Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = embryonic hippocampal cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 38507 KiB  
Article
Multipotent Mesenchymal Stem Cell Therapy for Vascular Dementia
by Eun-Young Kim, Ki-Sung Hong, Dong-Hun Lee, Eun Chae Lee, Hyung-Min Chung, Se-Pill Park, Man Ryul Lee and Jae Sang Oh
Cells 2025, 14(9), 651; https://doi.org/10.3390/cells14090651 - 29 Apr 2025
Viewed by 1075
Abstract
Vascular dementia (VD), characterized by cognitive decline and behavioral disorders, has seen a rapid increase in prevalence in recent years. However, effective treatments for VD remain unavailable. Due to its regenerative potential, stem cell therapy has garnered attention as a promising approach for [...] Read more.
Vascular dementia (VD), characterized by cognitive decline and behavioral disorders, has seen a rapid increase in prevalence in recent years. However, effective treatments for VD remain unavailable. Due to its regenerative potential, stem cell therapy has garnered attention as a promising approach for VD treatment, yet it has shown limited effects on cognitive and behavioral impairments caused by the disease. To address this limitation, this study aimed to develop a novel treatment using human embryonic stem cell-derived multipotent mesenchymal stem cells (MMSCs). The therapeutic efficacy of MMSCs was evaluated using a vascular dementia mouse model induced by bilateral carotid artery stenosis (BCAS). The effects of MMSCs were assessed through behavioral tests and postmortem brain tissue analysis, including mRNA expression analysis and hematoxylin and eosin (H&E) staining. MMSCs treatment significantly improved both working memory and long-term memory. Histological analysis revealed enhanced angiogenesis, preservation of blood–brain barrier integrity, and improved hippocampal organization. Furthermore, MMSCs treatment reduced the expression of Rock1/2, indicating suppression of neuroinflammatory and apoptotic pathways. These findings suggest that MMSCs offer a sustainable and effective therapeutic approach for vascular dementia. Full article
Show Figures

Figure 1

13 pages, 3525 KiB  
Article
High Dose C6 Ceramide-Induced Response in Embryonic Hippocampal Cells
by Federico Fiorani, Martina Mandarano, Samuela Cataldi, Alessandra Mirarchi, Stefano Bruscoli, Francesco Ragonese, Bernard Fioretti, Toshihide Kobayashi, Nario Tomishige, Tommaso Beccari, Claudia Floridi, Cataldo Arcuri and Elisabetta Albi
Biomolecules 2025, 15(3), 430; https://doi.org/10.3390/biom15030430 - 17 Mar 2025
Viewed by 692
Abstract
Ceramide is a critical molecule in both the physiology and pathology of the central nervous system. The most studied aspect is its effect on embryonic/stem cells. A salient question is whether low doses of ceramide induce neuronal differentiation without interfering with sphingolipid metabolism [...] Read more.
Ceramide is a critical molecule in both the physiology and pathology of the central nervous system. The most studied aspect is its effect on embryonic/stem cells. A salient question is whether low doses of ceramide induce neuronal differentiation without interfering with sphingolipid metabolism and whether high doses can be used in glioblastoma for their cytotoxic effect. Here, we examined the effect of a high dose of ceramide (13 µM) on HN9.10e cells. Interestingly, 13 µM ceramide induced an immediate increase in cell viability, followed by an increase in the number of mitochondria. Microscopic and morphometric analysis revealed a decrease in the number of differentiated cells with 13 µM compared to 0.1 µM but with longer neurites. Furthermore, the lipidomic study demonstrated an increase in the formation of medium–long-chain ceramide and sphingomyelin species and sphingosine 1 phosphate. Sphingolipid modification correlated with SMPD3, ASAH2, and SPHK2 gene expression coding for neutral sphingomyenase 2, ceramidase 2, and sphingosine kinase 2, respectively. Overall, our data show that the variety of responses to ceramide of the same cell type is dependent on the concentration used. Low doses do not affect sphingolipid metabolism, and high doses do so with a different cellular response. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

