Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = eastern edge of the Qinghai–Tibet Plateau

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3003 KiB  
Article
Fault Geometry and Slip Distribution of the 2023 Jishishan Earthquake Based on Sentinel-1A and ALOS-2 Data
by Kaifeng Ma, Yang Liu, Qingfeng Hu, Jiuyuan Yang and Limei Wang
Remote Sens. 2025, 17(13), 2310; https://doi.org/10.3390/rs17132310 - 5 Jul 2025
Viewed by 422
Abstract
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical [...] Read more.
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical evidence for investigating the crustal compression mechanisms associated with the northeastward expansion of the Qinghai–Tibet Plateau. In this study, we successfully acquired a high-resolution coseismic deformation field of the earthquake by employing interferometric synthetic aperture radar (InSAR) technology. This was accomplished through the analysis of image data obtained from both the ascending and descending orbits of the Sentinel-1A satellite, as well as from the ascending orbit of the ALOS-2 satellite. Our findings indicate that the coseismic deformation is predominantly localized around the Lajishan fault zone, without leading to the development of a surface rupture zone. The maximum deformations recorded from the Sentinel-1A ascending and descending datasets are 7.5 cm and 7.7 cm, respectively, while the maximum deformation observed from the ALOS-2 ascending data reaches 10 cm. Geodetic inversion confirms that the seismogenic structure is a northeast-dipping thrust fault. The geometric parameters indicate a strike of 313° and a dip angle of 50°. The slip distribution model reveals that the rupture depth predominantly ranges between 5.7 and 15 km, with a maximum displacement of 0.47 m occurring at a depth of 9.6 km. By integrating the coseismic slip distribution and aftershock relocation, this study comprehensively elucidates the stress coupling mechanism between the mainshock and its subsequent aftershock sequence. Quantitative analysis indicates that aftershocks are primarily located within the stress enhancement zone, with an increase in stress ranging from 0.12 to 0.30 bar. It is crucial to highlight that the structural units, including the western segment of the northern margin fault of West Qinling, the eastern segment of the Daotanghe fault, the eastern segment of the Linxia fault, and both the northern and southern segment of Lajishan fault, exhibit characteristics indicative of continuous stress loading. This observation suggests a potential risk for fractures in these areas. Full article
Show Figures

Figure 1

14 pages, 3809 KiB  
Article
Variations in the Thermal Low-Pressure Location Index over the Qinghai–Tibet Plateau and Its Relationship with Summer Precipitation in China
by Qingxia Xie, Mingfei Zhou, Yulei Zhu, Hongzhong Tang, Dongpo He, Jing Yang and Qingbing Pang
Atmosphere 2024, 15(8), 931; https://doi.org/10.3390/atmos15080931 - 4 Aug 2024
Viewed by 1232
Abstract
The thermal and dynamic effects of the special topography of the Qinghai–Tibet Plateau have a significant impact on rainfall in China. Utilizing NCEP/NCAR monthly reanalysis data alongside precipitation observations from 1936 monitoring stations across China spanning from 1966 to 2022, this study establishes [...] Read more.
The thermal and dynamic effects of the special topography of the Qinghai–Tibet Plateau have a significant impact on rainfall in China. Utilizing NCEP/NCAR monthly reanalysis data alongside precipitation observations from 1936 monitoring stations across China spanning from 1966 to 2022, this study establishes a location index for the thermal low-pressure center situated over the Qinghai–Tibet Plateau. Temporal variations in the location index and summer (July) precipitation patterns in China were studied. Over the past six decades, thermal low-pressure centers have been predominantly positioned near 90° E and 32.5° N within a geopotential height of 4360 gpm, with their distribution extending from east to west rather than from south to north. The longitudinal and latitudinal position indices showed the same linear trend, with a negative trend before the 21st century, and then began to turn positive. Mutation analysis highlights pronounced weakening mutations occurring in 1981 and 1973, with the longitudinal index transitioning from an interannual cycle of approximately 6–8 years, while the latitudinal index displays quasi-cyclic oscillations of 5 and 8 and 12–14 years. Strong negative correlations are evident between the location indices and precipitation along the southeastern edge of the Qinghai–Tibet Plateau and in southern China, contrasting with the positive correlations observed in the central-eastern plateau, northwest, north, and the Huang-Huai region of China. The center of the thermal low is located to the east and north, corresponding to the deeper surface thermal low in most areas east of China, and the stronger transport of warm and wet air from the southwest wind, leading to greater convergence of southwest wind and northwest wind in China’s northern region. The south of the Yangtze River is controlled by the strengthening West Pacific subtropical high and South Asia high, resulting in a significant decrease in precipitation, and the warm and humid air from the southwest on the west side of the West Pacific subtropical high is also transported to the north, increasing the precipitation in most parts of the north. Full article
(This article belongs to the Special Issue The Impact of Climate Change on Water Resources)
Show Figures

