Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = effective FRP strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1600 KiB  
Article
Research on Stress–Strain Model of FRP-Confined Concrete Based on Compressive Fracture Energy
by Min Wu, Xinglang Fan and Haimin Qian
Buildings 2025, 15(15), 2716; https://doi.org/10.3390/buildings15152716 - 1 Aug 2025
Viewed by 96
Abstract
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is [...] Read more.
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is then assumed that when FRP-confined concrete and actively confined concrete are subjected to the same lateral strain and confining pressure at a specific loading stage, their axial stress–strain relationships are identical at that stage. Based on this assumption, a numerical method for the axial stress–strain relationship of FRP-confined concrete is developed by combining the stress–strain model of actively confined concrete with the axial–lateral strain correlation. Finally, the validity of this numerical method is verified with experimental data with various geometric and material parameters, demonstrating a reasonable agreement between predicted stress–strain curves and measured ones. A parametric analysis is conducted to reveal that the stress–strain curve is independent of the specimen length for strong FRP confinement with small failure strains, while the specimen length exhibits a significant effect on the softening branch for weak FRP confinement. Therefore, for weakly FRP-confined concrete, it is recommended to consider the specimen length effect in evaluating the axial stress–strain relationship. Full article
Show Figures

Figure 1

22 pages, 16001 KiB  
Article
Effect of Additional Bonded Steel Plates on the Behavior of FRP-Retrofitted Resilient RC Columns Subjected to Seismic Loading
by Yunjian He, Gaochuang Cai, Amir Si Larbi, Prafulla Bahadur Malla and Cheng Xie
Buildings 2025, 15(13), 2189; https://doi.org/10.3390/buildings15132189 - 23 Jun 2025
Viewed by 273
Abstract
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that [...] Read more.
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that were retrofitted by different methods, including high-strength mortar retrofit, carbon fiber-reinforced polymer (CFRP) retrofit, and CFRP and steel plate retrofit. In addition, the effect of the axial load was also considered. Quasi-static tests were conducted twice on five specimens, i.e., before and after repairing. The first test was used to create earthquake damage, and the second test was used to compare the seismic behavior of the retrofitted columns. The experimental results indicated that the CFRP retrofit method, whether with a steel plate or not, can restore the lateral resistance capacity well; furthermore, the drift-hardening behavior and self-centering performance were well maintained. The residual drift ratio of the CFRP-retrofitted column was less than 0.5%, even at a drift ratio of 3.5%, and less than 1% at the 6% drift ratio. However, the initial stiffness was only partly restored using the CFRP sheet. The introduction of steel plates was beneficial in restoring the initial stiffness, and the stiffness recovery rate remained above 90% when CFRP sheets and steel plates were used simultaneously. The strain distribution of the CFRP sheet showed that the steel plate did work at the initial loading stage, but the effect was limited. By using the steel plate, the CFRP hoop strain on the south side was reduced by 68% at the 6% drift ratio in the push direction and 38% in the pull direction. The axial strain of CFRP cannot be ignored due to the larger value than the hoop strain, which means that the biaxial stress condition should be considered when using an FRP sheet to retrofit RC columns. Full article
Show Figures

Figure 1

18 pages, 4967 KiB  
Article
Effect of Pre-Damage on the Behavior of Axially and Eccentrically Compressed Concrete Cylinders Confined with PBO-FRCM
by Maciej Pazdan, Tomasz Trapko and Michał Musiał
Materials 2025, 18(12), 2881; https://doi.org/10.3390/ma18122881 - 18 Jun 2025
Viewed by 279
Abstract
In the case of strengthening building structures, the process usually involves elements that have a certain loading history and are typically subjected to loading during the strengthening process. In scientific research, on the other hand, strengthening is usually applied to elements that are [...] Read more.
In the case of strengthening building structures, the process usually involves elements that have a certain loading history and are typically subjected to loading during the strengthening process. In scientific research, on the other hand, strengthening is usually applied to elements that are not representative of real structures. This article presents a study of the effect of pre-damage on the behavior of eccentrically compressed concrete cylinders confined with PBO-FRCM (fabric-reinforced cementitious matrix with PBO fibers) composite. Concrete confinement introduces a favorable triaxial stress state, which leads to an increase in the compressive strength of concrete. FRCM systems are an alternative to FRP (fiber-reinforced polymer) composites. Replacing the polymer matrix with a mineral matrix primarily improves the fire resistance of the strengthening system. The elements were made of concrete with a compressive strength of about 40 MPa, which is typical for current reinforced concrete columns. Pre-damage was induced by loading the test elements to 80% of the average compressive strength and then fully unloading. The elements were then strengthened with three layers of PBO-FRCM composite and subjected to axial or eccentric compression with force applied at two different eccentricities. In addition to electric strain gauges, a digital image correlation system was used for measurements, to identify the initiation of PBO mesh overlap delamination. This study analyzed the elements in terms of load-bearing capacity, deformability, ductility, and failure mechanisms. In general, there was no negative effect of pre-damage on the behavior of the tested elements. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

