Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (341)

Search Parameters:
Keywords = electric power system resilience

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2179 KiB  
Article
The Coupling Mechanism of the Electricity–Gas System and Assessment of Attack Resistance Based on Interdependent Networks
by Qingyu Zou and Lin Yan
Eng 2025, 6(8), 193; https://doi.org/10.3390/eng6080193 - 6 Aug 2025
Abstract
Natural gas plays a critical role in integrated energy systems. In this context, the present study proposes an optimization model for the electricity–gas coupling system, grounded in the theory of interdependent networks. By integrating network topology parameters with real-time operational metrics, the model [...] Read more.
Natural gas plays a critical role in integrated energy systems. In this context, the present study proposes an optimization model for the electricity–gas coupling system, grounded in the theory of interdependent networks. By integrating network topology parameters with real-time operational metrics, the model substantially enhances system robustness and adaptability. To quantify nodal vulnerability and importance, the study introduces two novel evaluation indicators: the Electric Potential–Closeness Fusion Indicator (EPFI) for power networks and the Pressure Difference–Closeness Comprehensive Indicator (PDCI) for natural gas systems. Leveraging these indicators, three coupling paradigms—assortative, disassortative, and random—are systematically constructed and analyzed. System resilience is assessed through simulation experiments incorporating three attack strategies: degree-based, betweenness centrality-based, and random node removal. Evaluation metrics include network efficiency and the variation in the size of the largest connected subgraph under different coupling configurations. The proposed framework is validated using a hybrid case study that combines the IEEE 118-node electricity network with a 20-node Belgian natural gas system, operating under a unidirectional gas-to-electricity energy flow model. Results confirm that the disassortative coupling configuration, based on EPFI and PDCI indicators, exhibits superior resistance to network perturbations, thereby affirming the effectiveness of the model in improving the robustness of integrated energy systems. Full article
Show Figures

Figure 1

23 pages, 1032 KiB  
Article
Performance Optimization of Grounding System for Multi-Voltage Electrical Installation
by Md Tanjil Sarker, Marran Al Qwaid, Md Sabbir Hossen and Gobbi Ramasamy
Appl. Sci. 2025, 15(15), 8600; https://doi.org/10.3390/app15158600 - 2 Aug 2025
Viewed by 147
Abstract
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, [...] Read more.
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, focusing on key performance parameters such as grounding resistance, step and touch voltages, and fault current dissipation efficiency. The study employs computational simulations using the finite element method (FEM) alongside empirical field measurements to evaluate the influence of soil resistivity, electrode materials, and grounding configurations, including rod electrodes, grids, deep-driven rods, and hybrid grounding systems. Results indicate that soil resistivity significantly affects grounding efficiency, with deep-driven rods providing superior performance in high-resistivity conditions, while grounding grids demonstrate enhanced fault current dissipation in substations. The integration of conductive backfill materials, such as bentonite and conductive concrete, further reduces grounding resistance and enhances system reliability. This study provides engineering insights into optimizing grounding systems based on installation voltage levels, cost considerations, and compliance with IEEE Std 80-2013 and IEC 60364-5-54. The findings contribute to the development of more resilient and cost-effective grounding strategies for electrical installations. Full article
Show Figures

Figure 1

20 pages, 4377 KiB  
Article
The Impact of Energy Communities Virtual Islanding on the Integration of Renewables in Distribution Power Systems
by Andrea Bonfiglio, Sergio Bruno, Alice La Fata, Maria Martino, Renato Procopio and Angelo Velini
Energies 2025, 18(15), 4084; https://doi.org/10.3390/en18154084 - 1 Aug 2025
Viewed by 126
Abstract
In power distribution networks, the growing integration of renewable energy sources (RESs) presents a challenge for the electricity system and its operators, who need to make the energy sector more flexible and resilient. In this context, this paper proposes a novel flexibilization service [...] Read more.
In power distribution networks, the growing integration of renewable energy sources (RESs) presents a challenge for the electricity system and its operators, who need to make the energy sector more flexible and resilient. In this context, this paper proposes a novel flexibilization service for the distribution system leveraging the role of renewable energy communities (RECs), an emerging entity with the potential to facilitate the sustainable energy transition through Virtual Islanding operation. The concept of Virtual Islanding is investigated in the paper and a methodology for its validation is developed. Its effectiveness is then assessed using an IEEE-standard 33-node network with significant penetration of RESs, considering the presence of multiple RECs to prove its benefits on electrical distribution networks. The results showcase the advantages of the VI paradigm both from technical and sustainability viewpoint. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

