Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = electrokinetic flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8855 KB  
Article
A Double-Layered Seismo-Electric Method for Characterizing Groundwater Seepage Fields in High-Level Waste Disposal
by Jing Fan, Yusufujiang Meiliya, Shunchuan Wu, Guoping Du and Liang Chen
Water 2025, 17(19), 2848; https://doi.org/10.3390/w17192848 - 29 Sep 2025
Abstract
Groundwater seepage plays a critical role in the long-term safety of high-level radioactive waste (HLW) disposal, yet its characterization remains challenging due to the complexity of fractured rock media. This study introduces the Double-Layered Seismo-Electric Method (DSEM) for imaging groundwater seepage fields with [...] Read more.
Groundwater seepage plays a critical role in the long-term safety of high-level radioactive waste (HLW) disposal, yet its characterization remains challenging due to the complexity of fractured rock media. This study introduces the Double-Layered Seismo-Electric Method (DSEM) for imaging groundwater seepage fields with enhanced sensitivity and spatial resolution. By integrating elastic wave propagation with electrokinetic coupling in a stratified framework, DSEM improves the detection of hydraulic gradients and preferential flow pathways. Application at a representative disposal site demonstrates that the method effectively delineates seepage channels and estimates hydraulic conductivity, providing reliable input parameters for groundwater flow modeling. These results highlight the potential of DSEM as a non-invasive geophysical technique to support safety assessments and long-term monitoring in deep geological disposal of high-level radioactive waste. Full article
(This article belongs to the Topic Advances in Groundwater Science and Engineering)
Show Figures

Figure 1

13 pages, 2230 KB  
Article
Ion Concentration Polarization in Branched Microchannels: Effect of Membrane Thickness and Applied Voltage
by Hirotada Hirama and Masanori Hayase
Membranes 2025, 15(9), 278; https://doi.org/10.3390/membranes15090278 - 17 Sep 2025
Viewed by 225
Abstract
Ion concentration polarization (ICP) is a promising electrokinetic technique for the concentration and separation of nanoparticles in microfluidic systems. In this study, we investigated how key parameters, including Nafion membrane thickness, applied voltage, and sample flow rate, influence the size of the ion [...] Read more.
Ion concentration polarization (ICP) is a promising electrokinetic technique for the concentration and separation of nanoparticles in microfluidic systems. In this study, we investigated how key parameters, including Nafion membrane thickness, applied voltage, and sample flow rate, influence the size of the ion depletion zone (IDZ), which is a critical factor governing ICP efficiency. Nafion membranes were fabricated via solution casting and patterning, producing non-uniform profiles with thinner centers and thicker edges. We found that thinner membranes (formed from 0.5 to 0.75 wt% solutions) led to IDZ widths 2–5 times greater than those of thicker membranes, likely due to nanogap formation at membrane-channel interfaces that enhanced ion transport. Additionally, higher applied voltages consistently enlarged the IDZ, consistent with the Nernst–Planck model, while increasing the flow rates reduced it. Notably, the combination of thin Nafion membranes and high voltage enabled stable IDZ formation, even at high flow rates. These findings offer important design insights for enhancing the performance and throughput of ICP-based nanoparticle manipulation devices. Full article
(This article belongs to the Special Issue Electrochemical Membrane and Membrane Processes)
Show Figures