15 pages, 5384 KiB  
Article
Intrauterine Growth Restriction Alters Postnatal Hippocampal Dentate Gyrus Neuron and Microglia Morphology and Cytokine/Chemokine Milieu in Mice
by Frank A. Strnad, Ashley S. Brown, Matthew Wieben, Emilio Cortes-Sanchez, Megan E. Williams and Camille M. Fung
Life 2024, 14(12), 1627; https://doi.org/10.3390/life14121627 - 9 Dec 2024
Viewed by 1275
Abstract
Infants born with intrauterine growth restriction (IUGR) have up to a five-fold higher risk of learning and memory impairment than those with normal growth. Using a mouse model of hypertensive diseases of pregnancy (HDP) to replicate uteroplacental insufficiency (UPI), we have previously shown [...] Read more.
Infants born with intrauterine growth restriction (IUGR) have up to a five-fold higher risk of learning and memory impairment than those with normal growth. Using a mouse model of hypertensive diseases of pregnancy (HDP) to replicate uteroplacental insufficiency (UPI), we have previously shown that UPI causes premature embryonic hippocampal dentate gyrus (DG) neurogenesis in IUGR offspring. The DG is a brain region that receives the first cortical information for memory formation. In the current study, we examined the postnatal DG neuron morphology one month after delivery (P28) using recombinant adeno-associated viral labeling of neurons. We also examined DG microglia’s morphology using immunofluorescent histochemistry and defined the hippocampal cytokine/chemokine milieu using Luminex xMAP technology. We found that IUGR preserved the principal dendrite lengths but decreased the dendritic branching and volume of DG neurons. IUGR augmented DG microglial number and cell size. Lastly, IUGR altered the hippocampal cytokine/chemokine profile in a sex-specific manner. We conclude that the prematurely-generated neuronal progenitors develop abnormal morphologies postnatally in a cell-autonomous manner. Microglia appear to modulate neuronal morphology by interacting with dendrites amidst a complex cytokine/chemokine environment that could ultimately lead to adult learning and memory deficits in our mouse model. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

16 pages, 6526 KiB  
Article
Complement C5a Implication in Axonal Growth After Injury
by Aurélie Cotten, Charlotte Jeanneau, Patrick Decherchi and Imad About
Cells 2024, 13(20), 1729; https://doi.org/10.3390/cells13201729 - 18 Oct 2024
Viewed by 1123
Abstract
Complement C5a protein has been shown to play a major role in tissue regeneration through interaction with its receptor (C5aR) on target cells. Expression of this receptor has been reported in the nervous system which, upon injury, has no treatment to restore the [...] Read more.
Complement C5a protein has been shown to play a major role in tissue regeneration through interaction with its receptor (C5aR) on target cells. Expression of this receptor has been reported in the nervous system which, upon injury, has no treatment to restore the lost functions. This work aimed at investigating the Complement C5a effect on axonal growth after axotomy in vitro. Primary hippocampal neurons were isolated from embryonic Wistar rats. Cell expression of C5aR mRNA was verified by RT-PCR while its membrane expression, localization, and phosphorylation were investigated by immunofluorescence. Then, the effects of C5a on injured axonal growth were investigated using a 3D-printed microfluidic device. Immunofluorescence demonstrated that the primary cultures contained only mature neurons (93%) and astrocytes (7%), but no oligodendrocytes or immature neurons. Immunofluorescence revealed a co-localization of NF-L and C5aR only in the mature neurons where C5a induced the phosphorylation of its receptor. C5a application on injured axons in the microfluidic devices significantly increased both the axonal growth speed and length. Our findings highlight a new role of C5a in regeneration demonstrating an enhancement of axonal growth after axotomy. This may provide a future therapeutic tool in the treatment of central nervous system injury. Full article
Show Figures

