Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = electroacoustic assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 516 KiB  
Article
Evaluation of the Peripheral and Central Auditory Systems in Children and Adolescents Before and After COVID-19 Infection
by Julia Siqueira, Milaine Dominici Sanfins, Piotr Henryk Skarzynski, Magdalena Beata Skarzynska and Maria Francisca Colella-Santos
Children 2024, 11(12), 1454; https://doi.org/10.3390/children11121454 - 28 Nov 2024
Viewed by 1029
Abstract
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. During and after COVID-19, audiovestibular symptoms and impairments have been reported. Objectives: This study aimed to investigate the impacts of COVID-19 on the peripheral and central auditory systems of children and adolescents following [...] Read more.
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. During and after COVID-19, audiovestibular symptoms and impairments have been reported. Objectives: This study aimed to investigate the impacts of COVID-19 on the peripheral and central auditory systems of children and adolescents following the acute COVID-19 phase based on behavioral, electroacoustic, and electrophysiological audiological assessments. Methods: This is a primary, prospective, observational, and cross-sectional study of 23 children aged 8 to 15 years who acquired confirmed COVID-19 and who, before infection, had not had any auditory complaints or school complications. The results were compared with pre-pandemic data collected from a similar group of 23 children who had normal peripheral and central hearing and good school performance. Each participant answered a questionnaire about child development, school, and health history and underwent tests including pure-tone audiometry and high-frequency audiometry, imitanciometry, transient evoked otoacoustic emissions, and distortion product otoacoustic emissions. They also received tests of Brainstem Auditory Evoked Potentials, Long Latency Auditory Evoked Potentials, Dichotic Digits Test, Sentence Identification Test, Dichotic Consonant–Vowel Test, Frequency Pattern Test, and Gaps-In-Noise Test. Results: Significant differences were observed between the groups, with the study group showing worse thresholds compared to the control group at both standard audiometric frequencies and at higher frequencies, although both groups were still within normal limits (p ≤ 0.05). In addition, the study group had a higher prevalence of absent responses, as identified by otoacoustic emissions and acoustic reflexes. In terms of central auditory performance, the study group showed ABRs with significantly longer latencies of waves I, III, and V compared to the control group. The study group also performed less well on the Dichotic Digits and Pediatric Speech Identification tests. Conclusions: COVID-19 appears to alter the auditory system, both peripherally at the level of the outer hair cells and more centrally. Full article
(This article belongs to the Section Pediatric Otolaryngology)
Show Figures

Figure 1

17 pages, 1208 KiB  
Article
Evaluation of Real-Time Intracochlear Electrocochleography for Guiding Cochlear Implant Electrode Array Position
by Rachel Scheperle, Christine Etler, Jacob Oleson, Camille Dunn, Rustin Kashani, Alexander Claussen, Bruce J. Gantz and Marlan R. Hansen
J. Clin. Med. 2023, 12(23), 7409; https://doi.org/10.3390/jcm12237409 - 29 Nov 2023
Cited by 3 | Viewed by 1902
Abstract
This study evaluates intracochlear electrocochleography (ECochG) for real-time monitoring during cochlear implantation. One aim tested whether adjusting the recording electrode site would help differentiate between atraumatic and traumatic ECochG amplitude decrements. A second aim assessed whether associations between ECochG amplitude decrements and post-operative [...] Read more.
This study evaluates intracochlear electrocochleography (ECochG) for real-time monitoring during cochlear implantation. One aim tested whether adjusting the recording electrode site would help differentiate between atraumatic and traumatic ECochG amplitude decrements. A second aim assessed whether associations between ECochG amplitude decrements and post-operative hearing loss were weaker when considering hearing sensitivity at the ECochG stimulus frequency compared to a broader frequency range. Eleven adult cochlear implant recipients who were candidates for electro-acoustic stimulation participated. Single-frequency (500-Hz) ECochG was performed during cochlear implantation; the amplitude of the first harmonic of the difference waveform was considered. Post-operative hearing preservation at 500 Hz ranged from 0 to 94%. The expected relationship between ECochG amplitude decrements and hearing preservation was observed, though the trend was not statistically significant, and predictions were grossly inaccurate for two participants. Associations did not improve when considering alternative recording sites or hearing sensitivity two octaves above the ECochG stimulus frequency. Intracochlear location of a moving recording electrode is a known confound to real-time interpretation of ECochG amplitude fluctuations, which was illustrated by the strength of the correlation with ECochG amplitude decrements. Multiple factors contribute to ECochG amplitude patterns and to hearing preservation; these results highlight the confounding influence of intracochlear recording electrode location on the ECochG. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Graphical abstract

