Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = electrowinning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2610 KiB  
Article
Activity and Operational Loss of IrO2-Ta2O5/Ti Anodes During Oxygen Evolution in Acidic Solutions
by Jovana Bošnjaković, Maja Stevanović, Marija Mihailović, Vojin M. Tadić, Jasmina Stevanović, Vladimir Panić and Gavrilo Šekularac
Metals 2025, 15(7), 721; https://doi.org/10.3390/met15070721 - 27 Jun 2025
Viewed by 286
Abstract
The oxygen-evolving IrO2-Ta2O5/Ti anode (OEA), primarily used in electrolyzers for plating, metal powder production, electrowinning (EW), and water electrolysis, is analyzed. This study focuses on the distribution of oxygen evolution reaction (OER) activity and the associated operational [...] Read more.
The oxygen-evolving IrO2-Ta2O5/Ti anode (OEA), primarily used in electrolyzers for plating, metal powder production, electrowinning (EW), and water electrolysis, is analyzed. This study focuses on the distribution of oxygen evolution reaction (OER) activity and the associated operational loss over the randomized OEA texture. The OER activity and its distribution across the IrO2-Ta2O5 coating surface are key factors that influence EW operational challenges and the lifecycle of OEA in EW processes. To understand the OER activity distribution over the coating’s randomized texture, we performed analyses using anode polarization in acid solution at both low and high (EW operation relevant) overpotentials and electrochemical impedance spectroscopy (EIS) during the OER. These measurements were conducted on anodes in both their as-prepared and deactivated states. The as-prepared anode was deactivated using an accelerated stability test in an acid solution, the EW simulating electrolyte. The obtained data are correlated with fundamental electrochemical properties of OEA, such as structure-related pseudocapacitive responses at open circuit potential in the same operating environment. OER and Ir dissolution kinetics, along with the physicochemical anode state upon deactivation, are clearly characterized based on current and potential dependent charge transfer resistances and associated double layer capacitances obtained by EIS. This approach presents a useful tool for elucidating, and consequently tailoring and predicting, anode OER activity and electrolytic operational stability in industrial electrochemical applications. Full article
Show Figures

Figure 1

15 pages, 2698 KiB  
Article
Geometric Analysis of the Scaling of the Manganese Recovery Process Using Current Distribution and Potential Simulation Techniques
by Esaú M. Rodríguez Vigueras, Victor E. Reyes Cruz, Felipe M. Galleguillos Madrid, José A. Cobos Murcia, Quinik L. Reyes Morales, Gustavo Urbano Reyes, Marissa Vargas Ramírez, Felipe Legorreta García and Marinka Varas
Metals 2025, 15(5), 562; https://doi.org/10.3390/met15050562 - 20 May 2025
Viewed by 357
Abstract
Electrolytic metallic manganese (EMM) is used as an alloying metal to provide resistance to abrasion and corrosion. Highly pure EMM is obtained through electrorecovery or electrowinning. Efforts are ongoing to improve the efficiency and profitability of this process, as 85 to 90% of [...] Read more.
Electrolytic metallic manganese (EMM) is used as an alloying metal to provide resistance to abrasion and corrosion. Highly pure EMM is obtained through electrorecovery or electrowinning. Efforts are ongoing to improve the efficiency and profitability of this process, as 85 to 90% of manganese is produced by the mining industry. This study applied computer-aided engineering (CAE) to provide information on the behavior of the potential distribution at the electrodes in cells separated by membranes, which allows for the optimization of the EMM production process. The experimental results obtained galvanostatically for EMM allowed for validation of the simulation parameters. It was determined that the cell with 11 compartments is more suitable compared to cells with fewer compartments, since it has lower oxidation-normalized current density and oxidation potential, which affect the distribution of cathodic potential in the process of obtaining EMM. The simulation highlighted a better distribution of the cathodic and anodic potentials due to the increase in the number of electrodes. This saves time and resources in the design of electrochemical cells with a greater number of compartments. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Graphical abstract