Figure 1

15 pages, 2306 KiB  
Article
Exploring the Influence of Fok1/Apa1 Polymorphic Variants on Adolescent Mental Health and Response to Vitamin D Supplementation in Embryonic Hippocampal Cell Lines
by Giulia Gizzi, Federico Fiorani, Samuela Cataldi, Martina Mandarano, Elisa Delvecchio, Claudia Mazzeschi and Elisabetta Albi
Genes 2024, 15(7), 913; https://doi.org/10.3390/genes15070913 - 12 Jul 2024
Viewed by 1385
Abstract
Several single nucleotide polymorphisms (SNPs) of the vitamin D receptor (VDR) have been observed in association with susceptibility to various pathologies, including autism, major depression, age-related changes in cognitive functioning, and Parkinson’s and Alzheimer’s diseases. This study aimed to establish the association between [...] Read more.
Several single nucleotide polymorphisms (SNPs) of the vitamin D receptor (VDR) have been observed in association with susceptibility to various pathologies, including autism, major depression, age-related changes in cognitive functioning, and Parkinson’s and Alzheimer’s diseases. This study aimed to establish the association between Fok1/Apa1 polymorphic variants and anxious/depressive symptoms in nonclinical adolescents from central Italy, with the goal of identifying the risk of developing both symptoms. We found no significant difference in genotype distribution or dominant/recessive models of Fok1/Apa1 VDR polymorphic variants between subjects with anxious/depressive symptoms and controls. HN9.10e cell lines carrying the AA genotype for Fok1 and the CC genotype for Apa1 responded better to treatment with vitamin D3 than cell lines carrying the AG genotype for Fok1 and CA genotype for Apa1. Cell lines carrying the GG genotype for Fok1 and the AA genotype for Apa1 did not respond at all, suggesting avenues for future studies in both the general population and individuals with mental and/or neuropsychiatric disorders. These studies suggest that the level of response to vitamin D3 administered to prevent and/or treat mental or neurological disorders could depend on the polymorphic variants of the vitamin D receptor. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 7492 KiB  
Article
FOXG1 Contributes Adult Hippocampal Neurogenesis in Mice
by Jia Wang, Hong-Ru Zhai, Si-Fei Ma, Hou-Zhen Shi, Wei-Jun Zhang, Qi Yun, Wen-Jun Liu, Zi-Zhong Liu and Wei-Ning Zhang
Int. J. Mol. Sci. 2022, 23(23), 14979; https://doi.org/10.3390/ijms232314979 - 29 Nov 2022
Cited by 11 | Viewed by 2960
Abstract
Strategies to enhance hippocampal precursor cells efficiently differentiate into neurons could be crucial for structural repair after neurodegenerative damage. FOXG1 has been shown to play an important role in pattern formation, cell proliferation, and cell specification during embryonic and early postnatal neurogenesis. Thus [...] Read more.
Strategies to enhance hippocampal precursor cells efficiently differentiate into neurons could be crucial for structural repair after neurodegenerative damage. FOXG1 has been shown to play an important role in pattern formation, cell proliferation, and cell specification during embryonic and early postnatal neurogenesis. Thus far, the role of FOXG1 in adult hippocampal neurogenesis is largely unknown. Utilizing CAG-loxp-stop-loxp-Foxg1-IRES-EGFP (Foxg1fl/fl), a specific mouse line combined with CreAAV infusion, we successfully forced FOXG1 overexpressed in the hippocampal dentate gyrus (DG) of the genotype mice. Thereafter, we explored the function of FOXG1 on neuronal lineage progression and hippocampal neurogenesis in adult mice. By inhibiting p21cip1 expression, FOXG1-regulated activities enable the expansion of the precursor cell population. Besides, FOXG1 induced quiescent radial-glia like type I neural progenitor, giving rise to intermediate progenitor cells, neuroblasts in the hippocampal DG. Through increasing the length of G1 phase, FOXG1 promoted lineage-committed cells to exit the cell cycle and differentiate into mature neurons. The present results suggest that FOXG1 likely promotes neuronal lineage progression and thereby contributes to adult hippocampal neurogenesis. Elevating FOXG1 levels either pharmacologically or through other means could present a therapeutic strategy for disease related with neuronal loss. Full article
(This article belongs to the Special Issue Regulation and Function of Adult Neurogenesis)
Show Figures