Figure 1

33 pages, 41920 KiB  
Article
Exploring the Spatiotemporal Evolution Patterns and Determinants of Construction Land in Mianning County on the Eastern Edge of the Qinghai–Tibet Plateau
by Yinbing Zhao, Zhongyun Ni, Yang Zhang, Peng Wan, Chuntao Geng, Wenhuan Yu, Yongjun Li and Zhenrui Long
Land 2024, 13(7), 993; https://doi.org/10.3390/land13070993 - 5 Jul 2024
Cited by 2 | Viewed by 1357
Abstract
Studying the spatiotemporal evolution and driving forces behind construction land amidst the intricate ecological and geological setting on the eastern edge of the Qinghai–Tibet Plateau offers invaluable insights for local sustainable development in a landscape transition zone and ecologically fragile area. Using construction [...] Read more.
Studying the spatiotemporal evolution and driving forces behind construction land amidst the intricate ecological and geological setting on the eastern edge of the Qinghai–Tibet Plateau offers invaluable insights for local sustainable development in a landscape transition zone and ecologically fragile area. Using construction land data from four phases, spanning 1990 to 2020, in Mianning County, this study employs methodologies like the Landscape Expansion Index (LEI) and land use transfer matrix to delineate the spatiotemporal evolution characteristics of construction land. A comprehensive set of 12 influencing factors across five categories—geomorphology, geological activity, climate, river and vegetation environment, and social economy—were examined. The Geographically Weighted Regression (GWR) model was then employed to decipher the spatial distribution pattern of construction land in 1990 and 2020, shedding light on the driving mechanisms behind its changes over the three decades. The research reveals distinct patterns of construction land distribution and evolution in Mianning County, shaped by the ecological and geological landscape. Notably, the Anning River wide valley exhibits a concentrated and contiguous development mode, while the Yalong River deep valley showcases a decentralized development pattern, and the Dadu River basin manifests an aggregation development mode centered around high mountain lakes. Over the study period, all three river basins witnessed varying degrees of construction land expansion, transitioning from quantitative expansion to qualitative enhancement. Edge expansion predominantly characterizes the expansion mode, complemented by leapfrog and infilling modes, accompanied by conversions from cropland and forest land to construction land. An analysis of the spatial pattern and drivers of construction land change highlights human-induced factors dominating the Anning River Basin, contrasting with natural factors prevailing in the Yalong River Basin and the Dadu River Basin. Future efforts should prioritize climate change considerations and environmental capacity, aiming for an ecologically resilient spatial pattern of construction land. Full article
Show Figures

Figure 1

17 pages, 3022 KiB  
Article
Study on Spatio-Temporal Indexing Model of Geohazard Monitoring Data Based on Data Stream Clustering Algorithm
by Jiahao Li, Weiwei Song, Jianglong Chen, Qunlan Wei and Jinxia Wang
ISPRS Int. J. Geo-Inf. 2024, 13(3), 93; https://doi.org/10.3390/ijgi13030093 - 15 Mar 2024
Viewed by 2073
Abstract
Yunnan Province, residing in the eastern segment of the Qinghai–Tibet Plateau and the western part of the Yunnan–Guizhou Plateau, faces significant challenges due to its intricate geological structures and frequent geohazards. These pose monumental risks to community safety and infrastructure. Unfortunately, conventional spatial [...] Read more.
Yunnan Province, residing in the eastern segment of the Qinghai–Tibet Plateau and the western part of the Yunnan–Guizhou Plateau, faces significant challenges due to its intricate geological structures and frequent geohazards. These pose monumental risks to community safety and infrastructure. Unfortunately, conventional spatial indexing methods struggle with the enormous influx of geohazard data, exhibiting inadequacies in efficient spatio-temporal querying and failing to meet the swift response imperatives for real-time geohazard monitoring and early warning mechanisms. In response to these challenges, this study proffers a cutting-edge spatio-temporal indexing model, the BCHR-index, undergirded by data stream clustering algorithms. The operational schema of the BCHR-index model is bifurcated into two stages: real-time and offline. The real-time phase proficiently uses micro-clusters shaped by the CluStream algorithm in unison with a B+ tree to construct indices in memory, thereby satisfying the exigent response necessities for geohazard data streams. Conversely, the offline stage employs the CluStream algorithm and the Hilbert curve to manage heterogeneously distributed spatial objects. Paired with a B+ tree, this framework promotes efficient spatio-temporal querying of geohazard data. The empirical results indicate that the indexing model implemented in this study affords millisecond-level responses when faced with query requests from real-time geohazard data streams. Moreover, in aspects of spatial query efficiency and data-insertion performance, it demonstrates superior results compared to the R-tree and Hilbert-R tree models. Full article
Show Figures