23 pages, 849 KiB  
Article
Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia
by Aco Benović, Miroslav Miškić, Vladan Pantović, Slađana Vujičić, Dejan Vidojević, Mladen Opačić and Filip Jovanović
Sustainability 2025, 17(15), 6977; https://doi.org/10.3390/su17156977 - 31 Jul 2025
Viewed by 172
Abstract
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, [...] Read more.
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level. Full article
23 pages, 5688 KiB  
Article
Fragility Assessment and Reinforcement Strategies for Transmission Towers Under Extreme Wind Loads
by Lanxi Weng, Jiaren Yi, Fubin Chen and Zhenru Shu
Appl. Sci. 2025, 15(15), 8493; https://doi.org/10.3390/app15158493 - 31 Jul 2025
Viewed by 143
Abstract
Transmission towers are particularly vulnerable to extreme wind events, which can lead to structural damage or collapse, thereby compromising the stability of power transmission systems. Enhancing the wind-resistant capacity of these towers is therefore critical for improving the reliability and resilience of electrical [...] Read more.
Transmission towers are particularly vulnerable to extreme wind events, which can lead to structural damage or collapse, thereby compromising the stability of power transmission systems. Enhancing the wind-resistant capacity of these towers is therefore critical for improving the reliability and resilience of electrical infrastructure. This study utilizes finite element analysis (FEA) to evaluate the structural response of a 220 kV transmission tower subjected to fluctuating wind loads, effectively capturing the dynamic characteristics of wind-induced forces. A comprehensive dynamic analysis is conducted to account for uncertainties in wind loading and variations in wind direction. Through this approach, this study identifies the most critical wind angle and local structural weaknesses, as well as determines the threshold wind speed that precipitates structural collapse. To improve structural resilience, a concurrent multi-scale modeling strategy is adopted. This allows for localized analysis of vulnerable components while maintaining a holistic understanding of the tower’s global behavior. To mitigate failure risks, the traditional perforated plate reinforcement technique is implemented. The reinforcement’s effectiveness is evaluated based on its impact on load-bearing capacity, displacement control, and stress redistribution. Results reveal that the critical wind direction is 45°, with failure predominantly initiating from instability in the third section of the tower leg. Post-reinforcement analysis demonstrates a marked improvement in structural performance, evidenced by a significant reduction in top displacement and stress intensity in the critical leg section. Overall, these findings contribute to a deeper understanding of the wind-induced fragility of transmission towers and offer practical reinforcement strategies that can be applied to enhance their structural integrity under extreme wind conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 6699 KiB  
Article
Protecting Power System Infrastructure Against Disruptive Agents Considering Demand Response
by Jesús M. López-Lezama, Nicolás Muñoz-Galeano, Sergio D. Saldarriaga-Zuluaga and Santiago Bustamante-Mesa
Computers 2025, 14(8), 308; https://doi.org/10.3390/computers14080308 - 30 Jul 2025
Viewed by 124
Abstract
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach [...] Read more.
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach to protecting power system infrastructure against deliberate attacks, taking into account the effects of demand response. The interaction between the disruptive agent and the system operator is modeled as a leader–follower Stackelberg game. The leader, positioned in the upper-level optimization problem, must decide which elements to render out of service, anticipating the reaction of the follower (the system operator), who occupies the lower-level problem. The Stackelberg game is reformulated as a bilevel optimization model and solved using a metaheuristic approach. To evaluate the applicability of the proposed method, a 24-bus test system was employed. The results demonstrate that integrating demand response significantly enhances system resilience, compelling the disruptive agent to adopt alternative attack strategies that lead to lower overall disruption. The proposed model serves as a valuable decision-support tool for system operators and planners seeking to improve the robustness and security of electrical networks against disruptive agents. Full article
Show Figures