15 pages, 2829 KiB  
Article
A Simple Approach to Connecting Pt100 by Utilizing an Electroacoustic Resonance Tube
by Mohamed Qawaqzeh, Farouq M. Al-Taweel, Kinga Stecuła, Katarzyna Markowska, Mohammad Al Khawaldah, Tariq M. Younes, Basem Alrifai, Oleksandr Miroshnyk and Taras Shchur
Sensors 2023, 23(5), 2775; https://doi.org/10.3390/s23052775 - 3 Mar 2023
Cited by 1 | Viewed by 2796
Abstract
Temperature transducers are frequently employed to keep track of process variables with different kinds of industrial controllers. One of the widely used temperature sensors is Pt100. A novel approach of utilizing an electroacoustic transducer in signal conditioning for Pt100 is proposed in this [...] Read more.
Temperature transducers are frequently employed to keep track of process variables with different kinds of industrial controllers. One of the widely used temperature sensors is Pt100. A novel approach of utilizing an electroacoustic transducer in signal conditioning for Pt100 is proposed in this paper. A “signal conditioner” is a resonance tube filled with air, which is operated in a free resonance mode. The Pt100 wires are connected to one of the leads of the speaker in the resonance tube where the temperature changes, which is related to Pt100 resistance. The resistance affects the amplitude of the standing wave that is detected by an electrolyte microphone. An algorithm for measuring the amplitude of the speaker signal is described, as well as the building and functioning of the electroacoustic resonance tube signal conditioner. The microphone signal is acquired as a voltage using LabVIEW software. A virtual instrument (VI) developed under LabVIEW provides a measure of the voltage using standard VIs. The findings of the experiments reveal a link between the measured amplitude of the standing wave within the tube and the change in Pt100 resistance as the ambient temperature changes. Additionally, the suggested method may interface with any computer system when a sound card is added to it without the need for any extra measuring tools. The maximum nonlinearity error at full-scale deflection (FSD) is estimated at roughly 3.77%, and the experimental results and a regression model are used to assess the relative inaccuracy of the developed signal conditioner. When comparing the proposed approach with well-known approaches for Pt100 signal conditioning, the proposed one has several advantages such as its simplicity of connecting Pt100 to a personal computer directly via the sound card of any personal computer. In addition, there is no need for a reference resistance to perform a temperature measurement using such a signal conditioner. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

20 pages, 6739 KiB  
Article
Predicting the Durability of Solid Fired Bricks Using NDT Electroacoustic Methods
by Vojtěch Bartoň, Richard Dvořák, Petr Cikrle and Jaroslav Šnédar
Materials 2022, 15(17), 5882; https://doi.org/10.3390/ma15175882 - 25 Aug 2022
Cited by 6 | Viewed by 2192
Abstract
Historical buildings and monuments are largely made of brickwork. These buildings form the historical and artistic character of cities, and how we look after them is a reflection of our society. When assessing ceramic products, great emphasis is placed on their mechanical properties, [...] Read more.
Historical buildings and monuments are largely made of brickwork. These buildings form the historical and artistic character of cities, and how we look after them is a reflection of our society. When assessing ceramic products, great emphasis is placed on their mechanical properties, whilst their durability is often neglected. However, the durability or resistance to weathering of masonry elements is just as important as their mechanical properties. Therefore, this work deals with predicting the durability of solid-fired bricks before they are used when reconstructing monuments and historical buildings. Durability prediction is assessed by identifying defects in the material’s internal structure. These faults may not be visible on the element’s surface and are difficult to detect. For this purpose, non-destructive electroacoustic methods, such as the resonant pulse method or the ultrasonic pulse method, were used. Based on an analysis of the initial and residual mechanical properties after freezing cycles, four durability classes of solid-fired bricks were determined. This work aimed to find a way to predict the durability (lifetime) of an anonymous solid-fired brick, expressed in terms of the number of freeze cycles the brick would last, based on non-destructive measurements. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering (2nd Edition))
Show Figures