Figure 1

20 pages, 9220 KiB  
Article
Research on the Characteristics of Raindrop Spectrum and Its Water Vapour Transport Sources in the Southwest Vortex: A Case Study of 15–16 July 2021
by Ting Wang, Maoshan Li, Ming Gong, Yuchen Liu, Yonghao Jiang, Pei Xu, Yaoming Ma and Fanglin Sun
Water 2024, 16(6), 837; https://doi.org/10.3390/w16060837 - 14 Mar 2024
Viewed by 1357
Abstract
This study investigated the convective weather features, precipitation microphysical characteristics, and water vapour transport characteristics associated with a southwest vortex precipitation event that occurred on the eastern edge of the Qinghai–Tibet Plateau, coinciding with a southwest vortex event, from 15 to 16 July [...] Read more.
This study investigated the convective weather features, precipitation microphysical characteristics, and water vapour transport characteristics associated with a southwest vortex precipitation event that occurred on the eastern edge of the Qinghai–Tibet Plateau, coinciding with a southwest vortex event, from 15 to 16 July 2021, using conventional observations of raindrop spectra, ERA5 reanalysis data, CMORPH precipitation data, and the HYSPLIT_v4 backward trajectory model. The findings aim to provide theoretical insights for improving the forecasting and numerical simulations of southwest vortex precipitation events. The findings revealed that the precipitation event induced by the southwestern vortex at Emeishan Station on 15–16 July 2021 was characterised by high rainfall intensity and significant precipitation accumulation. The raindrop spectrum exhibited a broad distribution with a notable bimodal structure. Both the Sichuan Basin and the Tibetan Plateau were dominated by the South Asian high pressure at higher altitudes, while a pronounced low-pressure system developed at mid and low altitudes within the basin, establishing a meteorological context marked by upper-level divergence and lower-level convergence. Throughout the event, notable vertical uplift velocities were recorded across the Sichuan Basin and Tibetan Plateau, along with distinct positive vorticity zones in the lower and middle strata of the Sichuan Basin, indicating that the atmosphere was in a state of thermal instability. The majority of moisture was in the mid and lower troposphere with evident convergence movements, which played a crucial role in the southwest vortex’s development. WRF numerical simulations of the Emeishan precipitation event more accurately modelled the weather conditions for this precipitation but tended to overestimate the level of precipitation. It was observed that the region around Emei Mountain primarily received moisture influx from the southern Bay of Bengal and the South China Sea, with moisture transport chiefly originating from the Sichuan Basin and in a south-westward trajectory. Full article
Show Figures