Figure 1

23 pages, 6245 KB  
Article
Removal of Cu and Pb in Contaminated Loess by Electrokinetic Remediation Using Novel Hydrogel Electrodes Coupled with Focusing Position Adjustment and Exchange Electrode
by Chengbo Liu, Wenle Hu, Xiang Zhu, Shixu Zhang and Weijing Wang
Processes 2025, 13(9), 2915; https://doi.org/10.3390/pr13092915 - 12 Sep 2025
Viewed by 271
Abstract
Electrokinetic (EK) remediation is a promising approach for the removal of heavy metals from fine-grained soils; however, its efficiency is often hindered by electrode polarization, pH imbalance, and ion accumulation. In this study, we developed a novel hydrogel-based electrode (NH electrode), composed of [...] Read more.
Electrokinetic (EK) remediation is a promising approach for the removal of heavy metals from fine-grained soils; however, its efficiency is often hindered by electrode polarization, pH imbalance, and ion accumulation. In this study, we developed a novel hydrogel-based electrode (NH electrode), composed of sodium alginate and multilayer graphene oxide (GO), to enhance the electrokinetic removal of Cu2+ and Pb2+ from loess. The electrode was systematically characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), confirming its structural integrity, electrochemical activity, and interfacial conductivity. The NH electrode exhibited a smooth layered graphene structure with abundant oxygen-containing functional groups (AFM), negligible electrochemical polarization (CV), and low internal resistance with high conductivity (EIS), enabling efficient ion transport and adsorption. Electrokinetic tests revealed that the NH electrode outperformed conventional graphene (Gr) and electrokinetic graphite (EKG) electrodes. Single regulation strategies, including focusing position adjustment and electrode exchange, improved local removal efficiency by mitigating ion accumulation in targeted regions. The combined regulation strategy, integrating both measures, achieved the most uniform Cu2+ and Pb2+ removal, significantly suppressing hydroxide precipitation in cathodic zones and enhancing ion migration in the mid-section. Compared with literature-reported systems under similar or even more favorable conditions, the NH electrode and combined regulation approach achieved superior performance, with Cu2+ and Pb2+ removal efficiencies reaching 47.25% and 16.93%, respectively. These findings demonstrate that coupling electrode material innovation with spatial–temporal pH/flow field regulation can overcome key bottlenecks in EK remediation of heavy-metal-contaminated loess. Full article
(This article belongs to the Special Issue Advances in Heavy Metal Contaminated Soil and Water Remediation)
Show Figures

Figure 1

21 pages, 1559 KB  
Article
Diffusiophoresis of a Conducting Liquid Metal Droplet (LMD) in a Cylindrical Pore
by Sunny Chen, Lily Chuang, Nemo Chang, Jean Chien, Venesa Liao and Eric Lee
Molecules 2025, 30(16), 3372; https://doi.org/10.3390/molecules30163372 - 13 Aug 2025
Viewed by 433
Abstract
Diffusiophoresis of a liquid metal droplet (LMD) in a cylindrical pore is investigated theoretically in this study. A patched pseudo-spectral method based on Chebyshev polynomials combined with a geometric mapping technique is adopted to solve the resulting governing electrokinetic equations in irregular geometries. [...] Read more.
Diffusiophoresis of a liquid metal droplet (LMD) in a cylindrical pore is investigated theoretically in this study. A patched pseudo-spectral method based on Chebyshev polynomials combined with a geometric mapping technique is adopted to solve the resulting governing electrokinetic equations in irregular geometries. Several interesting phenomena are found which provide useful guidelines in practical applications involving liquid metal droplets (LMDs) such as drug delivery. In particular, the severe boundary confinement effect brings about unique features of droplet motion, leading to mobility reversal and a “stagnation phenomenon” where droplets cease to move regardless of their surface charge densities in a narrow cylindrical pore. An overwhelming exterior vortex flow nearly enclosing the entire droplet is found to be responsible for this. This finds various practical applications in droplet microfluidics and drug delivery. For instance, a cylindrical pore or blood vessel may be clogged by a droplet much smaller than its radius. In addition, the “solidification phenomenon”, where all droplets move with identical speed regardless of their viscosities like rigid particles with no interior recirculating vortex flows, is also discovered. The electrokinetic mechanism behind it and its potential applications are discussed. Overall, the geometric configuration considered here is a classic one, with many other possible applications yet to be found by experimental researchers and engineers in the field of colloid industry and operations. Full article
Show Figures