Figure 1

86 pages, 10602 KiB  
Article
Optimizing Virtual Power Plants Cooperation via Evolutionary Game Theory: The Role of Reward–Punishment Mechanisms
by Lefeng Cheng, Pengrong Huang, Mengya Zhang, Kun Wang, Kuozhen Zhang, Tao Zou and Wentian Lu
Mathematics 2025, 13(15), 2428; https://doi.org/10.3390/math13152428 - 28 Jul 2025
Viewed by 275
Abstract
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable [...] Read more.
This paper addresses the challenge of fostering cooperation among virtual power plant (VPP) operators in competitive electricity markets, focusing on the application of evolutionary game theory (EGT) and static reward–punishment mechanisms. This investigation resolves four critical questions: the minimum reward–punishment thresholds triggering stable cooperation, the influence of initial market composition on equilibrium selection, the sufficiency of static versus dynamic mechanisms, and the quantitative mapping between regulatory parameters and market outcomes. The study establishes the mathematical conditions under which static reward–punishment mechanisms transform competitive VPP markets into stable cooperative systems, quantifying efficiency improvements of 15–23% and renewable integration gains of 18–31%. Through rigorous evolutionary game-theoretic analysis, we identify critical parameter thresholds that guarantee cooperation emergence, resolving longstanding market coordination failures documented across multiple jurisdictions. Numerical simulations and sensitivity analysis demonstrate that static reward–punishment systems enhance cooperation, optimize resources, and increase renewable energy utilization. Key findings include: (1) Reward–punishment mechanisms effectively promote cooperation and system performance; (2) A critical region exists where cooperation dominates, enhancing market outcomes; and (3) Parameter adjustments significantly impact VPP performance and market behavior. The theoretical contributions of this research address documented market failures observed across operational VPP implementations. Our findings provide quantitative foundations for regulatory frameworks currently under development in seven national energy markets, including the European Union’s proposed Digital Single Market for Energy and Japan’s emerging VPP aggregation standards. The model’s predictions align with successful cooperation rates achieved by established VPP operators, suggesting practical applicability for scaled implementations. Overall, through evolutionary game-theoretic analysis of 156 VPP implementations, we establish precise conditions under which static mechanisms achieve 85%+ cooperation rates. Based on this, future work could explore dynamic adjustments, uncertainty modeling, and technologies like blockchain to further improve VPP resilience. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Dynamical Systems)
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 375
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

21 pages, 5953 KiB  
Article
Enhanced Singular Value Decomposition Modulation Technique to Improve Matrix Converter Input Reactive Power Control
by Luis Ramon Merchan-Villalba, José Merced Lozano-García, Alejandro Pizano-Martínez and Iván Abel Hernández-Robles
Energies 2025, 18(15), 3995; https://doi.org/10.3390/en18153995 - 27 Jul 2025
Viewed by 199
Abstract
Matrix converters (MC) offer a compact, bidirectional solution for power conversion; however, achieving precise reactive power control at the input terminals remains challenging under varying operating conditions. This paper presents an enhanced Singular Value Decomposition modulation technique (e-SVD) as a solution tailored to [...] Read more.
Matrix converters (MC) offer a compact, bidirectional solution for power conversion; however, achieving precise reactive power control at the input terminals remains challenging under varying operating conditions. This paper presents an enhanced Singular Value Decomposition modulation technique (e-SVD) as a solution tailored to optimize reactive power management on the MC input side, enabling both active and reactive power control regardless of the power factor. The proposed method achieves input reactive power control based on a reactive power gain, a quantity derived from the apparent output power and defined by a mathematical expression involving electrical parameters and control variables. Experimental tests carried out on a low-power MC prototype to validate the proposal show that the measured reactive power gain closely aligns with theoretical predictions from the mathematical expressions. Overall, the proposed e-SVD modulation technique lays the foundation for more reliable reactive power regulation in applications such as microgrids and distributed generation systems, contributing to the development of smarter and more resilient energy infrastructures. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 452
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

34 pages, 1593 KiB  
Article
Enhancing Radial Distribution System Performance Through Optimal Allocation and Sizing of Photovoltaic and Wind Turbine Distribution Generation Units with Rüppell’s Fox Optimizer
by Yacine Bouali and Basem Alamri
Mathematics 2025, 13(15), 2399; https://doi.org/10.3390/math13152399 - 25 Jul 2025
Viewed by 233
Abstract
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution [...] Read more.
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution network. To improve the performance of the distribution system, this study employs distributed generator (DG) units and focuses on determining their optimal placement, sizing, and power factor. A novel metaheuristic algorithm, referred to as Rüppell’s fox optimizer (RFO), is proposed to address this optimization problem under various scenarios. In the first scenario, where the DG operates at unity power factor, it is modeled as a photovoltaic system. In the second and third scenarios, the DG is modeled as a wind turbine system with fixed and optimal power factors, respectively. The performance of the proposed RFO algorithm is benchmarked against five well-known metaheuristic techniques to validate its effectiveness and competitiveness. Simulations are conducted on the IEEE 33-bus and IEEE 69-bus radial distribution test systems to demonstrate the applicability and robustness of the proposed approach. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Graphical abstract

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 394
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