Figure 1

15 pages, 2480 KiB  
Article
Freeze–Thaw Cycles Have More of an Effect on Greenhouse Gas Fluxes than Soil Water Content on the Eastern Edge of the Qinghai–Tibet Plateau
by Shanshan Zhao, Mingsen Qin, Xia Yang, Wenke Bai, Yunfeng Yao and Junqiang Wang
Sustainability 2023, 15(2), 928; https://doi.org/10.3390/su15020928 - 4 Jan 2023
Cited by 6 | Viewed by 2162
Abstract
The Qinghai-Tibetan Plateau (QTP) is sensitive to global climate change. This is because it is characterized by irregular rainfall and freeze–thaw cycles resulting from its high elevation and low temperature. Greenhouse gases (GHGs) mainly contribute to the warming of the QTP, but few [...] Read more.
The Qinghai-Tibetan Plateau (QTP) is sensitive to global climate change. This is because it is characterized by irregular rainfall and freeze–thaw cycles resulting from its high elevation and low temperature. Greenhouse gases (GHGs) mainly contribute to the warming of the QTP, but few studies have investigated and compared the effects of irregular rainfall and freeze–thaw cycles on GHGs. In this study, we conducted a laboratory experiment under four types of freeze–thaw treatments with three soil water content levels to simulate the irregular freeze–thaw and rainfall conditions. The results showed that both the soil water content and freeze–thaw treatment influenced the soil properties, soil enzyme activities, and the microbial biomass; however, the freeze–thaw treatment had significantly higher influences on GHG fluxes than soil water content. In order to explore other biotic and abiotic factors in an attempt to establish the main factor in determining GHG fluxes, a variation partition analysis was conducted. The results revealed that freeze–thaw treatments were the strongest individual factors in predicting the variance in N2O and CO2 fluxes, and the pH, which was only significantly affected by freeze–thaw treatment, was the strongest individual factor in predicting CH4 flux. Across the water content levels, all the freeze–thaw treatments increased the N2O flux and reduced the CH4 flux as compared to the CK treatment. In addition, long-term freezing reduced the CO2 flux, but the treatment of slowly freezing and quickly thawing increased the CO2 flux. In summary, these results suggest that the freeze–thaw treatments had quite different effects on N2O, CH4, and CO2 fluxes, and their effects on GHG fluxes are more significant than those of soil water content on the eastern edge of the QTP. Full article
Show Figures

Figure 1

14 pages, 1880 KiB  
Article
Climatic Variability Caused by Topographic Barrier Prevents the Northward Spread of Invasive Ageratina adenophora
by Yi Zhang, Ziyan Liao, Han Jiang, Wenqin Tu, Ning Wu, Xiaoping Qiu and Yongmei Zhang
Plants 2022, 11(22), 3108; https://doi.org/10.3390/plants11223108 - 15 Nov 2022
Cited by 3 | Viewed by 2085
Abstract
Ageratina adenophora (Spreng.) R.M.King & H.Rob. is one of the most threatening invasive alien plants in China. Since its initial invasion into Yunnan in the 1940s, it spread rapidly northward to southern Mount Nyba in Sichuan, which lies on the eastern edge of [...] Read more.
Ageratina adenophora (Spreng.) R.M.King & H.Rob. is one of the most threatening invasive alien plants in China. Since its initial invasion into Yunnan in the 1940s, it spread rapidly northward to southern Mount Nyba in Sichuan, which lies on the eastern edge of the Qinghai–Tibet Plateau. During fieldwork, we found an interesting phenomenon: A. adenophora failed to expand northward across Mount Nyba, even after the opening of the 10 km tunnel, which could have served as a potential corridor for its spread. In this work, to explore the key factors influencing its distribution and spread patterns, we used a combination of ensemble species distribution models with the MigClim model. We found that the temperature annual range (TAR), precipitation of driest month (PDM), highway density (HW), and wind speed (WS) were the most predominant factors affecting its distribution. The north of Mount Nyba is not suitable for A. adenophora survival due to higher TAR. The spatial–temporal dynamic invasion simulation using MigClim further illustrated that the northward invasion of A. adenophora was stopped by Mount Nyba. Overall, Mount Nyba may act as a topographic barrier that causes environmental differences between its south and north sides, preventing the northward invasion of A. adenophora. However, other suitable habitats on the northern side of the mountain still face challenges because A. adenophora is likely to invade via other routes. Therefore, long-term monitoring is needed to prevent human-induced long-distance spread events. Full article
(This article belongs to the Special Issue Plant Invasion Ecology)
Show Figures