26 pages, 6314 KiB  
Article
Influence of PBO-FRCM Composite Mesh Anchorage on the Strengthening Effectiveness of Reinforced Concrete Slabs
by Filip Grzymski, Tomasz Trapko and Michał Musiał
Materials 2025, 18(11), 2583; https://doi.org/10.3390/ma18112583 - 31 May 2025
Viewed by 516
Abstract
FRCM (Fabric-Reinforced Cementitious Matrix) composites, while providing an effective alternative to FRP (Fiber-Reinforced Polymer) strengthening systems when epoxy resins cannot be used, typically fail to achieve their full strengthening potential. Research indicates that appropriate mesh anchorage systems can minimize some of the undesirable [...] Read more.
FRCM (Fabric-Reinforced Cementitious Matrix) composites, while providing an effective alternative to FRP (Fiber-Reinforced Polymer) strengthening systems when epoxy resins cannot be used, typically fail to achieve their full strengthening potential. Research indicates that appropriate mesh anchorage systems can minimize some of the undesirable effects that limit FRCM composite performance. This study investigates the effectiveness of different anchorage systems for PBO (p-Phenylene Benzobis Oxazole) fibers in FRCM composites used for strengthening reinforced concrete slabs. A series of unidirectionally bent RC slabs were tested under four-point bending: an unstrengthened control element, slabs strengthened with PBO-FRCM without anchorage, with bar anchorage (GFRP bar in a groove), and with cord anchorage (PBO cord through the slab). The research focused on analyzing the load–deflection behavior and key strain mechanisms that influence structural performance. The findings indicate that a single layer of PBO-FRCM increases bending capacity, raises yield load, and delays initial cracking. Most significantly, the research reveals substantial differences in composite mesh utilization efficiency. This study confirms that mechanical anchorage, particularly bar anchorage, significantly enhances the effectiveness of PBO-FRCM strengthening systems by delaying composite detachment and allowing for greater utilization of the high-strength fiber material. These results contribute valuable insights for RC slabs using FRCM composite systems and the anchorage of their mesh. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

12 pages, 5334 KiB  
Article
Experimental Study on Damage Monitoring of FRP Plate Using FBG Sensors
by Zhe Zhang, Tongchun Qin, Yuping Bao, Ronggui Liu and Jianping He
Micromachines 2025, 16(6), 649; https://doi.org/10.3390/mi16060649 - 29 May 2025
Viewed by 434
Abstract
With the widespread application of FRP (Fiber Reinforced Plastics) materials in fields such as wind turbine blades and ships, the safety performance of these materials during their service life has garnered signification attention. This study employs the fiber Bragg grating (FBG) sensor to [...] Read more.
With the widespread application of FRP (Fiber Reinforced Plastics) materials in fields such as wind turbine blades and ships, the safety performance of these materials during their service life has garnered signification attention. This study employs the fiber Bragg grating (FBG) sensor to monitor damage of the FRP materials. An FRP plate embedded with six FBGs was fabricated, and different degrees of damage were induced in the FRP plate. The six FBGs measured the damage information of the FRP plate under impulse and continuous sinusoidal vibration loads. The results demonstrate that both the strain information and the frequency shift information measured by the FBG sensors can effectively and sensitively identify damage in the FRP plate. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

