC1) is a crucial member of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) gene family and is well known for playing a central role in shoot branching by controlling buds’ paradormancy. However, the expression characteristics and molecular regulatory mechanism of BRC1 during blueberry bud dormancy are unclear. To shed light on these topics, shoots of three blueberry cultivars with different chilling requirements (CRs) were decapitated in summer to induce paradormancy release and subjected to different levels of chilling in winter to induce endodormancy release. The results showed that the high-CR cultivar ‘Chandler’ had the strongest apical dominance among the three cultivars; additionally, the expression of VcTCP18, which is homologous to BRC1, was the highest under both the decapitation treatment and low-temperature treatment. The ‘Emerald’ cultivar, with a low CR, demonstrated the opposite trend. These findings suggest that VcTCP18 plays a negative regulatory role in bud break and that there may be a correlation between the CR and tree shape. Through yeast 1-hybrid (Y1H) assays, we finally screened 21 upstream regulatory genes, including eight transcription factors: zinc-finger homeodomain protein 1/4/5/9, MYB4, AP2-like ethylene-responsive transcription factor AINTEGUMENTA (ANT), ASIL2-like, and bHLH035. It was found that these upstream regulatory genes positively or negatively regulated the expression of VcTCP18 based on the transcriptome expression profile. In summary, this study enriched our understanding of the regulatory network of BRCl during bud dormancy and provided new insights into the function of BRC1. Full article
(This article belongs to the Special Issue Advances in Blueberry Research)
Show Figures

Figure 1

18 pages, 6374 KiB  
Article
Molecular Cues for Phenological Events in the Flowering Cycle in Avocado
by Muhammad Umair Ahsan, Francois Barbier, Alice Hayward, Rosanna Powell, Helen Hofman, Siegrid Carola Parfitt, John Wilkie, Christine Anne Beveridge and Neena Mitter
Plants 2023, 12(12), 2304; https://doi.org/10.3390/plants12122304 - 13 Jun 2023
Cited by 3 | Viewed by 2726
Abstract
Reproductively mature horticultural trees undergo an annual flowering cycle that repeats each year of their reproductive life. This annual flowering cycle is critical for horticultural tree productivity. However, the molecular events underlying the regulation of flowering in tropical tree crops such as avocado [...] Read more.
Reproductively mature horticultural trees undergo an annual flowering cycle that repeats each year of their reproductive life. This annual flowering cycle is critical for horticultural tree productivity. However, the molecular events underlying the regulation of flowering in tropical tree crops such as avocado are not fully understood or documented. In this study, we investigated the potential molecular cues regulating the yearly flowering cycle in avocado for two consecutive crop cycles. Homologues of flowering-related genes were identified and assessed for their expression profiles in various tissues throughout the year. Avocado homologues of known floral genes FT, AP1, LFY, FUL, SPL9, CO and SEP2/AGL4 were upregulated at the typical time of floral induction for avocado trees growing in Queensland, Australia. We suggest these are potential candidate markers for floral initiation in these crops. In addition, DAM and DRM1, which are associated with endodormancy, were downregulated at the time of floral bud break. In this study, a positive correlation between CO activation and FT in avocado leaves to regulate flowering was not seen. Furthermore, the SOC1-SPL4 model described in annual plants appears to be conserved in avocado. Lastly, no correlation of juvenility-related miRNAs miR156, miR172 with any phenological event was observed. Full article
(This article belongs to the Special Issue Physiology of Tropical and Subtropical Tree Species)
Show Figures

Graphical abstract

15 pages, 1306 KiB  
Article
Estimation of Blooming Start with the Adaptation of the Unified Model for Three Apricot Cultivars (Prunus armeniaca L.) Based on Long-Term Observations in Hungary (1994–2020)
by Ildikó Mesterházy, Péter Raffai, László Szalay, László Bozó and Márta Ladányi
Diversity 2022, 14(7), 560; https://doi.org/10.3390/d14070560 - 12 Jul 2022
Cited by 1 | Viewed by 2047
Abstract
The aim of our research was to adapt Chuine’s unified model to estimate the beginning of blooming of three apricot cultivars (‘Ceglédi bíborkajszi’, ‘Gönci magyar kajszi’, and ‘Rózsakajszi C.1406’) in Hungary in the time period 1994–2020. The unified model is based on the [...] Read more.
The aim of our research was to adapt Chuine’s unified model to estimate the beginning of blooming of three apricot cultivars (‘Ceglédi bíborkajszi’, ‘Gönci magyar kajszi’, and ‘Rózsakajszi C.1406’) in Hungary in the time period 1994–2020. The unified model is based on the collection of chilling and forcing units. The complexity of the model lies in the high number of parameters necessary to run it. Following the work of other researchers, we reduced the number of relevant model parameters (MP) to six. In order to estimate the six MPs, we used a simulated annealing optimization method (known for being effective in avoiding getting stuck in local minima). From the results, we determined the local optimum of six MPs, and the global optimum parameter vector for three apricot cultivars. With these global optimum parameter vectors, the beginning of blooming could be estimated with a root-mean-square error (RMSE) of less than 2.5 days, using the knowledge of the daily mean temperature in the time period 1994–2020. Full article
(This article belongs to the Special Issue Diversity in 2022)
Show Figures