Figure 1

29 pages, 4500 KiB  
Article
Spatio-Temporal Differences in Economic Security of the Prefecture-Level Cities in Qinghai–Tibet Plateau Region of China: Based on a Triple-Dimension Analytical Framework of Economic Geography
by Huasheng Zhu, Duer Su and Fei Yao
Int. J. Environ. Res. Public Health 2022, 19(17), 10605; https://doi.org/10.3390/ijerph191710605 - 25 Aug 2022
Cited by 5 | Viewed by 2625
Abstract
The assessment of regional economic security (RES) is mainly based on the theoretical ideas of political economy and marginalism, and the research areas are mainly concentrated in European and American countries/regions, especially Eastern Europe. Taking the Qinghai–Tibet Plateau in China as an example, [...] Read more.
The assessment of regional economic security (RES) is mainly based on the theoretical ideas of political economy and marginalism, and the research areas are mainly concentrated in European and American countries/regions, especially Eastern Europe. Taking the Qinghai–Tibet Plateau in China as an example, this paper constructs a triple-dimensional analytical framework, resources, and environmental–economic foundation-driving forces, based on the institutional approach of economic geography, with the purpose of making up for the deficiency of the extant literature, which pays little attention to regional characteristics and the dynamic mechanism concerning RES, and to provide a tool to identify key factors affecting RES. This paper obtained the main conclusions as follows. (1) The index of the economic security in the Qinghai–Tibet Plateau is on the rise, and the difference at the level of RES among cities is significant but tends to decrease. (2) There is a significant spatial autocorrelation among cities in the Qinghai–Tibet Plateau in terms of RES. The high-value areas are concentrated along the southeast edge, and the low-value areas are concentrated in the central areas of the west. (3) Despite lower weight values, the weakness of the economic foundation and the fragility of the ecological environment has increasingly hampered the improvement of the economic security in the Qinghai–Tibet Plateau. In terms of driving forces, it is the support of the central government and aid programs of other provinces that contributes to its economic development. Full article
(This article belongs to the Special Issue Urban Spatial Planning and Sustainable Development)
Show Figures

Figure 1

11 pages, 3023 KiB  
Article
Molecular Survey of Vector-Borne Pathogens in Ticks, Sheep Keds, and Domestic Animals from Ngawa, Southwest China
by Miao Lu, Junhua Tian, Hongqing Zhao, Hai Jiang, Xincheng Qin, Wen Wang and Kun Li
Pathogens 2022, 11(5), 606; https://doi.org/10.3390/pathogens11050606 - 22 May 2022
Cited by 16 | Viewed by 3907
Abstract
Vector-borne pathogens are mainly transmitted by blood-feeding arthropods such as ticks, mosquitoes, fleas, lice, mites, etc. They pose a significant threat to animal and human health due to their worldwide distribution. Although much work has been performed on these pathogens, some neglected areas [...] Read more.
Vector-borne pathogens are mainly transmitted by blood-feeding arthropods such as ticks, mosquitoes, fleas, lice, mites, etc. They pose a significant threat to animal and human health due to their worldwide distribution. Although much work has been performed on these pathogens, some neglected areas and undiscovered pathogens are still to be further researched. In this study, ticks (Haemaphysalis qinghaiensis), sheep keds (Melophagus ovinus), and blood samples from yaks and goats were collected in Ngawa Tibetan and Qiang Autonomous Prefecture located on the eastern edge of the Qinghai–Tibet Plateau, Southwest China. Several vector-borne bacterial pathogens were screened and studied. Anaplasma bovis strains representing novel genotypes were detected in ticks (8.83%, 37/419), yak blood samples (45.71%, 64/140), and goat blood samples (58.93%, 33/56). Two spotted fever group (SFG) Rickettsiae, Candidatus Rickettsia jingxinensis, and a novel Rickettsia species named Candidatus Rickettsia hongyuanensis were identified in ticks. Another Rickettsia species closely related to the Rickettsia endosymbiont of Polydesmus complanatus was also detected in ticks. Furthermore, a Coxiella species was detected in ticks (3.34%, 14/419), keds (1.89%, 2/106), and yak blood (0.71%, 1/140). Interestingly, another Coxiella species and a Coxiella-like bacterium were detected in a tick and a goat blood sample, respectively. These results indicate the remarkable diversity of vector-borne pathogens circulating in this area. Further investigations on their pathogenicity to humans and domestic animals are still needed. Full article
Show Figures