Figure 1

20 pages, 3902 KiB  
Article
The Flavonol Quercitrin Hinders GSK3 Activity and Potentiates the Wnt/β-Catenin Signaling Pathway
by Danilo Predes, Lorena A. Maia, Isadora Matias, Hannah Paola Mota Araujo, Carolina Soares, Fernanda G. Q. Barros-Aragão, Luiz F. S. Oliveira, Renata R. Reis, Nathalia G. Amado, Alessandro B. C. Simas, Fabio A. Mendes, Flávia C. A. Gomes, Claudia P. Figueiredo and Jose G. Abreu
Int. J. Mol. Sci. 2022, 23(20), 12078; https://doi.org/10.3390/ijms232012078 - 11 Oct 2022
Cited by 15 | Viewed by 3453
Abstract
The Wnt/β-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer’s disease (AD), makes Wnt signaling [...] Read more.
The Wnt/β-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer’s disease (AD), makes Wnt signaling an attractive target for therapies. Interestingly, novel Wnt signaling activating compounds are less frequently described than inhibitors, turning the quest for novel positive modulators even more appealing. In that sense, natural compounds are an outstanding source of potential drug leads. Here, we combine different experimental models, cell-based approaches, neuronal culture assays, and rodent behavior tests with Xenopus laevis phenotypic analysis to characterize quercitrin, a natural compound, as a novel Wnt signaling potentiator. We find that quercitrin potentiates the signaling in a concentration-dependent manner and increases the occurrence of the Xenopus secondary axis phenotype mediated by Xwnt8 injection. Using a GSK3 biosensor, we describe that quercitrin impairs GSK3 activity and increases phosphorylated GSK3β S9 levels. Treatment with XAV939, an inhibitor downstream of GSK3, impairs the quercitrin-mediated effect. Next, we show that quercitrin potentiates the Wnt3a-synaptogenic effect in hippocampal neurons in culture, which is blocked by XAV939. Quercitrin treatment also rescues the hippocampal synapse loss induced by intracerebroventricular injection of amyloid-β oligomers (AβO) in mice. Finally, quercitrin rescues AβO-mediated memory impairment, which is prevented by XAV939. Thus, our study uncovers a novel function for quercitrin as a Wnt/β-catenin signaling potentiator, describes its mechanism of action, and opens new avenues for AD treatments. Full article
(This article belongs to the Special Issue Wnt/β-Catenin Signaling in Health and Disease)
Show Figures

Figure 1

18 pages, 3630 KiB  
Article
TRAIL-R Deficient Mice Are Protected from Neurotoxic Effects of Amyloid-β
by Giulia Di Benedetto, Chiara Burgaletto, Maria Francesca Serapide, Rosario Caltabiano, Antonio Munafò, Carlo Maria Bellanca, Rosaria Di Mauro, Renato Bernardini and Giuseppina Cantarella
Int. J. Mol. Sci. 2022, 23(19), 11625; https://doi.org/10.3390/ijms231911625 - 1 Oct 2022
Cited by 6 | Viewed by 3266
Abstract
TRAIL, a member of TNF superfamily, is a potent inducer of neuronal death. Neurotoxic effects of TRAIL appear mediated by its death receptor TRAIL-R2/DR5. To assess the role of TRAIL/TRAIL-R2 pathway in AD-related neurodegeneration, we studied the impact of the treatment with amyloid-β [...] Read more.
TRAIL, a member of TNF superfamily, is a potent inducer of neuronal death. Neurotoxic effects of TRAIL appear mediated by its death receptor TRAIL-R2/DR5. To assess the role of TRAIL/TRAIL-R2 pathway in AD-related neurodegeneration, we studied the impact of the treatment with amyloid-β (Aβ) upon cell viability and inflammation in TRAIL-R-deficient mice (TRAIL-R−/−). Here, we demonstrate that the lack of TRAIL-R2 protects from death cultured TRAIL-R−/− mouse embryonic hippocampal cells after treatment with either Aβ1-42 or TRAIL. Consistently, stereotaxic injection of Aβ1-42 resulted in blunted caspase activation, as well as in reduction of JNK phosphorylation and increased AKT phosphorylation in TRAIL-R−/− mice. Moreover, the lack of TRAIL-R2 was associated with blunted constitutive p53 expression in mice that have undergone Aβ1-42 treatment, as well as in decrease of phosphorylated forms of tau and GSK3β proteins. Likewise, TRAIL-R2 appears essential to both TRAIL and Aβ-mediated neurotoxicity and inflammation. Indeed, hippocampi of TRAIL-R−/− mice challenged with Aβ1-42, showed a slight expression of microglial (Iba-1) and astrocytic (GFAP) markers along with attenuated levels of IL-1β, TNF-α, NOS2 and COX2. In conclusion, the bulk of these results demonstrate that the constitutive lack of TRAIL-R2 is associated with a substantial reduction of noxious effects of Aβ1-42, providing further evidence on the prominent role played by TRAIL in course of Aβ-related neurodegeneration and confirming that the TRAIL system represents a potential target for innovative AD therapy. Full article
Show Figures