Figure 1

12 pages, 1166 KiB  
Article
Correspondence between SOC1 Genotypes and Time of Endodormancy Break in Peach (Prunus persica L. Batsch) Cultivars
by Júlia Halász, Attila Hegedűs, Ildikó Karsai, Ágnes Tósaki and László Szalay
Agronomy 2021, 11(7), 1298; https://doi.org/10.3390/agronomy11071298 - 26 Jun 2021
Cited by 4 | Viewed by 2134
Abstract
Knowledge of dormancy traits are important in peach breeding. Traditional method selection of seedlings takes a long time because of the juvenile period of plants; therefore, novel application of marker assisted selection methods are needed to accelerate this work. The aims of this [...] Read more.
Knowledge of dormancy traits are important in peach breeding. Traditional method selection of seedlings takes a long time because of the juvenile period of plants; therefore, novel application of marker assisted selection methods are needed to accelerate this work. The aims of this study were to test the extent of variability in the PpSOC1 gene among 16 peach cultivars and to establish whether the variability of SOC1 can be used as a functional marker for the timing of endodormancy break based on a 14-year phenology evaluation covering nine consecutive phenology phases, from string stage to ripening. Based on an SSR motif of SOC1, three allele categories were detected: one peach cultivar was heterozygous (203/209), while five of the 15 homozygous cultivars carried a 203 bp allele and the remainder were characterized with 218 bp. There were significant correlations between the PpSOC1 alleles and the various phenology phases, the strongest one being observed at the string stage, marking the end of endodormancy. At this stage, PpSOC1 explained 82.6% of the phenotypic variance; cultivars with the 203 allele reached the string stage 11.7 days earlier than those with 218 bp allele. This finding makes the PpSOC1 screening a valuable method in breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

11 pages, 1497 KiB  
Article
Freezing Tolerance and Chilling Fulfillment Differences in Cold Climate Grape Cultivars
by Turhan Yilmaz, Dilmini Alahakoon and Anne Fennell
Horticulturae 2021, 7(1), 4; https://doi.org/10.3390/horticulturae7010004 - 30 Dec 2020
Cited by 6 | Viewed by 5062
Abstract
Grapevine sustainability is impacted by the timing of dormancy initiation and freezing tolerance in fall and winter and chilling fulfillment and bud break in the spring. These traits have genetic and local temperature contributing factors; therefore, this study was undertaken to develop an [...] Read more.
Grapevine sustainability is impacted by the timing of dormancy initiation and freezing tolerance in fall and winter and chilling fulfillment and bud break in the spring. These traits have genetic and local temperature contributing factors; therefore, this study was undertaken to develop an understanding of these characteristics in four recently developed cold climate cultivars. The cold hardiness and chilling fulfillment profiles were monitored in Brianna, Frontenac gris, La Crescent and Marquette using differential thermal analyses and bud break assays. Bud cold hardiness of all cultivars increased with the declining temperatures from November through February, after which the buds began to lose freezing tolerance. There were significant differences in cold hardiness and chilling fulfillment between cultivars during the endodormant and ecodormant period of winter. Marquette had the greatest freezing tolerance from early November through midwinter suggesting it has potential as a sentinel cultivar for comparisons of new cold climate selections. Brianna was slower to acclimate and deacclimated more rapidly than the other cultivars. Chilling fulfillment under natural field or constant 4 °C conditions showed no main effect differences for chilling accumulation condition; however, there were significant cultivar, condition, and time point interactions, indicating the cultivars differed in chilling fulfillment responses. Full article
(This article belongs to the Special Issue Grape Responses to Abiotic and Biotic Stresses)
Show Figures

Figure 1

32 pages, 817 KiB  
Review
Chilling and Heat Requirements of Temperate Stone Fruit Trees (Prunus sp.)
by Erica Fadón, Sara Herrera, Brenda I. Guerrero, M. Engracia Guerra and Javier Rodrigo
Agronomy 2020, 10(3), 409; https://doi.org/10.3390/agronomy10030409 - 18 Mar 2020
Cited by 113 | Viewed by 12508
Abstract
Stone fruit trees of genus Prunus, like other temperate woody species, need to accumulate a cultivar-specific amount of chilling during endodormancy, and of heat during ecodormancy to flower properly in spring. Knowing the requirements of a cultivar can be critical in determining [...] Read more.
Stone fruit trees of genus Prunus, like other temperate woody species, need to accumulate a cultivar-specific amount of chilling during endodormancy, and of heat during ecodormancy to flower properly in spring. Knowing the requirements of a cultivar can be critical in determining if it can be adapted to a particular area. Growers can use this information to anticipate the future performance of their orchards and the adaptation of new cultivars to their region. In this work, the available information on chilling- and heat-requirements of almond, apricot, plum, peach, and sweet cherry cultivars is reviewed. We pay special attention to the method used for the determination of breaking dormancy, the method used to quantify chilling and heat temperatures, and the place where experiments were conducted. The results reveal different gaps in the information available, both in the lack of information of cultivars with unknown requirements and in the methodologies used. The main emerging challenges are the standardization of the conditions of each methodology and the search for biological markers for dormancy. These will help to deal with the growing number of new cultivars and the reduction of winter cold in many areas due to global warming. Full article
(This article belongs to the Special Issue Fruit and Nut Tree Phenology in a Warming World)
Show Figures