23 pages, 3631 KiB  
Article
Study on Shear Behavior of Reinforced Concrete Beams Strengthened with FRP Grid–PCM Composite Reinforcement
by Zhimei Zhang and Jiani Lan
Appl. Sci. 2025, 15(11), 6103; https://doi.org/10.3390/app15116103 - 29 May 2025
Viewed by 379
Abstract
In order to deeply investigate the effects of various factors on the shear behavior of RC beams strengthened with fiber-reinforced polymer (FRP) grid–polymer cement mortar (PCM) composite, and to construct a more accurate formula for the shear behavior of reinforced concrete beams, the [...] Read more.
In order to deeply investigate the effects of various factors on the shear behavior of RC beams strengthened with fiber-reinforced polymer (FRP) grid–polymer cement mortar (PCM) composite, and to construct a more accurate formula for the shear behavior of reinforced concrete beams, the following work is carried out in this investigation: Firstly, the finite element numerical simulation of FRP grid–PCM composite RC beams model is carried out using ABAQUS and compared with the test results to verify the correctness of the model; then, the effects of the amount of FRP grid reinforcement, the elastic modulus of the FRP grid, the shear span ratio of the beam, the concrete strength, and the shear reinforcement ratio on the shear performance of the strengthened beams are analyzed; finally, based on the effective strain of the FRP grid to quantify its actual shear contribution, a calculation formula of the shear behavior Capacity of RC Beams Strengthened with an FRP grid–PCM composite is proposed. The results show that the model established in this paper can effectively simulate the shear behavior of the beams in the test; additionally, the effects of the amount of FRP grid reinforcement, the shear span ratio, and the concrete strength are more significant. Finally, the theoretical results of the calculation formula fit well with the collected experimental ones. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

23 pages, 15364 KiB  
Article
Non-Stationary Viscoelastic Modeling of Compression Creep Behavior in Composite Bolted Joints
by Jingwen Yang, Shuai Wang, Hongli Lu, Zhiwei Yuan, Xiaokai Mu, Qingchao Sun and Bo Yuan
Polymers 2025, 17(10), 1382; https://doi.org/10.3390/polym17101382 - 17 May 2025
Viewed by 554
Abstract
Fiber-reinforced polymer (FRP) composites are widely utilized in aerospace and shipbuilding due to their outstanding mechanical properties and lightweight nature. During prolonged service, the mechanical performance of composite bolted joints has drawn increasing attention. This study integrates experimental, theoretical, and numerical methods to [...] Read more.
Fiber-reinforced polymer (FRP) composites are widely utilized in aerospace and shipbuilding due to their outstanding mechanical properties and lightweight nature. During prolonged service, the mechanical performance of composite bolted joints has drawn increasing attention. This study integrates experimental, theoretical, and numerical methods to simulate compressive creep and clarify preload relaxation mechanisms in these joints. A non-stationary Burgers model is proposed to describe the compressive creep behavior of FRP composites and metals, implemented in ABAQUS, which improves fitting accuracy by approximately 10% in R2 compared to the classical model. Two types of creep tests were conducted to examine the effects of initial load and material type on creep behavior, with model accuracy validated against experimental data. Finite element analysis (FEA) was further employed to assess the impact of localized loading and structural parameters on strain. The results demonstrate that the viscoelastic behavior of materials is the dominant factor contributing to preload relaxation in composite bolted joints. Under localized loading conditions, the maximum creep strain can be reduced by more than 60%, effectively mitigating preload loss. This study provides a robust framework for predicting preload relaxation, offering valuable insights for composite bolted joint design. Full article
(This article belongs to the Collection Polymers and Polymer Composites: Structure-Property Relationship)
Show Figures