Figure 1

20 pages, 1610 KiB  
Review
Postnatal and Adult Neurogenesis in Mammals, Including Marsupials
by Katarzyna Bartkowska, Beata Tepper, Krzysztof Turlejski and Ruzanna Djavadian
Cells 2022, 11(17), 2735; https://doi.org/10.3390/cells11172735 - 1 Sep 2022
Cited by 20 | Viewed by 5378
Abstract
In mammals, neurogenesis occurs during both embryonic and postnatal development. In eutherians, most brain structures develop embryonically; conversely, in marsupials, a number of brain structures develop after birth. The exception is the generation of granule cells in the dentate gyrus, olfactory bulb, and [...] Read more.
In mammals, neurogenesis occurs during both embryonic and postnatal development. In eutherians, most brain structures develop embryonically; conversely, in marsupials, a number of brain structures develop after birth. The exception is the generation of granule cells in the dentate gyrus, olfactory bulb, and cerebellum of eutherian species. The formation of these structures starts during embryogenesis and continues postnatally. In both eutherians and marsupials, neurogenesis continues in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus of the hippocampal formation throughout life. The majority of proliferated cells from the SVZ migrate to the olfactory bulb, whereas, in the dentate gyrus, cells reside within this structure after division and differentiation into neurons. A key aim of this review is to evaluate advances in understanding developmental neurogenesis that occurs postnatally in both marsupials and eutherians, with a particular emphasis on the generation of granule cells during the formation of the olfactory bulb, dentate gyrus, and cerebellum. We debate the significance of immature neurons in the piriform cortex of young mammals. We also synthesize the knowledge of adult neurogenesis in the olfactory bulb and the dentate gyrus of marsupials by considering whether adult-born neurons are essential for the functioning of a given area. Full article
(This article belongs to the Special Issue Frontiers in Neurogenesis)
Show Figures

Figure 1

18 pages, 3536 KiB  
Article
Controlling the Spatiotemporal Release of Nerve Growth Factor by Chitosan/Polycaprolactone Conduits for Use in Peripheral Nerve Regeneration
by Katarzyna Nawrotek, Monika Kubicka, Justyna Gatkowska, Marek Wieczorek, Sylwia Michlewska, Adrian Bekier, Radosław Wach and Karolina Rudnicka
Int. J. Mol. Sci. 2022, 23(5), 2852; https://doi.org/10.3390/ijms23052852 - 5 Mar 2022
Cited by 19 | Viewed by 3744
Abstract
Tubular polymeric structures have been recognized in the treatment of peripheral nerves as comparable to autologous grafting. The best therapeutic outcomes are obtained with conduits releasing therapeutic molecules. In this study, a new approach for the incorporation of biologically active agent-loaded microspheres into [...] Read more.
Tubular polymeric structures have been recognized in the treatment of peripheral nerves as comparable to autologous grafting. The best therapeutic outcomes are obtained with conduits releasing therapeutic molecules. In this study, a new approach for the incorporation of biologically active agent-loaded microspheres into the structure of chitosan/polycaprolactone conduits was developed. The support of a polycaprolactone helix formed by 3D melt extrusion was coated with dopamine in order to adsorb nerve growth factor-loaded microspheres. The complex analysis of the influence of process factors on the coverage efficiency of polycaprolactone helix by nerve grow factor-loaded microspheres was analyzed. Thus, the PCL helix characterized with the highest adsorption of microspheres was subjected to nerve growth factor release studies, and finally incorporated into chitosan hydrogel deposit through the process of electrophoretic deposition. It was demonstrated by chemical and physical tests that the chitosan/polycaprolactone conduit meets the requirements imposed on peripheral nerve implants, particularly mimicking mechanical properties of surrounding soft tissue. Moreover, the conduit may support regrowing nerves for a prolonged period, as its structure and integrity persist upon incubation in lysozyme-contained PBS solution up to 28 days at body temperature. In vitro cytocompatibility toward mHippoE-18 embryonic hippocampal cells of the chitosan/polycaprolactone conduit was proven. Most importantly, the developed conduits stimulate axonal growth and support monocyte activation, the latter is advantageous especially at early stages of nerve regeneration. It was demonstrated that, through the described approach for controlling spatiotemporal release of nerve growth factors, these biocompatible structures adjusted to the specific peripheral nerve injury case can be manufactured. Full article
Show Figures