Figure 1

25 pages, 2142 KB  
Article
Viscoelectric and Steric Effects on Electroosmotic Flow in a Soft Channel
by Edson M. Jimenez, Clara G. Hernández, David A. Torres, Nicolas Ratkovich, Juan P. Escandón, Juan R. Gómez and René O. Vargas
Mathematics 2025, 13(16), 2546; https://doi.org/10.3390/math13162546 - 8 Aug 2025
Viewed by 1941
Abstract
The present work analyzes the combined viscoelectric and steric effects on electroosmotic flow in a soft channel with polyelectrolyte coating. The structured channel surface, which controls the electric potential, creates two different flow regions: the electrolyte flow within the permeable polyelectrolyte layer (PEL) [...] Read more.
The present work analyzes the combined viscoelectric and steric effects on electroosmotic flow in a soft channel with polyelectrolyte coating. The structured channel surface, which controls the electric potential, creates two different flow regions: the electrolyte flow within the permeable polyelectrolyte layer (PEL) and the bulk electrolyte. Thus, this study discusses the interaction of various electrostatic effects to predict the electroosmotic flow field. The nonlinear governing equations describing the fluid flow are the modified Poisson–Boltzmann equation for the electric potential distribution, the mass conservation equation, and the modified Navier–Stokes equations for the flow field, which are solved numerically using a one-dimensional (1D) scheme. The results indicate that the flow enhances when increasing the electric potential magnitude across the channel cross-section via the rise in different dimensionless parameters, such as the PEL thickness, the steric factor, and the ratio of the electrokinetic parameter of the PEL to that of the electrolyte layer. This research demonstrates that the PEL significantly enhances control over electroosmotic flow. However, it is crucial to consider that viscoelectric effects at high electric fields and the friction generated by the grafted polymer brushes of the PEL can reduce these benefits. Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
Show Figures

Figure 1

21 pages, 5159 KB  
Article
Energy-Efficient AC Electrothermal Microfluidic Pumping via Localized External Heating
by Diganta Dutta, Lanju Mei, Xavier Palmer and Matthew Ziemke
Appl. Sci. 2025, 15(13), 7369; https://doi.org/10.3390/app15137369 - 30 Jun 2025
Viewed by 429
Abstract
In this study, we present a comprehensive numerical investigation of alternating-current electrothermal (ACET) pumping strategies tailored for energy-efficient microfluidic applications. Using coupled electrokinetic and thermal multiphysics simulations in narrow microchannels, we systematically explore the effects of channel geometry, electrode asymmetry and external heating [...] Read more.
In this study, we present a comprehensive numerical investigation of alternating-current electrothermal (ACET) pumping strategies tailored for energy-efficient microfluidic applications. Using coupled electrokinetic and thermal multiphysics simulations in narrow microchannels, we systematically explore the effects of channel geometry, electrode asymmetry and external heating on flow performance and thermal management. A rigorous mesh convergence study confirms velocity deviations below ±0.006 µm/s across the entire operating envelope, ensuring reliable prediction of ACET-driven flows. We demonstrate that increasing channel height from 100 µm to 500 µm reduces peak temperatures by up to 79 K at a constant 2 W heat input, highlighting the critical role of channel dimensions in convective heat dissipation. Introducing a localized external heat source beneath asymmetric electrode pairs enhances convective circulations, while doubling the fluid’s electrical conductivity yields a ~29% increase in net flow rate. From these results, we derive practical design guidelines—combining asymmetric electrode layouts, tailored channel heights, and external heat bias—to realize self-regulating, low-power microfluidic pumps. Such devices hold significant promises for on-chip semiconductor cooling, lab-on-a-chip assays and real-time thermal control in high-performance microelectronic and analytical systems. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 1995 KB  
Article
Enhancing Electrokinetic Remediation of Cu- and Pb-Contaminated Loess Using Irregular Electrode Configurations: A Numerical Investigation of Transport and Remediation Mechanisms
by Xinwen Wang and Wenle Hu
Processes 2025, 13(7), 1948; https://doi.org/10.3390/pr13071948 - 20 Jun 2025
Cited by 1 | Viewed by 468
Abstract
The strong adsorption capacity of loess poses a significant limitation to the electrokinetic (EK) remediation process. Modified EK technologies, such as graphene oxide-alginate composite hydrogel (GOCH) electrodes, are increasingly employed for the remediation of heavy metal-contaminated loess. However, the complex interactions among multiple [...] Read more.
The strong adsorption capacity of loess poses a significant limitation to the electrokinetic (EK) remediation process. Modified EK technologies, such as graphene oxide-alginate composite hydrogel (GOCH) electrodes, are increasingly employed for the remediation of heavy metal-contaminated loess. However, the complex interactions among multiple physical fields within these modified systems remain poorly understood. This study utilizes COMSOL Multiphysics version 6.0 to simulate diffusion, electromigration, electroosmotic flow, adsorption, and chemical reactions in loess contaminated with copper (Cu) and lead (Pb). A chemical precipitation and ion transport model, governed by the Nernst–Planck equation, was validated through a comparison of simulation results with experimental data. The investigation examines the effects of electrode placement and size on EK efficiency, revealing that diagonally placed irregular electrodes optimize the electric field, minimize ineffective regions, and enhance ion migration. Larger electrodes enhance current density, whereas smaller electrodes mitigate edge shielding effects. This research offers strategic insights into electrode configuration for improved EK remediation of Cu-Pb-contaminated loess, achieving greater efficiency than traditional systems. Full article
Show Figures