Graphical abstract

41 pages, 7527 KiB  
Review
State-of-the-Art Review of the Performance of Fiber-Reinforced-Composite-Confined Concrete Columns at Ambient Temperatures
by Zhixin Liu, Chaochao Sun, Jili Qu and Alexander Mokhov
Materials 2025, 18(5), 1151; https://doi.org/10.3390/ma18051151 - 4 Mar 2025
Cited by 1 | Viewed by 1227
Abstract
This paper investigates the effect of fiber-reinforced composites (FRPs) on the mechanical properties of concrete under ambient conditions. It begins with an examination of the various types of FRP and their advantages, followed by a review of isostructural models for passively restrained concrete [...] Read more.
This paper investigates the effect of fiber-reinforced composites (FRPs) on the mechanical properties of concrete under ambient conditions. It begins with an examination of the various types of FRP and their advantages, followed by a review of isostructural models for passively restrained concrete under ambient conditions. These models are categorized into two main groups: those assuming constant confining stresses and those that incorporate stress constraints related to the loading history. Recent studies have highlighted the significant role of stress paths in determining the stress–strain behavior of concrete. Traditional methods for predicting the FRP-constrained concrete reinforcement bond at room temperature are increasingly being replaced by machine learning techniques, such as Artificial Neural Networks (ANNs) and Genetic Expression Programming (GEP), which offer superior accuracy in predicting the FRP-constrained concrete bond strength and the compressive properties of FRP-confined concrete columns. In particular, experimental results show that the compressive strength of FRP-confined concrete columns can increase by up to 30–250%. This review offers valuable insights into the effects of FRP on concrete and contributes to the advancement of engineering design practices. Full article
Show Figures

Figure 1

35 pages, 13152 KiB  
Article
Prediction of Member Forces of Steel Tubes on the Basis of a Sensor System with the Use of AI
by Haiyu Li and Heungjin Chung
Sensors 2025, 25(3), 919; https://doi.org/10.3390/s25030919 - 3 Feb 2025
Cited by 1 | Viewed by 945
Abstract
The rapid development of AI (artificial intelligence), sensor technology, high-speed Internet, and cloud computing has demonstrated the potential of data-driven approaches in structural health monitoring (SHM) within the field of structural engineering. Algorithms based on machine learning (ML) models are capable of discerning [...] Read more.
The rapid development of AI (artificial intelligence), sensor technology, high-speed Internet, and cloud computing has demonstrated the potential of data-driven approaches in structural health monitoring (SHM) within the field of structural engineering. Algorithms based on machine learning (ML) models are capable of discerning intricate structural behavioral patterns from real-time data gathered by sensors, thereby offering solutions to engineering quandaries in structural mechanics and SHM. This study presents an innovative approach based on AI and a fiber-reinforced polymer (FRP) double-helix sensor system for the prediction of forces acting on steel tube members in offshore wind turbine support systems; this enables structural health monitoring of the support system. The steel tube as the transitional member and the FRP double helix-sensor system were initially modeled in three dimensions using ABAQUS finite element software. Subsequently, the data obtained from the finite element analysis (FEA) were inputted into a fully connected neural network (FCNN) model, with the objective of establishing a nonlinear mapping relationship between the inputs (strain) and the outputs (reaction force). In the FCNN model, the impact of the number of input variables on the model’s predictive performance is examined through cross-comparison of different combinations and positions of the six sets of input variables. And based on an evaluation of engineering costs and the number of strain sensors, a series of potential combinations of variables are identified for further optimization. Furthermore, the potential variable combinations were optimized using a convolutional neural network (CNN) model, resulting in optimal input variable combinations that achieved the accuracy level of more input variable combinations with fewer sensors. This not only improves the prediction performance of the model but also effectively controls the engineering cost. The model performance was evaluated using several metrics, including R2, MSE, MAE, and SMAPE. The results demonstrated that the CNN model exhibited notable advantages in terms of fitting accuracy and computational efficiency when confronted with a limited data set. To provide further support for practical applications, an interactive graphical user interface (GUI)-based sensor-coupled mechanical prediction system for steel tubes was developed. This system enables engineers to predict the member forces of steel tubes in real time, thereby enhancing the efficiency and accuracy of SHM for offshore wind turbine support systems. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