19 pages, 5650 KiB  
Article
Study of Operational Parameters on Indium Electrowinning Using a Ti Cathode
by Carla Lupi, Erwin Ciro and Alessandro Dell’Era
Materials 2025, 18(9), 2089; https://doi.org/10.3390/ma18092089 - 2 May 2025
Viewed by 463
Abstract
Indium, widely used as indium-tin oxide (ITO), has been recognized as a strategical metal for audiovisual, optoelectronic systems, semiconductors and photovoltaic fields. An increasing shortage and unflexible mineral supply have led indium to be recovered from secondary sources, such as waste electrical and [...] Read more.
Indium, widely used as indium-tin oxide (ITO), has been recognized as a strategical metal for audiovisual, optoelectronic systems, semiconductors and photovoltaic fields. An increasing shortage and unflexible mineral supply have led indium to be recovered from secondary sources, such as waste electrical and electronic equipment (WEEE). The main step for indium hydrometallurgical recovery from WEEE is the electrowinning process using sulfate baths, giving lower environmental impact and improved workplace safety conditions. In this investigation, a titanium cathode has been employed for the study of the indium electrowinning process in a sulfate-based bath. This study was focused on analyzing current efficiency (CE), specific energy consumption (SEC) and deposit morphology and structure as the temperature, current density, pH and electrolyte composition were varied. Prior to conducting electrowinning tests, a conventional three-electrode cell was used to perform cyclic voltametric assessments of the electrodeposition reactions on the Ti electrode at room temperature. The indium electrowinning tests on Ti cathodes presented CE values higher than 90%, with low energy consumption at low current densities, showing a negligible influence of additive agents in the bath, different from results obtained with other cathodes in other works. Moreover, the increase of the current density beyond 75 A/m2 produced significant effects by etching the electrode surface with 1M HF. In particular, at the conclusion of this investigation, good results are obtained without additives, by etching the titanium cathode and operating at higher current density between 100 and 200 A/m2 at pH 2.3 and different temperatures (40 °C and 60 °C). Finally, indium deposits were analyzed by XRD and SEM in order to determine the influence of operative conditions on the structure and surface morphology. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Figure 1

14 pages, 5458 KiB  
Article
A Study on Measures to Preserve Chlorine and Ammonia Oxygen Removal
by Kecheng Shang, Zhonglin Li, Weiguang Zhang and Yibing Li
Materials 2025, 18(6), 1347; https://doi.org/10.3390/ma18061347 - 18 Mar 2025
Viewed by 452
Abstract
Ammonia zinc refining has the benefits of low energy consumption, high zinc recovery, and good environmental protection compared with traditional acid and alkaline zinc refining. However, in the production process of refining zinc with ammonia, the anode undergoes chlorine precipitation, and then the [...] Read more.
Ammonia zinc refining has the benefits of low energy consumption, high zinc recovery, and good environmental protection compared with traditional acid and alkaline zinc refining. However, in the production process of refining zinc with ammonia, the anode undergoes chlorine precipitation, and then the oxidation of the ammonia precipitation of some nitrogen occurs. Ammonia replenishment is a cumbersome process that results in large amounts of ammonia volatilization and environmental pollution. In ammonia zinc refining, it is important to ensure the concentration of ammonia and chlorine, as the graphite anodes used in conventional ammonia zinc refining do not retain chlorine and ammonia and dissolve slowly due to oxidation. Therefore, this paper proposes a new measure to conserve chlorine and ammonia to reduce anode chlorine generation by adding an anionic barrier layer and selecting manganese anode materials with selective oxygen precipitation. Under the conditions of 50 × 100 mm sized electrodes, a current density of 350 A/m2, and a temperature of 60 °C, a graphite anode and manganese anode were used for electrowinning and for the collection of anode gas under different additive conditions. For the first time, we present a comparative analysis of gas composition, using gas chromatography to demonstrate the feasibility of the different measures used to preserve chlorine, ammonia, and oxygen for industrial applications, as well as the advantages of using these methods in reducing costs. And the experiments show that, by adding the anionic barrier layer, adding urea, and using manganese anode materials with selective oxygen precipitation, the nitrogen precipitation in the anode gas can be reduced to 40–50%, and oxygen precipitation reaches 48.76%. Full article
Show Figures