Figure 1

18 pages, 908 KB  
Article
Diffusiophoresis of a Weakly Charged Dielectric Fluid Droplet in a Cylindrical Pore
by Lily Chuang, Sunny Chen, Nemo Chang, Jean Chien, Venesa Liao and Eric Lee
Micromachines 2025, 16(6), 707; https://doi.org/10.3390/mi16060707 - 13 Jun 2025
Cited by 1 | Viewed by 681
Abstract
Diffusiophoresis of a weakly charged dielectric droplet in a cylindrical pore is investigated theoretically in this study. The governing fundamental electrokinetic equations are solved with a patched pseudo-spectral method based on Chebyshev polynomials, coupled with a geometric mapping scheme to take care of [...] Read more.
Diffusiophoresis of a weakly charged dielectric droplet in a cylindrical pore is investigated theoretically in this study. The governing fundamental electrokinetic equations are solved with a patched pseudo-spectral method based on Chebyshev polynomials, coupled with a geometric mapping scheme to take care of the irregular solution domain. The impact of the boundary confinement effect upon the droplet motion is explored in detail, which is most profound in narrow channels. We found, among other things, that the droplet moving direction may reverse with varying channel widths. Enhanced motion-inducing double-layer polarization due to the presence of a nearby channel wall is found to be responsible for it. In particular, an interesting and seemingly peculiar phenomenon referred to as the “solidification phenomenon” is observed here at some specific critical droplet sizes or electrolyte strengths in narrow channels, under which all the droplets move at identical speeds regardless of their viscosities. They move like a rigid particle without the surface spinning motions and the induced interior recirculating vortex flows. As the corresponding shear rate is zero at this point, the droplet is resilient to undesirable exterior shear stresses tending to damage the droplet in motion. This provides a helpful guideline in the fabrication of liposomes in drug delivery in terms of the optimal liposome size, as well as in the microfluidic and nanofluidic manipulations of cells, among other potential practical applications. The effects of other parameters of electrokinetic interest are also examined. Full article
Show Figures