19 pages, 13847 KiB  
Article
Effect of GFRP and CFPR Hybrid Confinement on the Compressive Performance of Concrete
by Marina L. Moretti
Fibers 2025, 13(2), 12; https://doi.org/10.3390/fib13020012 - 24 Jan 2025
Cited by 1 | Viewed by 948
Abstract
Application of hybrid jackets consisting of comparatively stiff FRP materials for the seismic retrofit of substandard RC columns, aiming at reducing the risk of buckling and of brittle failure, which are typical to older columns, is a promising challenge. Given the sparsity of [...] Read more.
Application of hybrid jackets consisting of comparatively stiff FRP materials for the seismic retrofit of substandard RC columns, aiming at reducing the risk of buckling and of brittle failure, which are typical to older columns, is a promising challenge. Given the sparsity of similar experimental data, the objective of this paper is to study the hybrid effect in concrete confined with conventional carbon- and glass- reinforced polymer fabrics (CFRP and GFRP, respectively). Twenty-six concrete cylinders, wrapped by one to three layers of CFRP and GFRP with different fiber configurations, were tested in compression. A clear hybrid effect was observed, consisting of a less brittle failure and an improved confinement as compared to the behavior of simple jackets. Furthermore, hybrid specimens, in which a CFRP layer is substituted by a GFRP layer, appear to display similar efficiency in confinement compared to specimens with a stiffer jacket consisting of more CFRP sheets, which are expected to experience 30 to 40% higher lateral pressure owing to the stiffer jacket. A design model to estimate peak concrete compressive strength and axial strain is proposed. The results are promising towards the potential application of similar hybrid jackets for the seismic rehabilitation of older RC columns. Full article
(This article belongs to the Special Issue Fracture Behavior of Fiber-Reinforced Building Materials)
Show Figures

Figure 1

28 pages, 3967 KiB  
Article
Degradation of Interfacial Bond for FRPs Near-Surface Mounted to Concrete Under Fatigue: An Analytical Approach
by Xun Wang and Lijuan Cheng
Fibers 2025, 13(1), 9; https://doi.org/10.3390/fib13010009 - 15 Jan 2025
Viewed by 843
Abstract
In this study, an analytical model was developed for the local bond degradation behavior between a near-surface mounted (NSM) fiber-reinforced polymer (FRP) and concrete under fatigue loading. A trilinear local bond stress–slip relationship was adopted to characterize the fundamental bond behavior at the [...] Read more.
In this study, an analytical model was developed for the local bond degradation behavior between a near-surface mounted (NSM) fiber-reinforced polymer (FRP) and concrete under fatigue loading. A trilinear local bond stress–slip relationship was adopted to characterize the fundamental bond behavior at the FRP-epoxy-concrete interface at different stages of elastic, softening and debonding. A series of post-fatigue direct pull-out tests (DPTs) of NSM FRP-bonded concrete blocks was conducted to provide the local bond degradation laws for the analytical model. The bond region was discretized into finite elements to include the effect of bond degradation to different extents, and a closed-form solution was derived by virtue of appropriate boundary conditions in each fatigue cycle. The model is capable of predicting the FRP strain distribution, local bond stress distribution and relative slip development at a targeted number of fatigue cycles. The reliability of the analytical model was confirmed by experimental data, and its sensitivity to various parameters such as local bond strength, the residual bond strength ratio and Young’s modulus of FRP reinforcement was also assessed in this study. Full article
Show Figures

Figure 1

22 pages, 6337 KiB  
Article
Experimental Investigation on the Effectiveness of EB-CFRP Confinement of Elliptical Concrete Columns
by Zine El Abidine Benzeguir, Omar Chaallal, Ahmed Godat and Rami A. Hawileh
Symmetry 2024, 16(12), 1595; https://doi.org/10.3390/sym16121595 - 29 Nov 2024
Cited by 1 | Viewed by 754
Abstract
This paper presents the results of an experimental study involving 20 tests performed on elliptical concrete columns confined with externally bonded carbon fiber-reinforced polymer (EB-CFRP) laminates. The study aimed to evaluate the effects of elliptical aspect ratio (A/B) as well as confinement rigidity [...] Read more.
This paper presents the results of an experimental study involving 20 tests performed on elliptical concrete columns confined with externally bonded carbon fiber-reinforced polymer (EB-CFRP) laminates. The study aimed to evaluate the effects of elliptical aspect ratio (A/B) as well as confinement rigidity (number of EB-FRP layers) on confinement effectiveness. The experimental program consisted of one series of control concrete columns (unstrengthened) and three additional series, each one strengthened with one, two and three layers of EB-CFRP sheets, respectively. Furthermore, each series considered five elliptical aspect ratios (A/B) ranging from 1.0 to 1.6. Following compressive concentric tests until failure, the results were analyzed to characterize the confinement level with an increasing number of EB-CFRP layers as a function of the elliptical aspect ratio. The results show considerable enhancements in compressive strength and in the ductility of the confined columns. Furthermore, this improvement is amplified as the number of EB-CFRP layers increases, indicating a proportional relationship between the compressive strength and the number of CFRP layers. It is found that the ultimate strength of EB-CFRP-confined columns with three layers reached up to 130% compared to the control specimens. However, increasing the elliptical aspect ratio reduced the compressive strength and ductility of confined columns. This study investigated the relation between the CFRP hoop and axial strains and the elliptical aspect ratios. Moreover, through comparison, the results reveal that the prediction models proposed by the Canadian standards S806-12 and S6-19 do not capture the negative effect of the elliptical aspect ratio in confined concrete columns. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Structural Engineering and Structural Mechanics)
Show Figures