Figure 1

14 pages, 3326 KiB  
Article
Research on the Recovery Technology and Application of Copper Resources from Mine Wastewater at High Altitudes
by Jianhui Wu, Xu Yan, Chengyun Zhou and Yun Meng
Water 2025, 17(6), 856; https://doi.org/10.3390/w17060856 - 17 Mar 2025
Viewed by 542
Abstract
In this study, we studied the process of recovering copper from mine-leached water at an altitude of 4500 m. The process was ion exchange–esolution–nanofiltration–separation–cyclone electrodeposition. As a result, high-purity copper cathodes were produced. The study demonstrated that the maximum adsorption capacity of ion [...] Read more.
In this study, we studied the process of recovering copper from mine-leached water at an altitude of 4500 m. The process was ion exchange–esolution–nanofiltration–separation–cyclone electrodeposition. As a result, high-purity copper cathodes were produced. The study demonstrated that the maximum adsorption capacity of ion exchange resin D402 for Cu2+ reached 174.6 g/L and the efficiency of Cu2+ adsorption and eluent was found to be 97.2% and 94.2%, respectively. The results of Fourier Transform infrared spectroscopy (FTIR) analysis indicated that the resin contains -OH and -NH2. The lone pair electrons on O and N atoms can form coordination bonds with copper ions to form stable complexes. The results of X-ray photoelectron spectroscopy (XPS) analysis indicated that copper ions were absorbed into the resin. The recovery efficiency of Cu2+ throughout the entire process reaches 95.1%, and the purity of the resulting copper cathode reaches 99.997%. This method is distinguished by a straightforward process, minimal environmental impact, optimal operating conditions, high copper recovery efficiency, and a high copper grade. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