Figure 1

22 pages, 7971 KB  
Article
A Numerical Investigation of Enhanced Microfluidic Immunoassay by Multiple-Frequency Alternating-Current Electrothermal Convection
by Qisheng Wu, Shaohua Huang, Shenghai Wang, Xiying Zhou, Yuxuan Shi, Xiwei Zhou, Xianwu Gong, Ye Tao and Weiyu Liu
Appl. Sci. 2025, 15(9), 4748; https://doi.org/10.3390/app15094748 - 24 Apr 2025
Viewed by 574
Abstract
Compared with traditional immunoassay methods, microfluidic immunoassay restricts the immune response in confined microchannels, significantly reducing sample consumption and improving reaction efficiency, making it worthy of widespread application. This paper proposes an exciting multi-frequency electrothermal flow (MET) technique by applying combined standing-wave and [...] Read more.
Compared with traditional immunoassay methods, microfluidic immunoassay restricts the immune response in confined microchannels, significantly reducing sample consumption and improving reaction efficiency, making it worthy of widespread application. This paper proposes an exciting multi-frequency electrothermal flow (MET) technique by applying combined standing-wave and traveling-wave voltage signals with different oscillation frequencies to a three-period quadra-phase discrete electrode array, achieving rapid immunoreaction on functionalized electrode surfaces within straight microchannels, by virtue of horizontal pumping streamlines and transverse stirring vortices induced by nonlinear electrothermal convection. Under the approximation of a small temperature rise, a linear model describing the phenomenon of MET is derived. Although the time-averaged electrothermal volume force is a simple superposition of the electrostatic body force components at the two frequencies, the electro-thermal-flow field undergoes strong mutual coupling through the dual-component time-averaged Joule heat source term, further enhancing the intensity of Maxwell–Wagner smeared structural polarization and leading to mutual influence between the standing-wave electrothermal (SWET) and traveling-wave electrothermal (TWET) effects. Through thorough numerical simulation, the optimal working frequencies for SWET and TWET are determined, and the resulting synthetic MET flow field is directly utilized for microfluidic immunoassay. MET significantly promotes the binding kinetics on functionalized electrode surface by simultaneous global electrokinetic transport along channel length direction and local chaotic stirring of antigen samples near the reaction site, compared to the situation without flow activation. The MET investigated herein satisfies the requirements for early, rapid, and precise immunoassay of test samples on-site, showing great application prospects in remote areas with limited resources. Full article
Show Figures

Figure 1

20 pages, 3758 KB  
Article
Study of Natural Dyes’ Liposomal Encapsulation in Food Dispersion Model Systems via High-Pressure Homogenization
by Lubomír Lapčík, Barbora Lapčíková, Tomáš Valenta, Martin Vašina, Pavlína Dudová and Miroslav Fišera
Molecules 2025, 30(8), 1845; https://doi.org/10.3390/molecules30081845 - 20 Apr 2025
Viewed by 1111
Abstract
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), [...] Read more.
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), copper complexes of chlorophyllins (C), or commercial-grade β-carotene (B). The phospholipid envelope was composed of sunflower lecithin and carboxymethylcellulose sodium salt as a surface stabilizer treated by high-pressure homogenization. The median particle diameter of R and C systems fluctuated around 200 nm, while B systems showed a broader range of 165–405 nm. The rheological results demonstrated a specific flow behaviour pattern dependent on the rotational shear applied, indicating a flow-induced structural change in the dispersions. Samples were characterized by a translucent profile with relatively high lightness, accompanied by a hue angle (h*) typical of the dye encapsulated. The zeta potential was approx. −30 mV, showing electrokinetically stabilized dispersions. The encapsulation efficiency (EE) varied significantly, with the highest EE observed for anthocyanins, ranging from 36.17 to 84.61%. The chlorophyll encapsulation was the least effective, determined in the range between 1.82 and 16.03%. Based on the suitability index, optimal liposomal formulations were evaluated by means of the Central Composite Design (CCD). Full article
Show Figures

Graphical abstract

20 pages, 5569 KB  
Review
Design and Fabrication of Microelectrodes for Dielectrophoresis and Electroosmosis in Microsystems for Bio-Applications
by Mengren Wu, Zijian Liu and Yuan Gao
Micromachines 2025, 16(2), 190; https://doi.org/10.3390/mi16020190 - 7 Feb 2025
Cited by 1 | Viewed by 5130
Abstract
Microfluidic technology has emerged as a multidisciplinary field, integrating fluid dynamics, electronics, materials science, etc., enabling precise manipulation of small volumes of fluids and particles for various bio-applications. Among the forms of energy integrated into microfluidic systems, electric fields are particularly advantageous for [...] Read more.
Microfluidic technology has emerged as a multidisciplinary field, integrating fluid dynamics, electronics, materials science, etc., enabling precise manipulation of small volumes of fluids and particles for various bio-applications. Among the forms of energy integrated into microfluidic systems, electric fields are particularly advantageous for achieving precise control at the microscale. This review focuses on the design and fabrication of microelectrodes that drive electrokinetic phenomena, dielectrophoresis (DEP) and electroosmotic flow (EOF), key techniques for particle and fluid manipulation in microfluidic devices. DEP relies on non-uniform electric fields to manipulate particles based on their dielectric properties, while EOF utilizes uniform electric fields to generate consistent fluid flow across microchannels. Advances in microelectrode fabrication, including photolithography, soft lithography, and emerging non-cleanroom techniques, are discussed. Additionally, the review explores innovative approaches such as rapid prototyping, contactless electrodes, and three-dimensional structures, along with material considerations like conductive polymers and carbon composites. The review discusses the role of microelectrodes in enhancing device functionality, scalability, and reliability. The paper also identifies challenges, including the need for improved fabrication reproducibility and multifunctional integration. Finally, potential future research directions are proposed to further optimize DEP- and EOF-based microsystems for advanced biomedical and diagnostic applications. Full article
Show Figures