Figure 1

16 pages, 8643 KiB  
Article
Evaluation of Bonding Properties Between CFRP Laminate and Concrete Using Externally Bonded Reinforcement on Transverse Grooves (EBROTG) Method
by Ahmed H. Al-Abdwais and Adil K. Al-Tamimi
J. Compos. Sci. 2024, 8(12), 488; https://doi.org/10.3390/jcs8120488 - 22 Nov 2024
Viewed by 852
Abstract
The external bonding system using CFRP composite has been extensively utilized for strengthening different structures worldwide. However, premature debonding in this strengthening technique is a critical failure that leads to the fiber not reaching its ultimate capacity. In order to enhance the capacity [...] Read more.
The external bonding system using CFRP composite has been extensively utilized for strengthening different structures worldwide. However, premature debonding in this strengthening technique is a critical failure that leads to the fiber not reaching its ultimate capacity. In order to enhance the capacity of the externally bonded (EB) FRP and to slow the premature debonding failure mechanism, numerous anchoring techniques have been applied to improve the bonding capacity. The externally bonded reinforcement on grooves (EBROG) technology is one of the strategies that have been recently developed to delay the debonding issue. Although extensive studies have been conducted in the literature on the EBROG method, most of these studies have been focused on the bonding characteristics of grooves in the longitudinal direction, and few studies on the effect of different designs and configurations (e.g., width, height, and spacing) in the transverse groove direction have been conducted using only CFRP fabric. In the present study, an experimental investigation was carried out to study the bond behavior of the externally bonded reinforcement on transverse grooves (EBROTG) technique on CFRP-to-concrete joints involving different parameters, including groove width, depth, spaces between grooves, and strain evolution with the corresponding bond stress–slip relationships using CFRP laminate. Twenty-four concrete prisms, divided into eight groups of three specimens, were tested using a single-lap shear test set-up. The results of testing proved that the EBROTG method furnished a proper anchor system and highly enhanced the bonding force of the tests. The increasing range of bonding strength in the specimens reinforced with the transverse grooving method ranged from 11 to 86% compared to the externally bonded reinforcement (EBR), reflecting the effect of different widths, depths, and distances between grooves. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