Figure 1

12 pages, 5055 KiB  
Article
Estimation Accuracy of the Electric Field in Cable Insulation Based on Space Charge Measurement
by Norikazu Fuse, Shosuke Morita, Satoru Miyazaki, Toshihiro Takahashi and Naohiro Hozumi
Energies 2022, 15(13), 4920; https://doi.org/10.3390/en15134920 - 5 Jul 2022
Cited by 3 | Viewed by 2025
Abstract
Space charge measurement accuracy is crucial when assessing the suitability of cables for high-voltage direct current (DC) systems. This study assembled state-of-the-art analysis technologies, including time-domain deconvolution, to mark electric field estimation accuracy, which the present techniques achieve. The pulse electroacoustic method was [...] Read more.
Space charge measurement accuracy is crucial when assessing the suitability of cables for high-voltage direct current (DC) systems. This study assembled state-of-the-art analysis technologies, including time-domain deconvolution, to mark electric field estimation accuracy, which the present techniques achieve. The pulse electroacoustic method was applied to a 66 kV-class extruded cable, and waveforms were obtained and analyzed to reproduce the electric field distribution. The DC voltage was set to be sufficiently low so that the analysis results can be compared with Laplace’s equation. The statistical analysis of 81 waveforms under a DC voltage of 30 kV showed that the estimation accuracy was −0.3% ± 19.9% with a 95.4% confidence interval, even with the deconvolution parameter optimized. The estimated accuracy using the “reference” waveform is applied to waveforms at higher voltages since similar estimation accuracies were confirmed for waveforms obtained under a DC voltage of 45 kV. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 2102 KiB  
Article
Headphone Audio in Training Systems or Systems That Convey Important Sound Information
by Rafal Mlynski
Int. J. Environ. Res. Public Health 2022, 19(5), 2579; https://doi.org/10.3390/ijerph19052579 - 23 Feb 2022
Cited by 2 | Viewed by 2707
Abstract
In the work environment, miniature electroacoustic transducers are often used in communication, for the transmission of warning signals or during training. They can be used in headphones or mounted in personal protective equipment. It is often important to reproduce sounds accurately. The purpose [...] Read more.
In the work environment, miniature electroacoustic transducers are often used in communication, for the transmission of warning signals or during training. They can be used in headphones or mounted in personal protective equipment. It is often important to reproduce sounds accurately. The purpose of this work was to assess audio strips by comparing the frequency response of the signal in the electrical outputs of six common-purpose devices. Based on the risk of hearing damage, the level of noise exposure was assessed. The following headphones were investigated: low-budget closed-back, open-back for instant messengers, open-back for music, and in-ear. A head and torso simulator with a transfer function was used. The most uniform shape of the frequency response of the signal at the electrical outputs was found to be in smartphones. Sound cards integrated into laptop motherboards had highly unequal characteristics (up to 23 dB). In the case of one of the laptops, the upper range of the transmitted frequencies was limited to the 12,500 Hz band. An external sound card or wireless headphones can improve the situation. In the worst-case scenario, i.e., rock music, the listening time was limited to 2 h and 18 min. Full article
(This article belongs to the Collection Occupational Safety and Personal Protective Equipment)
Show Figures