Figure 1

19 pages, 2387 KB  
Review
Electro-Elastic Instability and Turbulence in Electro-osmotic Flows of Viscoelastic Fluids: Current Status and Future Directions
by Chandi Sasmal
Micromachines 2025, 16(2), 187; https://doi.org/10.3390/mi16020187 - 4 Feb 2025
Cited by 2 | Viewed by 1202
Abstract
The addition of even minute amounts of solid polymers, measured in parts per million (ppm), into a simple Newtonian fluid like water significantly alters the flow behavior of the resulting polymer solutions due to the introduction of fluid viscoelasticity. This viscoelastic behavior, which [...] Read more.
The addition of even minute amounts of solid polymers, measured in parts per million (ppm), into a simple Newtonian fluid like water significantly alters the flow behavior of the resulting polymer solutions due to the introduction of fluid viscoelasticity. This viscoelastic behavior, which arises due to the stretching and relaxation phenomena of polymer molecules, leads to complex flow dynamics that are starkly different from those seen in simple Newtonian fluids under the same conditions. In addition to polymer solutions, many other fluids, routinely used in various industries and our daily lives, exhibit viscoelastic properties, including emulsions; foams; suspensions; biological fluids such as blood, saliva, and cerebrospinal fluid; and suspensions of biomolecules like DNA and proteins. In various microfluidic platforms, these viscoelastic fluids are often transported using electro-osmotic flows (EOFs), where an electric field is applied to control fluid movement. This method provides more precise and accurate flow control compared to pressure-driven techniques. However, several experimental and numerical studies have shown that when either the applied electric field strength or the fluid elasticity exceeds a critical threshold, the flow in these viscoelastic fluids becomes unstable and asymmetric due to the development of electro-elastic instability (EEI). These instabilities are driven by the normal elastic stresses in viscoelastic fluids and are not observed in Newtonian fluids under the same conditions, where the flow remains steady and symmetric. As the electric field strength or fluid elasticity is further increased, these instabilities can transition into a more chaotic and turbulent-like flow state, referred to as electro-elastic turbulence (EET). This article comprehensively reviews the existing literature on these EEI and EET phenomena, summarizing key findings from both experimental and numerical studies. Additionally, this article presents a detailed discussion of future research directions, emphasizing the need for further investigations to fully understand and harness the potential of EEI and EET in various practical applications, particularly in microscale flow systems where better flow control and increased transport rates are essential. Full article
(This article belongs to the Collection Micro/Nanoscale Electrokinetics)
Show Figures