Figure 1

19 pages, 3943 KiB  
Article
Cell Type-Specific Role of RNA Nuclease SMG6 in Neurogenesis
by Gabriela Maria Guerra, Doreen May, Torsten Kroll, Philipp Koch, Marco Groth, Zhao-Qi Wang, Tang-Liang Li and Paulius Grigaravičius
Cells 2021, 10(12), 3365; https://doi.org/10.3390/cells10123365 - 30 Nov 2021
Cited by 8 | Viewed by 4041
Abstract
SMG6 is an endonuclease, which cleaves mRNAs during nonsense-mediated mRNA decay (NMD), thereby regulating gene expression and controling mRNA quality. SMG6 has been shown as a differentiation license factor of totipotent embryonic stem cells. To investigate whether it controls the differentiation of lineage-specific [...] Read more.
SMG6 is an endonuclease, which cleaves mRNAs during nonsense-mediated mRNA decay (NMD), thereby regulating gene expression and controling mRNA quality. SMG6 has been shown as a differentiation license factor of totipotent embryonic stem cells. To investigate whether it controls the differentiation of lineage-specific pluripotent progenitor cells, we inactivated Smg6 in murine embryonic neural stem cells. Nestin-Cre-mediated deletion of Smg6 in mouse neuroprogenitor cells (NPCs) caused perinatal lethality. Mutant mice brains showed normal structure at E14.5 but great reduction of the cortical NPCs and late-born cortical neurons during later stages of neurogenesis (i.e., E18.5). Smg6 inactivation led to dramatic cell death in ganglionic eminence (GE) and a reduction of interneurons at E14.5. Interestingly, neurosphere assays showed self-renewal defects specifically in interneuron progenitors but not in cortical NPCs. RT-qPCR analysis revealed that the interneuron differentiation regulators Dlx1 and Dlx2 were reduced after Smg6 deletion. Intriguingly, when Smg6 was deleted specifically in cortical and hippocampal progenitors, the mutant mice were viable and showed normal size and architecture of the cortex at E18.5. Thus, SMG6 regulates cell fate in a cell type-specific manner and is more important for neuroprogenitors originating from the GE than for progenitors from the cortex. Full article
(This article belongs to the Special Issue Induced Impairment of Neurogenesis and Brain Diseases)
Show Figures

Figure 1

13 pages, 3914 KiB  
Article
Vitamin D3 Enriches Ceramide Content in Exosomes Released by Embryonic Hippocampal Cells
by Carmela Conte, Samuela Cataldi, Cataldo Arcuri, Alessandra Mirarchi, Andrea Lazzarini, Mercedes Garcia-Gil, Tommaso Beccari, Francesco Curcio and Elisabetta Albi
Int. J. Mol. Sci. 2021, 22(17), 9287; https://doi.org/10.3390/ijms22179287 - 27 Aug 2021
Cited by 15 | Viewed by 2778
Abstract
The release of exosomes can lead to cell–cell communication. Nutrients such as vitamin D3 and sphingolipids have important roles in many cellular functions, including proliferation, differentiation, senescence, and cancer. However, the specific composition of sphingolipids in exosomes and their changes induced by vitamin [...] Read more.
The release of exosomes can lead to cell–cell communication. Nutrients such as vitamin D3 and sphingolipids have important roles in many cellular functions, including proliferation, differentiation, senescence, and cancer. However, the specific composition of sphingolipids in exosomes and their changes induced by vitamin D3 treatment have not been elucidated. Here, we initially observed neutral sphingomyelinase and vitamin D receptors in exosomes released from HN9.10 embryonic hippocampal cells. Using ultrafast liquid chromatography tandem mass spectrometry, we showed that exosomes are rich in sphingomyelin species compared to whole cells. To interrogate the possible functions of vitamin D3, we established the optimal conditions of cell treatment and we analyzed exosome composition. Vitamin D3 was identified as responsible for the vitamin D receptor loss, for the increase in neutral sphingomyelinase content and sphingomyelin changes. As a consequence, the generation of ceramide upon vitamin D3 treatment was evident. Incubation of the cells with neutral sphingomyelinase, or the same concentration of ceramide produced in exosomes was necessary and sufficient to stimulate embryonic hippocampal cell differentiation, as vitamin D3. This is the first time that exosome ceramide is interrogated for mediate the effect of vitamin D3 in inducing cell differentiation. Full article
(This article belongs to the Special Issue Emerging Role of Lipids in Metabolism and Disease – 2nd Edition)
Show Figures