19 pages, 22249 KiB  
Article
Experimental Investigation on Bending Properties of DP780 Dual-Phase Steel Strengthened by Hybrid Polymer Composite with Aramid and Carbon Fibers
by Jerzy Marszałek
Polymers 2024, 16(22), 3160; https://doi.org/10.3390/polym16223160 - 13 Nov 2024
Viewed by 1209
Abstract
Lowering passenger vehicle weight is a major contributor to improving fuel consumption and reducing greenhouse gas emissions. One fundamental method to achieving lighter cars is to replace heavy materials with lighter ones while still ensuring the required strength, durability, and ride comfort. Currently, [...] Read more.
Lowering passenger vehicle weight is a major contributor to improving fuel consumption and reducing greenhouse gas emissions. One fundamental method to achieving lighter cars is to replace heavy materials with lighter ones while still ensuring the required strength, durability, and ride comfort. Currently, there is increasing interest in hybrid structures obtained through adhesive bonding of high-performance fiber-reinforced polymers (FRPs) to high-strength steel sheets. The high weight reduction potential of steel/FRP hybrid structures is obtained by the thickness reduction of the steel sheet with the use of a lightweight FRP. The result is a lighter structure, but it is challenging to retain the stiffness and load-carrying capacity of an unreduced-thickness steel sheet. This work investigates the bending properties of a non-reinforced DP780 steel sheet that has a thickness of 1.45 mm (S1.45) and a hybrid structure (S1.15/ACFRP), and its mechanical properties are examined. The proposed hybrid structure is composed of a DP780 steel sheet with a thickness of 1.15 mm (S1.15) and a hybrid composite (ACFRP) made from two plies of woven hybrid fabric of aramid and carbon fibers and an epoxy resin matrix. The hybridization effect of S1.15 with ACFRP is investigated, and the results are compared with those available in the literature. S1.15/ACFRP is only 5.71% heavier than S1.15, but its bending properties, including bending stiffness, maximum bending load capacity, and absorbed energy, are higher by 29.7, 49.8, and 41.2%, respectively. The results show that debonding at the interface between S1.15 and ACFRP is the primary mode of fracture in S1.15/ACFRP. Importantly, S1.15 is permanently deformed because it reaches its peak plastic strain. It is found that the reinforcement layers of ACFRP remain undamaged during the entire loading process. In the case of S1.45, typical ductile behavior and a two-stage bending response are observed. S1.15/ACFRP and S1.45 are also compared in terms of their weight and bending properties. It is observed that S1.15/ACFRP is 16.47% lighter than S1.45. However, the bending stiffness, maximum bending load capacity, and absorbed energy of S1.15/ACFRP remain 34.4, 11.5, and 21.1% lower compared to S1.45, respectively. Therefore, several modifications to the hybrid structure are suggested to improve its mechanical properties. The results of this study provide valuable conclusions and useful data to continue further research on the application of S1.15/ACFRP in the design of lightweight and durable thin-walled structures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

23 pages, 3800 KiB  
Article
Research on the Theoretical Models of FRP-Confined Gangue Aggregate Concrete Partially Filled Steel Tube Columns
by Jian Wang, Junwu Xia, Chuanzhi Sun, Jinsheng Cheng, Shengbo Zhou and Jibing Deng
Buildings 2024, 14(11), 3516; https://doi.org/10.3390/buildings14113516 - 4 Nov 2024
Viewed by 940
Abstract
FRP-confined gangue aggregate concrete partially filled steel tubes (CGCPFTs) can not only effectively enhance the performance of coal gangue concrete, but also fully exploit the elastic-plastic mechanical behavior of the steel tubes. However, research on theoretical models that can describe their mechanical properties [...] Read more.
FRP-confined gangue aggregate concrete partially filled steel tubes (CGCPFTs) can not only effectively enhance the performance of coal gangue concrete, but also fully exploit the elastic-plastic mechanical behavior of the steel tubes. However, research on theoretical models that can describe their mechanical properties is yet to be conducted. To fill this gap, theoretical models for structural design and analysis were proposed for CGCPFTs. For the analytical model, based on the available experimental data, a prediction method for the stress–strain behavior of the gangue aggregate concrete in CGCPFTs, which is confined only by FRP and partly confined by both FRP and the steel tubes, was first proposed. Additionally, the condition for the synergetic deformation of the two confined states of gangue aggregate concrete within the CGCPFT was proposed. Based on the condition, an iterative incremental process was developed which subsequently allows for the theoretical calculation of the load–displacement curve for the CGCPFT under monotonic axial compression. For the design model, by introducing the constraint contribution coefficient of the steel tube, the existing closed-loop calculation formula for the stress–strain relationship of FRP-confined concrete was revised. Furthermore, by expressing the axial and lateral stresses of the steel tube as a unified circumferential effect on the concrete, the calculation methods for the ultimate strength and strain in the closed-loop formula were redefined, thus achieving the prediction of the stress–strain behavior of CGCPFTs. The comparison with the test data obtained by the author and their team revealed that both the analysis and design models could provide accurate predictions. Full article
Show Figures

Figure 1

Back to TopTop