Figure 1

16 pages, 1546 KiB  
Article
The Major Storage Protein in Potato Tuber Is Mobilized by a Mechanism Dependent on Its Phosphorylation Status
by Javier Bernal, Daniel Mouzo, María López-Pedrouso, Daniel Franco, Lucio García and Carlos Zapata
Int. J. Mol. Sci. 2019, 20(8), 1889; https://doi.org/10.3390/ijms20081889 - 17 Apr 2019
Cited by 14 | Viewed by 8539
Abstract
The role of the protein phosphorylation mechanism in the mobilization of vegetative storage proteins (VSPs) is totally unknown. Patatin is the major VSP of the potato (Solanum tuberosum L.) tuber that encompasses multiple differentially phosphorylated isoforms. In this study, temporal changes in [...] Read more.
The role of the protein phosphorylation mechanism in the mobilization of vegetative storage proteins (VSPs) is totally unknown. Patatin is the major VSP of the potato (Solanum tuberosum L.) tuber that encompasses multiple differentially phosphorylated isoforms. In this study, temporal changes in the phosphorylation status of patatin isoforms and their involvement in patatin mobilization are investigated using phosphoproteomic methods based on targeted two-dimensional electrophoresis (2-DE). High-resolution 2-DE profiles of patatin isoforms were obtained in four sequential tuber life cycle stages of Kennebec cultivar: endodormancy, bud break, sprouting and plant growth. In-gel multiplex identification of phosphorylated isoforms with Pro-Q Diamond phosphoprotein-specific stain revealed an increase in the number of phosphorylated isoforms after the tuber endodormancy stage. In addition, we found that the phosphorylation status of patatin isoforms significantly changed throughout the tuber life cycle (P < 0.05) using the chemical method of protein dephosphorylation with hydrogen fluoride-pyridine (HF-P) coupled to 2-DE. More specifically, patatin phosphorylation increased by 32% from endodormancy to the tuber sprouting stage and subsequently decreased together with patatin degradation. Patatin isoforms were not randomly mobilized because highly phosphorylated Kuras-isoforms were preferably degraded in comparison to less phosphorylated non-Kuras isoforms. These results lead us to conclude that patatin is mobilized by a mechanism dependent on the phosphorylation status of specific isoforms. Full article
(This article belongs to the Special Issue Plant Proteomic Research 2.0)
Show Figures

Graphical abstract

15 pages, 3362 KiB  
Article
Abscisic Acid (ABA ) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy
by Jianzhao Li, Ying Xu, Qingfeng Niu, Lufang He, Yuanwen Teng and Songling Bai
Int. J. Mol. Sci. 2018, 19(1), 310; https://doi.org/10.3390/ijms19010310 - 20 Jan 2018
Cited by 101 | Viewed by 9447
Abstract
Dormancy is an adaptive mechanism that allows temperate deciduous plants to survive unfavorable winter conditions. In the present work, we investigated the possible function of abscisic acid (ABA) on the endodormancy process in pear. The ABA content increased during pear flower bud endodormancy [...] Read more.
Dormancy is an adaptive mechanism that allows temperate deciduous plants to survive unfavorable winter conditions. In the present work, we investigated the possible function of abscisic acid (ABA) on the endodormancy process in pear. The ABA content increased during pear flower bud endodormancy establishment and decreased towards endodormancy release. In total, 39 putative genes related to ABA metabolism and signal transductions were identified from pear genome. During the para- to endodormancy transition, PpNCED-2 and PpNCED-3 had high expression levels, while PpCYP707As expression levels were low. However, during endodormancy, the expression of PpCYP707A-3 sharply increased with increasing cold accumulation. At the same time, the ABA content of pear buds declined, and the percentage of bud breaks rapidly increased. On the other hand, the expression levels of PpPYLs, PpPP2Cs, PpSnRK2s, and PpABI4/ABI5s were also changed during the pear flower bud dormancy cycle. Furthermore, exogenous ABA application to para-dormant buds significantly reduced the bud breaks and accelerated the transition to endodormancy. During the whole treatment time, the expression level of PpPP2C-12 decreased to a greater extent in ABA-treated buds than in control. However, the expression levels of PpSnRK2-1, PpSnRK2-4, and PpABI5-1 were higher in ABA-treated buds. Our results indicated that PpCYP707A-3 and PpNCEDs play pivotal roles on the regulation of endodormancy release, while ABA signal transduction pathway also appears to be involved in the process. The present work provided the basic information about the function of ABA-related genes during pear flower bud dormancy process. Full article
Show Figures

Graphical abstract

Back to TopTop