Figure 1

11 pages, 2190 KB  
Article
Transient Electroosmosis on a Soft Surface
by Hiroyuki Ohshima
Colloids Interfaces 2025, 9(1), 12; https://doi.org/10.3390/colloids9010012 - 4 Feb 2025
Cited by 1 | Viewed by 1271
Abstract
A general theory was developed for the time-dependent transient electroosmosis on a planar soft surface, i.e., a polyelectrolyte-coated solid surface in an electrolyte solution, when an electric field is suddenly applied. This serves as a simple model for the time-dependent electrokinetic phenomena occurring [...] Read more.
A general theory was developed for the time-dependent transient electroosmosis on a planar soft surface, i.e., a polyelectrolyte-coated solid surface in an electrolyte solution, when an electric field is suddenly applied. This serves as a simple model for the time-dependent electrokinetic phenomena occurring at biointerfaces. A closed-form approximate expression is derived for the electroosmotic velocity distribution within the polyelectrolyte layer as a function of both position and time. This analysis reveals that the temporal and spatial variations in the electroosmotic flow caused by the surface charges of the solid surface is confined to the region near the solid surface. In contrast, the variations due to the fixed charges within the polyelectrolyte layer extend over a wider region inside the polyelectrolyte layer. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Figure 1

19 pages, 5364 KB  
Article
Effect of Pulsed Electric Field on the Cations Removal from Salt-Affected Soils to Optimize Energy Use Efficiency in Reclamation
by Ahmed Abou-Shady
Resources 2025, 14(1), 16; https://doi.org/10.3390/resources14010016 - 20 Jan 2025
Cited by 7 | Viewed by 1655
Abstract
In arid and semi-arid zones, reclaiming/restoring salt-affected soil is considered a significant challenge because of the limited amount of water available for soil washing. The reclaimed salt-affected soil is regarded as a valuable resource for increasing the production of food and feed. In [...] Read more.
In arid and semi-arid zones, reclaiming/restoring salt-affected soil is considered a significant challenge because of the limited amount of water available for soil washing. The reclaimed salt-affected soil is regarded as a valuable resource for increasing the production of food and feed. In the current study, soil electrokinetics (SEK) under pulsed-mode electric field operation was used to evaluate and optimize energy use efficiency for reclaiming salt-affected soils, which is one of the electro-agric technology branches that was suggested in 2021 to address the water crisis in arid and semi-arid regions. Under a fixed applied voltage of 5 V, or 1 V/cm, the calcareous, highly salinized soil under investigation was reclaimed. A 25% reduction in applied voltages with time OFF set at 15, 30, 60, and 120 min and a 50% reduction with time OFF set at 15, 30, 60, and 120 min were the two pulsed electric field techniques that were examined. The findings demonstrated that the removal of Na+ surpasses half (50%) in the majority of pulsed-mode studies. By decreasing the removed K+, which is crucial for plant growth, the pulsed modes of electric fields 25 and 50% showed an economic advantage over the control experiment, which operated with a continuous electric field. Throughout the control experiment, very little Ca2+ was removed. However, the amount of Ca2+ removed rose when the electric field’s pulsed mode was applied, and the removal percentages were higher for the pulsed 50% strategy than the pulsed 25% strategy. In nearly every segment of every experiment (control, pulsed 25%, and pulsed 50%), the pH levels exceeded the initial value of 8.05. The pulsed 25% strategy of the OFF time showed an improvement in current passing at the longest interval of 120 min; the pulsed 50% strategy of the OFF time showed an improvement in current passing at the shorter and longer intervals of 15, 60, and 120 min; however, the interval of 30 min had a negative effect. The cumulative EO flow at the time OFF interval of 60 min was improved by the pulsed 25% strategy throughout the first seven days of operation, and by the end of the trial, the control experiment exhibited high values. The highest values, however, were displayed by the pulsed 50% field at the time OFF interval of 60 min. The anolyte pH decreased for the majority of the time OFF intervals over the first seven days of the trial for both the 25% and 50% pulsed strategies. Lastly, in order to minimize the overall energy consumption, it is strongly advised that the pulsed mode of the electric field be used while reclaiming salt-affected soil. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

4 pages, 191 KB  
Editorial
Editorial for the Micro/Nanoscale Electrokinetics Section
by Xiangchun Xuan
Micromachines 2024, 15(12), 1414; https://doi.org/10.3390/mi15121414 - 25 Nov 2024
Viewed by 945
Abstract
Electrokinetics is the study of fluid flow and particle motion driven by electricity [...] Full article
(This article belongs to the Section C1: Micro/Nanoscale Electrokinetics)
Back to TopTop