Figure 1

13 pages, 6625 KiB  
Article
The Involvement of Insulin-Like Growth Factor 1 and Nerve Growth Factor in Alzheimer’s Disease-Like Pathology and Survival Role of the Mix of Embryonic Proteoglycans: Electrophysiological Fingerprint, Structural Changes and Regulatory Effects on Neurotrophins
by Michail Aghajanov, Senik Matinyan, Vergine Chavushyan, Margarita Danielyan, Gohar Karapetyan, Margarita Mirumyan, Katarine Fereshetyan, Hayk Harutyunyan and Konstantin Yenkoyan
Int. J. Mol. Sci. 2021, 22(13), 7084; https://doi.org/10.3390/ijms22137084 - 30 Jun 2021
Cited by 8 | Viewed by 3571
Abstract
Alzheimer’s disease (AD)-associated neurodegeneration is triggered by different fragments of amyloid beta (Aβ). Among them, Aβ (25–35) fragment plays a critical role in the development of neurodegeneration—it reduces synaptic integrity by disruption of excitatory/inhibitory ratio across networks and alters the growth factors synthesis. [...] Read more.
Alzheimer’s disease (AD)-associated neurodegeneration is triggered by different fragments of amyloid beta (Aβ). Among them, Aβ (25–35) fragment plays a critical role in the development of neurodegeneration—it reduces synaptic integrity by disruption of excitatory/inhibitory ratio across networks and alters the growth factors synthesis. Thus, in this study, we aimed to identify the involvement of neurotrophic factors—the insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF)—of AD-like neurodegeneration induced by Aβ (25–35). Taking into account our previous findings on the neuroprotective effects of the mix of proteoglycans of embryonic genesis (PEG), it was suggested to test its regulatory effect on IGF-1 and NGF levels. To evaluate the progress of neurodegeneration, in vivo electrophysiological investigation of synaptic activity disruption of the entorhinal cortex–hippocampus circuit at AD was performed and the potential recovery effects of PEG with relative structural changes were provided. To reveal the direct effects of PEG on brain functional activity, the electrophysiological pattern of the single cells from nucleus supraopticus, sensomotor cortex and hippocampus after acute injection of PEG was examined. Our results demonstrated that after i.c.v. injection of Aβ (25–35), the level of NGF decreased in cerebral cortex and hypothalamus, and, in contrast, increased in hippocampus, prompting its multidirectional role in case of brain damage. The concentration of IGF-1 significantly increased in all investigated brain structures. The administration of PEG balanced the growth factor levels accompanied by substantial restoration of neural tissue architecture and synaptic activity. Acute injection of PEG activated the hypothalamic nucleus supraopticus and hippocampal neurons. IGF-1 and NGF levels were found to be elevated in animals receiving PEG in an absence of amyloid exposure. We suggest that IGF-1 and NGF play a critical role in the development of AD. At the same time, it becomes clear that the neuroprotective effects of PEG are likely mediated via the regulation of neurotrophins. Full article
Show Figures