30 pages, 7687 KiB  
Review
Copper Anode Slime Processing with a Focus on Gold Recovery: A Review of Traditional and Recent Technologies
by Elmira Moosavi-Khoonsari and Nagendra Tripathi
Processes 2024, 12(12), 2686; https://doi.org/10.3390/pr12122686 - 28 Nov 2024
Viewed by 3585
Abstract
Copper anode slime (CAS) contains high concentrations of precious metals, particularly gold, which can reach up to 11 wt%. During copper anode electrorefining, 5–10 kg of CAS is generated per ton of copper cathode. Processing CAS is crucial for economic reasons, as gold [...] Read more.
Copper anode slime (CAS) contains high concentrations of precious metals, particularly gold, which can reach up to 11 wt%. During copper anode electrorefining, 5–10 kg of CAS is generated per ton of copper cathode. Processing CAS is crucial for economic reasons, as gold significantly contributes to revenue for both miners and custom copper smelters. This paper provides a comprehensive review of industrial processes and technologies for CAS treatment, with a focus on gold recovery, covering studies from the early 1930s to the present. It documents traditional and recent trends and analyzes the advantages and disadvantages of existing methods. Key factors affecting revenue, such as gold production lead time, in-process inventory, and first-pass recovery rate, are discussed to mitigate losses in fluctuating gold markets. CAS processing routes are categorized into two main groups: traditional hybrid routes (involving hydrometallurgy, pyrometallurgy, and electrorefining/electrowinning) and rather recent purely hydrometallurgical routes. Traditional methods can take up to 45 days, with gold recovery occurring late in the process and losses arising in the anode, cathode, electrolyte, or slag. In contrast, purely hydrometallurgical routes have total processing times of 7–8 days, achieve early gold recovery, and can attain first-pass recovery rates as high as 99%. Additionally, the hydrometallurgical routes are more environmentally friendly, with lower pollution levels and reduced energy consumption compared to hybrid routes. These findings indicate that purely hydrometallurgical routes outperform traditional hybrid methods. This paper aims to serve as a guideline for industrial CAS processing, assisting custom copper smelters in navigating challenging market conditions marked by low treatment and refining charges, with an emphasis on enhancing gold recovery to promote sustainability. Full article
(This article belongs to the Special Issue Recent Trends in Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 2080 KiB  
Article
Revealing the Surface and In-Depth Operational Performances of Oxygen-Evolving Anode Coatings: A Guideline for the Synthesis of Inert Durable Anodes in Metal Electrowinning from Acid Solutions
by Jovana Bošnjaković, Vladimir Panić, Maja Stevanović, Srecko Stopic, Jasmina Stevanović, Branimir Grgur and Gavrilo Šekularac
Metals 2024, 14(12), 1339; https://doi.org/10.3390/met14121339 - 26 Nov 2024
Cited by 1 | Viewed by 900
Abstract
The electrochemical performances of an oxygen-evolving anode produced by the reactivation of waste Ti substrate by a typical IrO2-Ta2O5 coating are correlated to the textural (non)uniformities of the coating and its exhaustion state. Coating degradation is considered operational [...] Read more.
The electrochemical performances of an oxygen-evolving anode produced by the reactivation of waste Ti substrate by a typical IrO2-Ta2O5 coating are correlated to the textural (non)uniformities of the coating and its exhaustion state. Coating degradation is considered operational loss of the activity in a metal electrowinning process. It was found that (pseudo)capacitive performances can vary over the coating surface by 20–30% and depend on the type of dynamics of the input perturbation: constant through cyclic voltammetry (CV) or discontinuous time-dependent through electrochemical impedance spectroscopy (EIS). CV-EIS data correlation enabled profiling of the capacitive properties through the depth of a coating and over its surface. The correlation was confirmed by the findings for the analysis of coating activity for an oxygen evolution reaction, finally resulting in the reliable proposition of a mechanism for the operational loss of the anode. It was found that the less compact and thicker coating parts performed better and operated more efficiently, especially at lower operational current densities. Full article
(This article belongs to the Special Issue Feature Papers in Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 5866 KiB  
Article
Influence of Fe Ions on Anode Performance and the Mechanism of Action during Copper Electrowinning Process
by Cheng Jiang, Yiwen Chen, Yingping Zhou, Buming Chen, Hui Huang, Jun Guo, Ruidong Xu and Zhongcheng Guo
Molecules 2024, 29(19), 4578; https://doi.org/10.3390/molecules29194578 - 26 Sep 2024
Viewed by 1627
Abstract
The performance of the anode varies from the impurity ions in the copper electrowinning process. This work focused on the variation of the electrochemical behavior of the Pb-0.06%Ca-1.2%Sn anode as the Fe ions (Fe3+ and/or Fe2+) existed in the electrolyte [...] Read more.
The performance of the anode varies from the impurity ions in the copper electrowinning process. This work focused on the variation of the electrochemical behavior of the Pb-0.06%Ca-1.2%Sn anode as the Fe ions (Fe3+ and/or Fe2+) existed in the electrolyte by electrochemical characterization. Copper electrodeposition experiments were conducted under a current density of 300 A/m2, with the Fe ion concentration in the electrolyte controlled within the range of 0 to 20 g/L and the Cu ion concentration maintained at 45 g/L at a temperature of 45 °C. The variation in the corrosion resistance, catalytic activity, and structural composition of the anode film layer was analyzed in-depth according to the presence of Fe ions. The results show that the structure of PbO2 on the surface of the film was changed as Fe ions doped into the anode film, and the oxygen evolution activity of the anode was also improved. However, the corrosion resistance decreased with increasing Fe3+ concentration. Furthermore, the addition of 2 g/L Fe2+ in the electrolyte containing 2 g/L Fe3+ led to an elevation in the corrosion resistance of the anode to some extent and further increased the oxygen evolution activity. Full article
Show Figures