Figure 1

22 pages, 17456 KiB  
Article
Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019)
by Junhan Chen, Feng Yan and Qi Lu
Remote Sens. 2020, 12(19), 3150; https://doi.org/10.3390/rs12193150 - 25 Sep 2020
Cited by 123 | Viewed by 6405
Abstract
Vegetation is the terrestrial ecosystem component most sensitive to climate change. The Qinghai–Tibet Plateau (QTP), characterized by a cold climate and vulnerable ecosystems, has experienced significant warming in previous decades. Identifying the variation in vegetation coverage and elucidating its main driving factors are [...] Read more.
Vegetation is the terrestrial ecosystem component most sensitive to climate change. The Qinghai–Tibet Plateau (QTP), characterized by a cold climate and vulnerable ecosystems, has experienced significant warming in previous decades. Identifying the variation in vegetation coverage and elucidating its main driving factors are critical for ecological protection on the QTP. In this study, MOD13A2 Normalized Difference Vegetation Index (NDVI) data in the growing season (May to September) was used to represent QTP vegetation coverage during 2000–2019. The univariate linear regression, partial correlation analysis, residual analysis, and the Hurst exponent were used to detect the vegetation spatiotemporal dynamic, analyze the relationship between the vegetation and main driving factors, and predict the future vegetation dynamic. The growing season NDVI (GNDVI) of the QTP showed an extremely significant rate of increase (0.0011/a) during the study period, and 79.29% of the vegetated areas showed a greening trend. Over the past 20 years, the northeast, mid-east, and western edges of the plateau have been cooling and wetting, while the southwest, mid-west, and southeast have been warming and drying. Different climatic conditions lead to spatial differences in the response of plateau vegetation to climatic factors with generally 1–4 months lag time. The vegetation in the north of the plateau was mainly positively correlated with moisture, and negatively correlated with temperature, while the southern part showed positive correlation with temperature and negative correlation with moisture. Due to the enhancement of cooling and wetting trend in the last decade (2010–2019), especially in the south of the plateau, the greening trend of the plateau vegetation slowed down appreciably and even degraded in some areas. Human activities were mainly concentrated in the eastern part of the plateau—and its positive effect on vegetation was gradually increasing in most areas during study period, especially in the northeastern part. However, vegetation degradation caused by human activities in the southeast of the plateau should not be ignored. The future vegetation dynamic based on the Hurst exponent showed that the plateau faces a higher risk of vegetation degradation, which deserves more attention. This study explored the effect of climatic factors and human activities on vegetation of the QTP, thereby providing some guidance for the study of vegetation dynamic in the alpine areas. Full article
(This article belongs to the Special Issue Remote Sensing of Vegetation Dynamics and Resilience)
Show Figures

Graphical abstract

15 pages, 5417 KiB  
Article
The Ecosystem Effects of Sand-Binding Shrub Hippophae rhamnoides in Alpine Semi-Arid Desert in the Northeastern Qinghai–Tibet Plateau
by Lihui Tian, Wangyang Wu, Xin Zhou, Dengshan Zhang, Yang Yu, Haijiao Wang and Qiaoyu Wang
Land 2019, 8(12), 183; https://doi.org/10.3390/land8120183 - 29 Nov 2019
Cited by 14 | Viewed by 3337
Abstract
The planting of sand-binding vegetation in the Qinghai Lake watershed at the northeastern edge of the Qinghai–Tibet Plateau began in 1980. For this paper, we took the desert on the eastern shore of Qinghai Lake as the study area. We analyzed a variety [...] Read more.
The planting of sand-binding vegetation in the Qinghai Lake watershed at the northeastern edge of the Qinghai–Tibet Plateau began in 1980. For this paper, we took the desert on the eastern shore of Qinghai Lake as the study area. We analyzed a variety of aged Hippophae rhamnoides communities and aeolian activities, and we discuss the relationship between them. The main conclusions are as follows: (1) With an increasing number of binding years, the species composition became more abundant, natural vegetation began to recover, and biodiversity increased year by year. At the same time, plant height, canopy width, and community coverage increased, but H. rhamnoides coverage was reduced to 36.70% as coverage of Artemisia desertorum increased to 25.67% after 10 years of fixing. The biomass of H. rhamnoides increased significantly, especially the underground biomass. For example, the biomass of area 15a was about 10 to 30 times that of area 1a. (2) Plants are a useful obstacle to aeolian activity. The presence of plants reduced the wind flow in the upper parts of the plants, but it did not have obvious regular characteristics. The longer the fixation term, the lower the surface sediment transport. It is significant that the sediment transport amount in winter was four times that in the summer. After 15 years of binding, H. rhamnoides grows well, and the community is still stable in the study area. Full article
(This article belongs to the Special Issue Soil Erosion Processes and Rates in Arid and Semiarid Ecosystems)
Show Figures

Figure 1

Back to TopTop