23 pages, 2295 KiB  
Article
A Two-Stage Sustainable Optimal Scheduling Strategy for Multi-Contract Collaborative Distributed Resource Aggregators
by Lei Su, Wanli Feng, Cao Kan, Mingjiang Wei, Rui Su, Pan Yu and Ning Zhang
Sustainability 2025, 17(15), 6767; https://doi.org/10.3390/su17156767 - 25 Jul 2025
Viewed by 266
Abstract
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for [...] Read more.
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for distributed resource aggregators. A phased multi-contract collaborative scheduling model oriented toward sustainable development is proposed. Through intelligent algorithms, the model dynamically optimises decisions across the day-ahead and intraday phases: During the day-ahead scheduling phase, intelligent algorithms predict load demand and energy output, and combine with elastic performance-based response contracts to construct a user-side electricity consumption behaviour intelligent control model. Under the premise of ensuring user comfort, the model generates a 24 h scheduling plan with the objectives of minimising operational costs and efficiently integrating renewable energy. In the intraday scheduling phase, a rolling optimisation mechanism is used to activate energy storage capacity contracts and dynamic frequency stability contracts in real time based on day-ahead prediction deviations. This efficiently coordinates the intelligent frequency regulation strategies of energy storage devices and electric vehicle aggregators to quickly mitigate power fluctuations and achieve coordinated control of primary and secondary frequency regulation. Case study results indicate that the intelligent optimisation-driven multi-contract scheduling model significantly improves system operational efficiency and stability, reduces system operational costs by 30.49%, and decreases power purchase fluctuations by 12.41%, providing a feasible path for constructing a low-carbon, resilient grid under high renewable energy penetration. Full article
Show Figures

Figure 1

22 pages, 3505 KiB  
Review
Solar Energy Solutions for Healthcare in Rural Areas of Developing Countries: Technologies, Challenges, and Opportunities
by Surafel Kifle Teklemariam, Rachele Schiasselloni, Luca Cattani and Fabio Bozzoli
Energies 2025, 18(15), 3908; https://doi.org/10.3390/en18153908 - 22 Jul 2025
Viewed by 481
Abstract
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to [...] Read more.
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to patient safety. This review explores the transformative potential of solar energy as a sustainable solution for powering healthcare facilities, reducing dependence on fossil fuels, and improving health outcomes. Consequently, energy harvesting is a vital renewable energy source that captures abundant solar and thermal energy, which can sustain medical centers by ensuring the continuous operation of life-saving equipment, lighting, vaccine refrigeration, sanitation, and waste management. Beyond healthcare, it reduces greenhouse gas emissions, lowers operational costs, and enhances community resilience. To address this issue, the paper reviews critical solar energy technologies, energy storage systems, challenges of energy access, and successful solar energy implementations in rural healthcare systems, providing strategic recommendations to overcome adoption challenges. To fulfill the aims of this study, a focused literature review was conducted, covering publications from 2005 to 2025 in the Scopus, ScienceDirect, MDPI, and Google Scholar databases. With targeted investments, policy support, and community engagement, solar energy can significantly improve healthcare access in underserved regions and contribute to sustainable development. Full article
Show Figures

Figure 1

19 pages, 3397 KiB  
Article
Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids
by Adam B. Birchfield, Jong-oh Baek and Joshua Xia
Energies 2025, 18(14), 3844; https://doi.org/10.3390/en18143844 - 19 Jul 2025
Viewed by 223
Abstract
With increasing electrification and the connection of more renewable resources at the transmission level, bulk interconnected electric grids need to plan network expansion with new transmission facilities. The transmission expansion planning (TEP) problem is particularly challenging because of the combinatorial, integer optimization nature [...] Read more.
With increasing electrification and the connection of more renewable resources at the transmission level, bulk interconnected electric grids need to plan network expansion with new transmission facilities. The transmission expansion planning (TEP) problem is particularly challenging because of the combinatorial, integer optimization nature of the problem and the complexity of engineering analysis for any one possible solution. Network synthesis methods, that is, heuristic-based techniques for building synthetic electric grid models based on complex network properties, have been developed in recent years and have the capability of balancing multiple aspects of power system design while efficiently considering large numbers of candidate lines to add. This paper presents a methodology toward scalability in addressing the large-scale TEP problem by applying network synthesis methods. The algorithm works using a novel heuristic method, inspired by simulated annealing, which alternates probabilistic removal and targeted addition, balancing the fixed cost of transmission investment with objectives of resilience via power flow contingency robustness. The methodology is demonstrated in a test case that expands a 2000-bus interconnected synthetic test case on the footprint of Texas with new transmission to support 2025-level load and generation. Full article
Show Figures

Figure 1

Back to TopTop