Figure 1

18 pages, 9174 KiB  
Article
Influence of Bi3+ Doping on Electrochemical Properties of Ti/Sb-SnO2/PbO2 Electrode for Zinc Electrowinning
by Jia Wu, Xuanqi Kang, Shuangwen Xu, Zhen Wei, Shangyuan Xu, Kang Liu, Qing Feng, Bo Jia and Yunhai Wang
Molecules 2024, 29(17), 4062; https://doi.org/10.3390/molecules29174062 - 27 Aug 2024
Viewed by 1168
Abstract
Bi3+ doped Ti/Sb-SnO2/PbO2 electrode materials were fabricated by electrodeposition to improve their electrochemical performance in zinc electrowinning. The surface morphology, chemical composition, and hydrophilicity of the as-prepared electrodes were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy [...] Read more.
Bi3+ doped Ti/Sb-SnO2/PbO2 electrode materials were fabricated by electrodeposition to improve their electrochemical performance in zinc electrowinning. The surface morphology, chemical composition, and hydrophilicity of the as-prepared electrodes were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle. An electrochemical measurement and an accelerated lifetime experiment were also conducted to investigate the electrocatalytic performance and stability of the electrodes. The results show that the Bi3+ modification electrode has an important effect on the coating morphology, the crystal structure, the surface hydrophilicity, the electrocatalytic activity, and the stability. The electrode prepared from the solution containing 2 mmol·L−1 Bi(NO3)3 (marked as the Ti/Sb-SnO2/2Bi-PbO2 electrode) exhibits the best hydrophilicity performance (θ = 21.6°) and the longest service life (1196 h). During the electrochemical characterization analysis, the Ti/Sb-SnO2/2Bi-PbO2 electrode showed the highest oxygen evolution activity, which can be attributed to it having the highest electroactive surface (qT* = 21.20 C·cm−2) and the best charge-transfer efficiency. The DFT calculation demonstrated that the doping of Bi3+ leads to a decrease in the OER reaction barrier and an increase in the DOS of the electrode, which further enhances the catalytic activity and the conductivity of the electrode. Moreover, the simulated zinc electrowinning experiment demonstrated that the Ti/Sb-SnO2/2Bi-PbO2 electrode consumes less energy than other electrodes. Therefore, it is expected that the Bi3+ modified electrode will become a very promising electrode material for zinc electrowinning in the future. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry—2nd Edition)
Show Figures