Figure 1

35 pages, 7893 KiB  
Article
Development of a Personal Ultrasound Exposimeter for Occupational Health Monitoring
by Michal Cieslak, Christoph Kling and Andrea Wolff
Int. J. Environ. Res. Public Health 2021, 18(24), 13289; https://doi.org/10.3390/ijerph182413289 - 16 Dec 2021
Cited by 2 | Viewed by 3260
Abstract
Prolonged exposure to airborne ultrasound in a workplace can have a detrimental influence on a worker’s well-being. Given the ever-increasing use of ultrasonic industrial equipment, it is of vital importance—and may also be regulated by law—to monitor ultrasound exposure during a normal workday [...] Read more.
Prolonged exposure to airborne ultrasound in a workplace can have a detrimental influence on a worker’s well-being. Given the ever-increasing use of ultrasonic industrial equipment, it is of vital importance—and may also be regulated by law—to monitor ultrasound exposure during a normal workday as part of workplace risk assessment. However, the devices currently utilized exhibit limitations with regard to both their operational frequency and their portability (wearability). In this paper, the first prototype of a high-frequency and ultrasound personal exposimeter is presented in the light of the latest national and international standards governing high-frequency and ultrasonic noise measurement in the field of occupational health monitoring. The prototype was tested in the laboratory environment in order to assess its sound level detection capabilities in both the audible and ultrasonic frequency ranges. Several common industrial scenarios—including an ultrasonic welding machine, an ultrasonic cleaning bath, and a compressed air gun—were simulated in a laboratory environment. For each simulated set-up, a corresponding high-frequency or ultrasonic signal was fed through a specially prepared generation chain. Each experimental scenario was initially surveyed with an ultrasound level meter previously tested up to 100 kHz. This was followed by a measurement with the prototype. For this study, the simulated sound signals varied between 10 kHz and 40 kHz on the frequency scale and between 60 dB and 90 dB in amplitude. The portability of the prototype, which may be required to be worn throughout an entire workday (e.g., 8 h), was also considered. All the experiments were performed on a customized ultrasound measurement set-up within a free-field environment located at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. Results obtained suggest a good agreement between the measurements performed with both devices in the louder areas of the sound fields produced. Because the overall measurement uncertainty is highly dependent on the specificity of the individual measurement set-up and measurement procedure, an uncertainty budget estimated for the prototype considers electro-acoustical contributions only. Full article
Show Figures

Figure 1

13 pages, 1575 KiB  
Article
One Year Assessment of the Hearing Preservation Potential of the EVO Electrode Array
by Nicolas Guevara, Cécile Parietti-Winkler, Benoit Godey, Valerie Franco-Vidal, Dan Gnansia, Marine Ardoint, Michel Hoen, Chadlia Karoui, Eric Truy, Christophe Vincent, Isabelle Mosnier and Yann Nguyen
J. Clin. Med. 2021, 10(23), 5604; https://doi.org/10.3390/jcm10235604 - 29 Nov 2021
Viewed by 2022
Abstract
Background: A prospective longitudinal multicentre study was conducted to assess the one-year postsurgical hearing preservation profile of the EVOTM electrode array. Methods: Fifteen adults presenting indications of electro-acoustic stimulation (pure-tone audiometry (PTA) thresholds ≤70 dB below 750 Hz) were implanted with the [...] Read more.
Background: A prospective longitudinal multicentre study was conducted to assess the one-year postsurgical hearing preservation profile of the EVOTM electrode array. Methods: Fifteen adults presenting indications of electro-acoustic stimulation (pure-tone audiometry (PTA) thresholds ≤70 dB below 750 Hz) were implanted with the EVO™ electrode array. Hearing thresholds were collected at five time-points from CI activation to twelve months (12M) after activation. Hearing thresholds and hearing preservation profiles (HEARRING group classification) were assessed. Results: All subjects had measurable hearing thresholds at follow-up. No case of complete loss of hearing or minimal hearing preservation was reported at any time point. At activation (Nact = 15), five participants had complete hearing preservation, and ten participants had partial hearing preservation. At the 12M time point (N12m = 6), three participants had complete hearing preservation, and three participants had partial hearing preservation. Mean hearing loss at activation was 11 dB for full range PTA and 25 dB for PTAs low-frequency (125–500 Hz). Conclusions: This study provides the first longitudinal follow-up on associated hearing profiles to the EVO™ electrode array, which are comparable to the literature. However, other studies on larger populations should be performed. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