Graphical abstract

25 pages, 586 KiB  
Review
Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges
by Rosa M. Coco-Martin, Salvador Pastor-Idoate and Jose Carlos Pastor
Pharmaceutics 2021, 13(6), 865; https://doi.org/10.3390/pharmaceutics13060865 - 11 Jun 2021
Cited by 27 | Viewed by 5974
Abstract
The aim of this review was to provide an update on the potential of cell therapies to restore or replace damaged and/or lost cells in retinal degenerative and optic nerve diseases, describing the available cell sources and the challenges involved in such treatments [...] Read more.
The aim of this review was to provide an update on the potential of cell therapies to restore or replace damaged and/or lost cells in retinal degenerative and optic nerve diseases, describing the available cell sources and the challenges involved in such treatments when these techniques are applied in real clinical practice. Sources include human fetal retinal stem cells, allogenic cadaveric human cells, adult hippocampal neural stem cells, human CNS stem cells, ciliary pigmented epithelial cells, limbal stem cells, retinal progenitor cells (RPCs), human pluripotent stem cells (PSCs) (including both human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs)) and mesenchymal stem cells (MSCs). Of these, RPCs, PSCs and MSCs have already entered early-stage clinical trials since they can all differentiate into RPE, photoreceptors or ganglion cells, and have demonstrated safety, while showing some indicators of efficacy. Stem/progenitor cell therapies for retinal diseases still have some drawbacks, such as the inhibition of proliferation and/or differentiation in vitro (with the exception of RPE) and the limited long-term survival and functioning of grafts in vivo. Some other issues remain to be solved concerning the clinical translation of cell-based therapy, including (1) the ability to enrich for specific retinal subtypes; (2) cell survival; (3) cell delivery, which may need to incorporate a scaffold to induce correct cell polarization, which increases the size of the retinotomy in surgery and, therefore, the chance of severe complications; (4) the need to induce a localized retinal detachment to perform the subretinal placement of the transplanted cell; (5) the evaluation of the risk of tumor formation caused by the undifferentiated stem cells and prolific progenitor cells. Despite these challenges, stem/progenitor cells represent the most promising strategy for retinal and optic nerve disease treatment in the near future, and therapeutics assisted by gene techniques, neuroprotective compounds and artificial devices can be applied to fulfil clinical needs. Full article
Show Figures

Figure 1

13 pages, 2672 KiB  
Article
Schisandra Extract and Ascorbic Acid Synergistically Enhance Cognition in Mice through Modulation of Mitochondrial Respiration
by Yunseon Jang, Jae Hyeon Lee, Min Joung Lee, Soo Jeong Kim, Xianshu Ju, Jianchen Cui, Jiebo Zhu, Yu Lim Lee, Eunji Namgung, Han Wool John Sung, Hong Won Lee, Min Jeong Ryu, Eungseok Oh, Woosuk Chung, Gi Ryang Kweon, Chun Whan Choi and Jun Young Heo
Nutrients 2020, 12(4), 897; https://doi.org/10.3390/nu12040897 - 25 Mar 2020
Cited by 15 | Viewed by 6573
Abstract
Cognitive decline is observed in aging and neurodegenerative diseases, including Alzheimer’s disease (AD) and dementia. Intracellular energy produced via mitochondrial respiration is used in the regulation of synaptic plasticity and structure, including dendritic spine length and density, as well as for the release [...] Read more.
Cognitive decline is observed in aging and neurodegenerative diseases, including Alzheimer’s disease (AD) and dementia. Intracellular energy produced via mitochondrial respiration is used in the regulation of synaptic plasticity and structure, including dendritic spine length and density, as well as for the release of neurotrophic factors involved in learning and memory. To date, a few synthetic agents for improving mitochondrial function have been developed for overcoming cognitive impairment. However, no natural compounds that modulate synaptic plasticity by directly targeting mitochondria have been developed. Here, we demonstrate that a mixture of Schisandra chinensis extract (SCE) and ascorbic acid (AA) improved cognitive function and induced synaptic plasticity-regulating proteins by enhancing mitochondrial respiration. Treatment of embryonic mouse hippocampal mHippoE-14 cells with a 4:1 mixture of SCE and AA increased basal oxygen consumption rate. We found that mice injected with the SCE-AA mixture showed enhanced learning and memory and recognition ability. We further observed that injection of the SCE-AA mixture in mice significantly increased expression of postsynaptic density protein 95 (PSD95), an increase that was correlated with enhanced brain-derived neurotrophic factor (BDNF) expression. These results demonstrate that a mixture of SCE and AA improves mitochondrial function and memory, suggesting that this natural compound mixture could be used to alleviate AD and aging-associated memory decline. Full article
(This article belongs to the Special Issue Nutrients and Brain across the Lifespan)
Show Figures

Figure 1

Back to TopTop