Figure 1

16 pages, 4292 KiB  
Article
Recovery of Zinc and Rhenium for the Production of Zinc Perrhenates
by Katarzyna Leszczyńska-Sejda, Joanna Malarz, Dorota Kopyto, Karolina Goc, Alicja Grzybek, Mateusz Ciszewski, Arkadiusz Palmowski, Grzegorz Benke and Karolina Pianowska
Crystals 2024, 14(8), 725; https://doi.org/10.3390/cryst14080725 - 14 Aug 2024
Cited by 1 | Viewed by 1296
Abstract
This study outlines findings from an investigation into the development of a hydrometallurgical process for manufacturing various forms of zinc perrhenate, entirely from waste from recycling and from the Zn–Pb industry. Scraps of Re-bearing Ni-based superalloys and acidic waste, circulating zinc solutions generated [...] Read more.
This study outlines findings from an investigation into the development of a hydrometallurgical process for manufacturing various forms of zinc perrhenate, entirely from waste from recycling and from the Zn–Pb industry. Scraps of Re-bearing Ni-based superalloys and acidic waste, circulating zinc solutions generated during the production of Zn by the electrolytic method and which contain >45 g/dm3 of Zn, Na, Mn, and Mg, were used in the research. In the publication, the conditions for the production of three types of zinc perrhenate, i.e., Zn(ReO4)2·4H2O, Zn(ReO4)2, and Zn(ReO4)2·2H2O, are presented. As a result of the analysis of the obtained results, it was concluded that to obtain the above-mentioned forms of zinc perrhenate, zinc carbonate can be used, precipitated from acidic, waste, and multi-component solutions after their prior neutralization to pH 4.0 and partial purification from Mn, Mg, and Na using metallurgical zinc oxide. Zinc carbonate should be precipitated using Na2CO3 at pH 6.3 and subsequently purified from other impurities, i.e., Mg, Na, and Mn, using aqueous ammonia solutions. As a result, zinc carbonate was obtained, which was used in a reaction with an aqueous solution of HReO4 to produce zinc perrhenate. The precipitated forms of Zn(ReO4)2 were obtained by appropriately drying the crude and hydrated Zn(ReO4)2 to obtain its tetrahydrate, dihydrate, and anhydrous forms, respectively, using drying temperatures of 55, 135, and 185 °C. The developed technology has been submitted for a patent and is an example of a technology founded on the principles of sustainable development, with a particular emphasis on the minimalization of loss of rhenium and zinc at all stages of its realization. Full article
(This article belongs to the Topic Advances in Inorganic Synthesis)
Show Figures

Graphical abstract

16 pages, 4176 KiB  
Article
Kinetic Study of Manganese Oxidative Precipitation Reaction by Using SO2/Air Gas Mixture
by Masoomeh Askarian, Fariba Mousavi, Vincent Dufault-Bedard, Georges Houlachi and Houshang Alamdari
Metals 2024, 14(4), 412; https://doi.org/10.3390/met14040412 - 29 Mar 2024
Cited by 1 | Viewed by 2038
Abstract
Removing manganese from zinc electrolytes is necessary to pave the way for replacing lead-based anodes with mixed metal oxide (MMO) anodes. MMO anodes offer significantly lower overpotential towards oxygen evolution reactions, thus are attractive from an energy consumption viewpoint. Previous studies had shown [...] Read more.
Removing manganese from zinc electrolytes is necessary to pave the way for replacing lead-based anodes with mixed metal oxide (MMO) anodes. MMO anodes offer significantly lower overpotential towards oxygen evolution reactions, thus are attractive from an energy consumption viewpoint. Previous studies had shown that, thanks to the catalytic effect of cobalt, manganese can be removed successfully from the zinc purification solution through the oxidative precipitation method using a simulated roasting off-gas plant. This study focuses on understanding the primary mechanism behind manganese oxidation precipitation and investigating the influence of various operating parameters such as temperature, dissolved oxygen (DO), and solution potential on the reaction kinetics. The results revealed that the kinetics of the reaction was highly dependent on the temperature and catalyst activity rather than on the reactant concentration. Additives, with radical scavenging effects, were added to identify the radicals responsible for the oxidation of Mn. The manganese oxidation reaction was dramatically suppressed when methanol was added. However, in the presence of tert-butyl alcohol (TBA), a sensible reduction in manganese removal was not observed, suggesting sulfate radical as the predominant species for oxidizing manganese. The physical and chemical characteristics of the sediments were also presented. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 7847 KiB  
Article
Electrochemical Behavior of Carbon Steel ASTM A36 in Diluted Pregnant Leach Solutions from Electrowinning of Copper
by Luis Cáceres, Alvaro Soliz and Felipe M. Galleguillos-Madrid
Metals 2024, 14(3), 329; https://doi.org/10.3390/met14030329 - 13 Mar 2024
Cited by 1 | Viewed by 1758
Abstract
In Northern Chile, large amounts of highly corrosive solutions are currently generated in the process of cathode washing after completing the electrowinning or electrorefining process of copper. This study investigates the electrochemical behavior of ASTM A36 carbon steel in pregnant-leach-solution (PLS) wash water. [...] Read more.
In Northern Chile, large amounts of highly corrosive solutions are currently generated in the process of cathode washing after completing the electrowinning or electrorefining process of copper. This study investigates the electrochemical behavior of ASTM A36 carbon steel in pregnant-leach-solution (PLS) wash water. Measurements of electrochemical impedance spectroscopy and linear sweep voltammetry, complemented with weight loss measurements, were performed. Four ratios of PLS containing reverse osmosis (RO) water are evaluated, considering both quiescent and rotating conditions of the steel specimen. The results indicate that oxygen reduction, hydrogen evolution, and iron oxidation reactions are all involved during the corrosion of carbon steel in pure RO water, with the corrosion rate increasing up to 4 times under rotating conditions. In the case of corrosion in RO wash water containing PLS, a galvanic process occurs whereby copper is reduced at the expense of iron oxidation, superimposed on former partial reactions. The deposited copper induces notable corrosion inhibition of steel, observed as a significant drop in corrosion rate from high initial to constant residual values. Morphological and X-ray analyses support that corrosion is affected by oxide layer formation and galvanic copper deposition, confirming the results obtained from electrochemical analysis and weight loss measurements. Full article
Show Figures