12 pages, 1908 KiB  
Article
Application of Wavelet Transform to Damage Identification in the Steel Structure Elements
by Anna Knitter-Piątkowska and Arkadiusz Dobrzycki
Appl. Sci. 2020, 10(22), 8198; https://doi.org/10.3390/app10228198 - 19 Nov 2020
Cited by 16 | Viewed by 2775
Abstract
This work concerns the concept and verification of the experimental possibility of using a wavelet transform to assess a steel structure’s condition. In the research, a developed measuring stand was used. Mechanical waves in the metal plate were excited by the impact. These [...] Read more.
This work concerns the concept and verification of the experimental possibility of using a wavelet transform to assess a steel structure’s condition. In the research, a developed measuring stand was used. Mechanical waves in the metal plate were excited by the impact. These waves were recorded with an electroacoustic transducer and registered in the form of electrical signals. Both the signals generated by the actuator of the plate and the signals reaching the transducer were recorded. The registered data were decomposed into wavelet coefficients. Laboratory tests have shown the possibility of applying this type of test to identify damage in steel structural elements—the relationship between the details of the wavelet transform and the type of damage was demonstrated. Full article
(This article belongs to the Special Issue Nondestructive Testing (NDT): Volume II)
Show Figures

Figure 1

19 pages, 7528 KiB  
Article
Scanning Acoustic Microscopy (SAM): A Robust Method for Defect Detection during the Manufacturing Process of Ultrasound Probes for Medical Imaging
by Francesco Bertocci, Andrea Grandoni and Tatjana Djuric-Rissner
Sensors 2019, 19(22), 4868; https://doi.org/10.3390/s19224868 - 8 Nov 2019
Cited by 48 | Viewed by 15359
Abstract
The main aim of this paper is to provide the feasibility of non-destructive testing (NDT) method, such as scanning acoustic microscopy (SAM), for damage detection in ultrasound (US) probes for medical imaging during the manufacturing process. In a highly competitive and demanding electronics [...] Read more.
The main aim of this paper is to provide the feasibility of non-destructive testing (NDT) method, such as scanning acoustic microscopy (SAM), for damage detection in ultrasound (US) probes for medical imaging during the manufacturing process. In a highly competitive and demanding electronics and biomedical market, reliable non-destructive methods for quality control and failure analysis of electronic components within multi-layered structures are strongly required. Any robust non-destructive method should be capable of dealing with the complexity of miniaturized assemblies, such as the acoustic stack of ultrasonic transducers. In this work, the application of SAM in an industrial scenario was studied for 24 samples of a phased array probe, in order to investigate potential internal integrity, to detect damages, and to assess the compliance of high-demanding quality requirements. Delamination, non-homogeneous layers with micron-thickness, and entrapped air bubbles (blisters) in the bulk of US probe acoustic stacks were detected and studied. Analysis of 2D images and defects visualization by means of ultrasound-based NDT method were compared with electroacoustic characterization (also following as pulse-echo test) of the US probe through an ad-hoc measurement system. SAM becomes very useful for defect detection in multilayered structures with a thickness of some microns by assuring low time-consuming (a limit for other NDT techniques) and quantitative analyses based on measurements. The study provides a tangible contribution and identifies an advantage for manufacturers of ultrasound probes that are oriented toward continuous improvement devoted to the process capability, product quality, and in-process inspection. Full article
(This article belongs to the Special Issue Sensors Based NDE and NDT)
Show Figures

Figure 1

8 pages, 913 KiB  
Article
Electroacoustic Assessment of Wireless Remote Microphone Systems
by Haniyeh Salehi, Vijay Parsa and Paula Folkeard
Audiol. Res. 2018, 8(1), 204; https://doi.org/10.4081/audiores.2018.204 - 17 Apr 2018
Cited by 6 | Viewed by 1224
Abstract
Wireless remote microphones (RMs) transmit the desired acoustic signal to the hearing aid (HA) and facilitate enhanced listening in challenging environments. Fitting and verification of RMs, and benchmarking the relative performance of different RM devices in varied acoustic environments are of significant interest [...] Read more.
Wireless remote microphones (RMs) transmit the desired acoustic signal to the hearing aid (HA) and facilitate enhanced listening in challenging environments. Fitting and verification of RMs, and benchmarking the relative performance of different RM devices in varied acoustic environments are of significant interest to Audiologists and RM developers. This paper investigates the application of instrumental speech intelligibility and quality metrics for characterizing the RM performance in two acoustic environments with varying amounts of background noise and reverberation. In both environments, two head and torso simulators (HATS) were placed 2 m apart, where one HATS served as the talker and the other served as the listener. Four RM systems were interfaced separately with a HA programmed to match the prescriptive targets for the N4 standard audiogram and placed on the listener HATS. The HA output in varied acoustic conditions was recorded and analyzed offline through computational models predicting speech intelligibility and quality. Results showed performance differences among the four RMs in the presence of noise and/or reverberation, with one RM exhibiting significantly better performance. Clinical implications and applications of these results are discussed. Full article
23 pages, 4235 KiB  
Article
Functional Piezocrystal Characterisation under Varying Conditions
by Xiaochun Liao, Zhen Qiu, Tingyi Jiang, Muhammad R. Sadiq, Zhihong Huang, Christine E. M. Demore and Sandy Cochran
Materials 2015, 8(12), 8304-8326; https://doi.org/10.3390/ma8125456 - 2 Dec 2015
Cited by 23 | Viewed by 6534
Abstract
Piezocrystals, especially the relaxor-based ferroelectric crystals, have been subject to intense investigation and development within the past three decades, motivated by the performance advantages offered by their ultrahigh piezoelectric coefficients and higher electromechanical coupling coefficients than piezoceramics. Structural anisotropy of piezocrystals also provides [...] Read more.
Piezocrystals, especially the relaxor-based ferroelectric crystals, have been subject to intense investigation and development within the past three decades, motivated by the performance advantages offered by their ultrahigh piezoelectric coefficients and higher electromechanical coupling coefficients than piezoceramics. Structural anisotropy of piezocrystals also provides opportunities for devices to operate in novel vibration modes, such as the d36 face shear mode, with domain engineering and special crystal cuts. These piezocrystal characteristics contribute to their potential usage in a wide range of low- and high-power ultrasound applications. In such applications, conventional piezoelectric materials are presently subject to varying mechanical stress/pressure, temperature and electric field conditions. However, as observed previously, piezocrystal properties are significantly affected by a single such condition or a combination of conditions. Laboratory characterisation of the piezocrystal properties under these conditions is therefore essential to fully understand these materials and to allow electroacoustic transducer design in realistic scenarios. This will help to establish the extent to which these high performance piezocrystals can replace conventional piezoceramics in demanding applications. However, such characterisation requires specific experimental arrangements, examples of which are reported here, along with relevant results. The measurements include high frequency-resolution impedance spectroscopy with the piezocrystal material under mechanical stress 0–60 MPa, temperature 20–200 °C, high electric AC drive and DC bias. A laser Doppler vibrometer and infrared thermal camera are also integrated into the measurement system for vibration mode shape scanning and thermal conditioning with high AC drive. Three generations of piezocrystal have been tested: (I) binary, PMN-PT; (II) ternary, PIN-PMN-PT; and (III) doped ternary, Mn:PIN-PMN-PT. Utilising resonant mode analysis, variations in elastic, dielectric and piezoelectric constants and coupling coefficients have been analysed, and tests with thermal conditioning have been carried out to assess the stability of the piezocrystals under high power conditions. Full article
(This article belongs to the Special Issue Piezoelectric Materials)
Show Figures

Figure 1

Back to TopTop