Figure 1

14 pages, 6643 KiB  
Article
Utilization of Galvanizing Flue Dust Residue: A Sustainable Approach towards Complete Material Recycling
by Jana Pirošková, Jakub Klimko, Silvia Ružičková, Martina Laubertová, Vladimír Marcinov, Erika Múdra, Marek Vojtko and Dušan Oráč
Metals 2024, 14(3), 253; https://doi.org/10.3390/met14030253 - 20 Feb 2024
Cited by 2 | Viewed by 1864
Abstract
During hot-dip galvanization, wastes such as bottom dross, zinc ash, spent pre-treatment solutions, and galvanizing flue dust (GFD) are generated. In scientific publications, research devoted to GFD waste recycling is absent, and companies generating this waste require a solution to this complex problem. [...] Read more.
During hot-dip galvanization, wastes such as bottom dross, zinc ash, spent pre-treatment solutions, and galvanizing flue dust (GFD) are generated. In scientific publications, research devoted to GFD waste recycling is absent, and companies generating this waste require a solution to this complex problem. GFD is often landfilled in hazardous waste landfills. However, it is possible to process this waste hydrometallurgically, where GFD is first leached, the solution is refined, and finally, zinc metal is obtained by electrowinning. During specific environmentally friendly leaching, not all solid GFD is dissolved, and the aim of this study is to process the remaining solid GFD residue. The analysis shows that the GFD residue material mainly contains zinc (42.46%) in the form of oxides, but there is also a small amount of polluting elements such as Al, Fe, and Pb. This study examines the leaching of the samples in HCl and H2SO4 under different conditions with the aim of obtaining a solution with a high concentration and high leaching efficiency of zinc. The L/S ratio of 3, 4 M H2SO4, and ambient temperature proved to be optimal for the leaching of the GFD residue, where 96.24% of zinc was leached out, which represents a zinc concentration of 136.532 g/L. Full article
(This article belongs to the Special Issue Recovery of Valuable Metals from Industrial By-Products)
Show Figures

Figure 1

16 pages, 3678 KiB  
Article
Recovery of Residual Lead from Automotive Battery Recycling Slag Using Deep Eutectic Solvents
by Bruna Salgado, Diana Endara, Carlos F. Aragón-Tobar, Ernesto de la Torre and Luis Ullauri
Molecules 2024, 29(2), 394; https://doi.org/10.3390/molecules29020394 - 13 Jan 2024
Cited by 1 | Viewed by 2460
Abstract
In this study, we address the ecological challenges posed by automotive battery recycling, a process notorious for its environmental impact due to the buildup of hazardous waste like foundry slag. We propose a relatively cheap and safe solution for lead removal and recovery [...] Read more.
In this study, we address the ecological challenges posed by automotive battery recycling, a process notorious for its environmental impact due to the buildup of hazardous waste like foundry slag. We propose a relatively cheap and safe solution for lead removal and recovery from samples of this type of slag. The analysis of TCLP extracts revealed non-compliance with international regulations, showing lead concentrations of up to 5.4% primarily in the form of anglesite (PbSO4), as detected by XRF/XRD. We employed deep eutectic solvents (DES) as leaching agents known for their biodegradability and safety in hydrometallurgical processing. Five operational variables were systematically evaluated: sample type, solvent, concentration, temperature, and time. Using a solvent composed of choline chloride and glycerin in a 2:1 molar ratio, we achieved 95% lead dissolution from acidic samples at 90 °C, with agitation at 470 rpm, a pulp concentration of 5%, and a 5 h duration. Furthermore, we successfully recovered 55% of the lead in an optimized solution using an electrowinning cell. This research demonstrates the ability of DES to decontaminate slag, enabling compliance with regulations, the recovery of valuable metals, and new possibilities for the remaining material. Full article
(This article belongs to the Special Issue Deep Eutectic Solvents: Properties and Applications as Green Solvents)
Show Figures

Figure 1

11 pages, 5515 KiB  
Article
The Characterization of Residues Related to the Roasting– Leaching–Electrowinning Zinc Production Route for Further Metal Extraction
by Simon Hellgren, Fredrik Engström and Lena Sundqvist Öqvist
Metals 2024, 14(1), 73; https://doi.org/10.3390/met14010073 - 8 Jan 2024
Cited by 4 | Viewed by 2726
Abstract
Super-hot acid leach residue is generated during zinc production in the roasting–leaching–electrowinning route, where both primary and secondary resources are used as feed material. This residue may contain valuable metals, such as lead, zinc, and iron, as well as precious metals, such as [...] Read more.
Super-hot acid leach residue is generated during zinc production in the roasting–leaching–electrowinning route, where both primary and secondary resources are used as feed material. This residue may contain valuable metals, such as lead, zinc, and iron, as well as precious metals, such as gold and silver. Four materials, namely super-hot acid leach residue, a residue formed when super-hot acid leach residue is selectively leached for lead with triethylenetetramine, as well as flotation concentrate, and flotation tailings formed in a selective silver flotation process with super-hot acid leach residue as the feed material were characterized to obtain a deeper understanding of possible further metal extraction. These four materials were characterized for chemical composition, mineralogy, and mineral distribution via chemical analyses, X-ray diffraction, and energy-dispersive scanning electron microscopy, respectively. The scanning electron microscope images showed that the materials have large variations in particle size distribution and composition. The results showed that the main lead phase in super-hot acid leach residue is lead sulfate, whereas it is mostly converted to lead sulfide during the selective lead leaching of the super-hot acid leach residue. The remaining lead sulfate is found in a solid solution with barium sulfate. Extracting lead from super-hot acid leach residue via triethylenetetramine leaching resulted in increased concentrations of gold and silver by 41% and 42%, respectively. The identified silver phases in super-hot acid leach residue may correspond to silver sulfide, silver chloride, and elementary silver, where silver sulfide was the most commonly occurring silver phase. After leaching this selectively for lead with triethylenetetramine, similar silver phases were identified, but silver sulfide and silver chloride occurred to a similar extent. Additionally, silver copper sulfide was detected. The presence of different silver phases might pose a challenge to reaching high silver recovery during leaching as the optimum leaching conditions differ somewhat. Furthermore, elemental sulfur, with a tendency to coat gold and silver particle surfaces, which is indicated to be present in all materials except the silver flotation tailings, may hinder metal extraction. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop