Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (706)

Search Parameters:
Keywords = e-learning platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 613 KiB  
Article
Data-Driven Insights into Consumer Satisfaction in E-Learning: Implications for Sustainable Digital Marketing
by Daniel Moise, Elena Goga, Georgiana Rusu, Raluca-Giorgiana Chivu (Popa) and Mihai-Cristian Orzan
Sustainability 2025, 17(14), 6445; https://doi.org/10.3390/su17146445 - 14 Jul 2025
Viewed by 124
Abstract
This study investigates consumer satisfaction in e-learning services by addressing a specific gap in the literature: the limited integration of sustainability principles and behavioral modeling in understanding satisfaction drivers in online education. While existing studies have explored engagement and usability, few have considered [...] Read more.
This study investigates consumer satisfaction in e-learning services by addressing a specific gap in the literature: the limited integration of sustainability principles and behavioral modeling in understanding satisfaction drivers in online education. While existing studies have explored engagement and usability, few have considered how sustainability-related factors influence satisfaction in digital learning environments. Based on a conceptual model involving system quality, service quality, motivation, and cognitive engagement, we applied structural equation modeling (WarpPLS) to a sample of 312 university students from Romania, using mainstream learning management systems (LMS). Data were collected from students at the Bucharest University of Economic Studies using a convenience sampling method. The results show that service quality and cognitive engagement are the strongest predictors of satisfaction. This study offers practical recommendations for improving sustainable digital marketing strategies in e-learning, such as enhancing support services and aligning platform features with eco-conscious consumer expectations. Full article
(This article belongs to the Special Issue Sustainable Marketing: Consumer Behavior in the Age of Data Analytics)
Show Figures

Figure 1

38 pages, 2791 KiB  
Review
Digital Platforms for the Built Environment: A Systematic Review Across Sectors and Scales
by Michele Berlato, Leonardo Binni, Dilan Durmus, Chiara Gatto, Letizia Giusti, Alessia Massari, Beatrice Maria Toldo, Stefano Cascone and Claudio Mirarchi
Buildings 2025, 15(14), 2432; https://doi.org/10.3390/buildings15142432 - 10 Jul 2025
Viewed by 386
Abstract
The digital transformation of the Architecture, Engineering and Construction sector is accelerating the adoption of digital platforms as critical enablers of data integration, stakeholder collaboration and process optimization. This paper presents a systematic review of 125 peer-reviewed journal articles (2015–2025), selected through a [...] Read more.
The digital transformation of the Architecture, Engineering and Construction sector is accelerating the adoption of digital platforms as critical enablers of data integration, stakeholder collaboration and process optimization. This paper presents a systematic review of 125 peer-reviewed journal articles (2015–2025), selected through a PRISMA-guided search using the Scopus database, with inclusion criteria focused on English-language academic literature on platform-enabled digitalization in the built environment. Studies were grouped into six thematic domains, i.e., artificial intelligence in construction, digital twin integration, lifecycle cost management, BIM-GIS for underground utilities, energy systems and public administration, based on a combination of literature precedent and domain relevance. Unlike existing reviews focused on single technologies or sectors, this work offers a cross-sectoral synthesis, highlighting shared challenges and opportunities across disciplines and lifecycle stages. It identifies the functional roles, enabling technologies and systemic barriers affecting digital platform adoption, such as fragmented data sources, limited interoperability between systems and siloed organizational processes. These barriers hinder the development of integrated and adaptive digital ecosystems capable of supporting real-time decision-making, participatory planning and sustainable infrastructure management. The study advocates for modular, human-centered platforms underpinned by standardized ontologies, explainable AI and participatory governance models. It also highlights the importance of emerging technologies, including large language models and federated learning, as well as context-specific platform strategies, especially for applications in the Global South. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

32 pages, 4717 KiB  
Article
MOGAD: Integrated Multi-Omics and Graph Attention for the Discovery of Alzheimer’s Disease’s Biomarkers
by Zhizhong Zhang, Yuqi Chen, Changliang Wang, Maoni Guo, Lu Cai, Jian He, Yanchun Liang, Garry Wong and Liang Chen
Informatics 2025, 12(3), 68; https://doi.org/10.3390/informatics12030068 - 9 Jul 2025
Viewed by 299
Abstract
The selection of appropriate biomarkers in clinical practice aids in the early detection, treatment, and prevention of disease while also assisting in the development of targeted therapeutics. Recently, multi-omics data generated from advanced technology platforms has become available for disease studies. Therefore, the [...] Read more.
The selection of appropriate biomarkers in clinical practice aids in the early detection, treatment, and prevention of disease while also assisting in the development of targeted therapeutics. Recently, multi-omics data generated from advanced technology platforms has become available for disease studies. Therefore, the integration of this data with associated clinical data provides a unique opportunity to gain a deeper understanding of disease. However, the effective integration of large-scale multi-omics data remains a major challenge. To address this, we propose a novel deep learning model—the Multi-Omics Graph Attention biomarker Discovery network (MOGAD). MOGAD aims to efficiently classify diseases and discover biomarkers by integrating various omics data such as DNA methylation, gene expression, and miRNA expression. The model consists of three main modules: Multi-head GAT network (MGAT), Multi-Graph Attention Fusion (MGAF), and Attention Fusion (AF), which work together to dynamically model the complex relationships among different omics layers. We incorporate clinical data (e.g., APOE genotype) which enables a systematic investigation of the influence of non-omics factors on disease classification. The experimental results demonstrate that MOGAD achieves a superior performance compared to existing single-omics and multi-omics integration methods in classification tasks for Alzheimer’s disease (AD). In the comparative experiment on the ROSMAP dataset, our model achieved the highest ACC (0.773), F1-score (0.787), and MCC (0.551). The biomarkers identified by MOGAD show strong associations with the underlying pathogenesis of AD. We also apply a Hi-C dataset to validate the biological rationality of the identified biomarkers. Furthermore, the incorporation of clinical data enhances the model’s robustness and uncovers synergistic interactions between omics and non-omics features. Thus, our deep learning model is able to successfully integrate multi-omics data to efficiently classify disease and discover novel biomarkers. Full article
Show Figures

Figure 1

28 pages, 1727 KiB  
Review
Computational and Imaging Approaches for Precision Characterization of Bone, Cartilage, and Synovial Biomolecules
by Rahul Kumar, Kyle Sporn, Vibhav Prabhakar, Ahab Alnemri, Akshay Khanna, Phani Paladugu, Chirag Gowda, Louis Clarkson, Nasif Zaman and Alireza Tavakkoli
J. Pers. Med. 2025, 15(7), 298; https://doi.org/10.3390/jpm15070298 - 9 Jul 2025
Viewed by 322
Abstract
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging [...] Read more.
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging techniques. This review aims to synthesize recent advances in imaging, computational modeling, and sequencing technologies that enable high-resolution, non-invasive characterization of joint tissue health. Methods: We examined advanced modalities including high-resolution MRI (e.g., T1ρ, sodium MRI), quantitative and dual-energy CT (qCT, DECT), and ultrasound elastography, integrating them with radiomics, deep learning, and multi-scale modeling approaches. We also evaluated RNA-seq, spatial transcriptomics, and mass spectrometry-based proteomics for omics-guided imaging biomarker discovery. Results: Emerging technologies now permit detailed visualization of proteoglycan content, collagen integrity, mineralization patterns, and inflammatory microenvironments. Computational frameworks ranging from convolutional neural networks to finite element and agent-based models enhance diagnostic granularity. Multi-omics integration links imaging phenotypes to gene and protein expression, enabling predictive modeling of tissue remodeling, risk stratification, and personalized therapy planning. Conclusions: The convergence of imaging, AI, and molecular profiling is transforming musculoskeletal diagnostics. These synergistic platforms enable early detection, multi-parametric tissue assessment, and targeted intervention. Widespread clinical integration requires robust data infrastructure, regulatory compliance, and physician education, but offers a pathway toward precision musculoskeletal care. Full article
(This article belongs to the Special Issue Cutting-Edge Diagnostics: The Impact of Imaging on Precision Medicine)
Show Figures

Figure 1

27 pages, 13752 KiB  
Article
Robust Watermarking of Tiny Neural Networks by Fine-Tuning and Post-Training Approaches
by Riccardo Adorante, Alessandro Carra, Marco Lattuada and Danilo Pietro Pau
Symmetry 2025, 17(7), 1094; https://doi.org/10.3390/sym17071094 - 8 Jul 2025
Viewed by 335
Abstract
Because neural networks pervade many industrial domains and are increasingly complex and accurate, the trained models themselves have become valuable intellectual properties. Developing highly accurate models demands increasingly higher investments of time, capital, and expertise. Many of these models are commonly deployed in [...] Read more.
Because neural networks pervade many industrial domains and are increasingly complex and accurate, the trained models themselves have become valuable intellectual properties. Developing highly accurate models demands increasingly higher investments of time, capital, and expertise. Many of these models are commonly deployed in cloud services and on resource-constrained edge devices. Consequently, safeguarding them is critically important. Neural network watermarking offers a practical solution to address this need by embedding a unique signature, either as a hidden bit-string or as a distinctive response to specially crafted “trigger” inputs. This allows owners to subsequently prove model ownership even if an adversary attempts to remove the watermark through attacks. In this manuscript, we adapt three state-of-the-art watermarking methods to “tiny” neural networks deployed on edge platforms by exploiting symmetry-related properties that ensure robustness and efficiency. In the context of machine learning, “tiny” is broadly used as a term referring to artificial intelligence techniques deployed in low-energy systems in the mW range and below, e.g., sensors and microcontrollers. We evaluate the robustness of the selected techniques by simulating attacks aimed at erasing the watermark while preserving the model’s original performances. The results before and after attacks demonstrate the effectiveness of these watermarking schemes in protecting neural network intellectual property without degrading the original accuracy. Full article
(This article belongs to the Section Computer)
Show Figures

Graphical abstract

20 pages, 1009 KiB  
Article
Digitalization of Higher Education: Students’ Perspectives
by Vojko Potocan, Zlatko Nedelko and Maja Rosi
Educ. Sci. 2025, 15(7), 847; https://doi.org/10.3390/educsci15070847 - 2 Jul 2025
Viewed by 223
Abstract
This study examines the use of digitalized educational solutions among students in higher education institutions (HEIs). Drawing upon theories of technology, digitalization, and education, we analyze the suitability of different digitalization solutions for students in HEIs. Educational organizations that apply different digitalized technologies [...] Read more.
This study examines the use of digitalized educational solutions among students in higher education institutions (HEIs). Drawing upon theories of technology, digitalization, and education, we analyze the suitability of different digitalization solutions for students in HEIs. Educational organizations that apply different digitalized technologies provide customizable platforms for authoring and disseminating multimedia-rich e-education and smart education. However, pedagogical practices indicate several gaps between the level of HEI digitalization achieved and its suitability for HEI participants. Thus, we analyze the state of various digitalized technologies in HEIs and their suitability for meeting students’ expectations. The results of our research show that students most highly rate modern educational methods such as practical learning supported by access to digitized materials via websites, social networks, and smartphones while assigning a lower rating to the use of classic education, supported by digital textbooks and traditional technologies such as Skype, Zoom, podcasts, and online videos. This study has several theoretical implications, among which is the need to further develop highly digitized materials and purpose-designed digitized solutions for individual areas and specific educational purposes. The practical implications indicate the need to expand the use of website networks, smartphones, and smart table solutions in modern educational practices in HEIs. Full article
(This article belongs to the Special Issue Unleashing the Potential of E-learning in Higher Education)
Show Figures

Figure 1

25 pages, 877 KiB  
Systematic Review
Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential
by William Viera-Arroyo, Liliane Binego, Francis Ryans, Duther López, Martín Moya, Lya Vera and Carlos Caicedo
Sustainability 2025, 17(13), 6053; https://doi.org/10.3390/su17136053 - 2 Jul 2025
Viewed by 327
Abstract
Agroecology has traditionally been implemented using conventional methods. However, the integration of precision equipment, advanced methodologies, and digital technologies (DT) is now essential for transitioning to a more modern and efficient approach. While agroecological principles remain fundamental for planning and managing sustainable food [...] Read more.
Agroecology has traditionally been implemented using conventional methods. However, the integration of precision equipment, advanced methodologies, and digital technologies (DT) is now essential for transitioning to a more modern and efficient approach. While agroecological principles remain fundamental for planning and managing sustainable food systems by optimizing natural resources, technological tools can significantly support their implementation and adoption by farmers. This transition, however, must also consider socioeconomic factors and policy frameworks to ensure that technological advancements lead to meaningful improvements in farms and agroecosystems. Across both industrialized and emerging economies, various initiatives, such as precision agriculture, digital platforms, and e-commerce, are driving the digitalization of agroecology. These innovations offer clear benefits, including enhanced knowledge generation and direct improvements to the food supply chain; however, several barriers remain, including limited understanding of digital tools, high-energy demands, insufficient financial resources, economical constrains, weak policy support, lack of infrastructure, low digital learning by framers, etc. to facilitate the transition. This review looks for the understanding of how digitalization can align or conflict with local agroecological dynamics across distinct political frameworks and reality contexts because the information about DT adoption in agroecological practices is limited and it remains unclear if digital agriculture for scaling agroecology can considerably change power dynamics within the productive systems in regions of Europe and Latin America. In South America, among countries like Ecuador, with strong potential for agroecological development, where 60% of farms are less than 1 ha, and where farmers have expressed interest in agroecological practices, 80% have reported lacking sufficient information to make the transition to digitalization, making slow the adoption progress of these DT. While agroecology is gaining global recognition, its modernization through DT requires further research in technical, social, economic, cultural, and political dimensions to more guide the adoption of DT in agroecology with more certainty. Full article
(This article belongs to the Special Issue Green Technology and Biological Approaches to Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 15478 KiB  
Review
Small Object Detection in Traffic Scenes for Mobile Robots: Challenges, Strategies, and Future Directions
by Zhe Wei, Yurong Zou, Haibo Xu and Sen Wang
Electronics 2025, 14(13), 2614; https://doi.org/10.3390/electronics14132614 - 28 Jun 2025
Viewed by 342
Abstract
Small object detection in traffic scenes presents unique challenges for mobile robots operating under constrained computational resources and highly dynamic environments. Unlike general object detection, small targets often suffer from low resolution, weak semantic cues, and frequent occlusion, especially in complex outdoor scenarios. [...] Read more.
Small object detection in traffic scenes presents unique challenges for mobile robots operating under constrained computational resources and highly dynamic environments. Unlike general object detection, small targets often suffer from low resolution, weak semantic cues, and frequent occlusion, especially in complex outdoor scenarios. This study systematically analyses the challenges, technical advances, and deployment strategies for small object detection tailored to mobile robotic platforms. We categorise existing approaches into three main strategies: feature enhancement (e.g., multi-scale fusion, attention mechanisms), network architecture optimisation (e.g., lightweight backbones, anchor-free heads), and data-driven techniques (e.g., augmentation, simulation, transfer learning). Furthermore, we examine deployment techniques on embedded devices such as Jetson Nano and Raspberry Pi, and we highlight multi-modal sensor fusion using Light Detection and Ranging (LiDAR), cameras, and Inertial Measurement Units (IMUs) for enhanced environmental perception. A comparative study of public datasets and evaluation metrics is provided to identify current limitations in real-world benchmarking. Finally, we discuss future directions, including robust detection under extreme conditions and human-in-the-loop incremental learning frameworks. This research aims to offer a comprehensive technical reference for researchers and practitioners developing small object detection systems for real-world robotic applications. Full article
(This article belongs to the Special Issue New Trends in Computer Vision and Image Processing)
Show Figures

Figure 1

22 pages, 2732 KiB  
Article
AI-Based Learning Recommendations: Use in Higher Education
by Prabin Dahal, Saptadi Nugroho, Claudia Schmidt and Volker Sänger
Future Internet 2025, 17(7), 285; https://doi.org/10.3390/fi17070285 - 26 Jun 2025
Viewed by 321
Abstract
We propose the extension for Artificial Intelligence (AI)-supported learning recommendations within higher education, focusing on enhancing the widely-used Moodle Learning Management System (LMS) and extending it to the Learning eXperience Platform (LXP). The proposed LXP is an enhancement of Moodle, with an emphasis [...] Read more.
We propose the extension for Artificial Intelligence (AI)-supported learning recommendations within higher education, focusing on enhancing the widely-used Moodle Learning Management System (LMS) and extending it to the Learning eXperience Platform (LXP). The proposed LXP is an enhancement of Moodle, with an emphasis on learning support and learner motivation, incorporating various recommendation types such as content-based, collaborative, and session-based recommendations to provide the next learning resources given by lecturers and retrieved from the content curation of Open Educational Resources (OER) for the learners. In addition, we integrated a chatbot using Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with AI-based recommendations to provide an effective learning experience. Full article
(This article belongs to the Special Issue Deep Learning in Recommender Systems)
Show Figures

Figure 1

34 pages, 7582 KiB  
Article
Proposed SmartBarrel System for Monitoring and Assessment of Wine Fermentation Processes Using IoT Nose and Tongue Devices
by Sotirios Kontogiannis, Meropi Tsoumani, George Kokkonis, Christos Pikridas and Yorgos Kotseridis
Sensors 2025, 25(13), 3877; https://doi.org/10.3390/s25133877 - 21 Jun 2025
Viewed by 1175
Abstract
This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors and forecasts wine fermentation processes. At the core of SmartBarrel are two compact, attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which mount directly onto stainless steel wine tanks. These [...] Read more.
This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors and forecasts wine fermentation processes. At the core of SmartBarrel are two compact, attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which mount directly onto stainless steel wine tanks. These devices periodically measure key fermentation parameters: the nose monitors gas emissions, while the tongue captures acidity, residual sugar, and color changes. Both utilize low-cost, low-power sensors validated through small-scale fermentation experiments. Beyond the sensory hardware, SmartBarrel includes a robust cloud infrastructure built on open-source Industry 4.0 tools. The system leverages the ThingsBoard platform, supported by a NoSQL Cassandra database, to provide real-time data storage, visualization, and mobile application access. The system also supports adaptive breakpoint alerts and real-time adjustment to the nonlinear dynamics of wine fermentation. The authors developed a novel deep learning model called V-LSTM (Variable-length Long Short-Term Memory) to introduce intelligence to enable predictive analytics. This auto-calibrating architecture supports variable layer depths and cell configurations, enabling accurate forecasting of fermentation metrics. Moreover, the system includes two fuzzy logic modules: a device-level fuzzy controller to estimate alcohol content based on sensor data and a fuzzy encoder that synthetically generates fermentation profiles using a limited set of experimental curves. SmartBarrel experimental results validate the SmartBarrel’s ability to monitor fermentation parameters. Additionally, the implemented models show that the V-LSTM model outperforms existing neural network classifiers and regression models, reducing RMSE loss by at least 45%. Furthermore, the fuzzy alcohol predictor achieved a coefficient of determination (R2) of 0.87, enabling reliable alcohol content estimation without direct alcohol sensing. Full article
(This article belongs to the Special Issue Applications of Sensors Based on Embedded Systems)
Show Figures

Figure 1

28 pages, 3303 KiB  
Review
Structural Fault Detection and Diagnosis for Combine Harvesters: A Critical Review
by Haiyang Wang, Liyun Lao, Honglei Zhang, Zhong Tang, Pengfei Qian and Qi He
Sensors 2025, 25(13), 3851; https://doi.org/10.3390/s25133851 - 20 Jun 2025
Viewed by 593
Abstract
Combine harvesters, as essential equipment in agricultural engineering, frequently experience structural faults due to their complex structure and harsh working conditions, which severely affect their reliability and operational efficiency, leading to significant downtime and reduced agricultural productivity during critical harvesting periods. Therefore, developing [...] Read more.
Combine harvesters, as essential equipment in agricultural engineering, frequently experience structural faults due to their complex structure and harsh working conditions, which severely affect their reliability and operational efficiency, leading to significant downtime and reduced agricultural productivity during critical harvesting periods. Therefore, developing accurate and timely Fault Detection and Diagnosis (FDD) techniques is crucial for ensuring food security. This paper provides a systematic and critical review and analysis of the latest advancements in research on data-driven FDD methods for structural faults in combine harvesters. First, it outlines the typical structural sections of combine harvesters and their common structural fault types. Subsequently, it details the core steps of data-driven methods, including the acquisition of operational data from various sensors (e.g., vibration, acoustic, strain), signal preprocessing methods, signal processing and feature extraction techniques covering time-domain, frequency-domain, time–frequency domain combination, and modal analysis among others, and the use of machine learning and artificial intelligence models for fault pattern learning and diagnosis. Furthermore, it explores the required system and technical support for implementing such data-driven FDD methods, such as the applications of on-board diagnostic units, remote monitoring platforms, and simulation modeling. It provides an in-depth analysis of the key challenges currently encountered in this field, including difficulties in data acquisition, signal complexity, and insufficient model robustness, and consequently proposes future research directions, aiming to provide insights for the development of intelligent maintenance and efficient and reliable operation of combine harvesters and other complex agricultural machinery. Full article
(This article belongs to the Special Issue Feature Review Papers in Fault Diagnosis & Sensors)
Show Figures

Figure 1

32 pages, 4701 KiB  
Review
Machine-Learning-Guided Design of Nanostructured Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: From Material Discovery to Performance Optimization
by Xiongwei Liang, Shaopeng Yu, Bo Meng, Yongfu Ju, Shuai Wang and Yingning Wang
Nanomaterials 2025, 15(12), 948; https://doi.org/10.3390/nano15120948 - 18 Jun 2025
Cited by 1 | Viewed by 491
Abstract
The rational design of photoanode materials is pivotal for advancing photoelectrochemical (PEC) water splitting toward sustainable hydrogen production. This review highlights recent progress in the machine learning (ML)-assisted development of nanostructured metal oxide photoanodes, focusing on bridging materials discovery and device-level performance optimization. [...] Read more.
The rational design of photoanode materials is pivotal for advancing photoelectrochemical (PEC) water splitting toward sustainable hydrogen production. This review highlights recent progress in the machine learning (ML)-assisted development of nanostructured metal oxide photoanodes, focusing on bridging materials discovery and device-level performance optimization. We first delineate the fundamental physicochemical criteria for efficient photoanodes, including suitable band alignment, visible-light absorption, charge carrier mobility, and electrochemical stability. Conventional strategies such as nanostructuring, elemental doping, and surface/interface engineering are critically evaluated. We then discuss the integration of ML techniques—ranging from high-throughput density functional theory (DFT)-based screening to experimental data-driven modeling—for accelerating the identification of promising oxides (e.g., BiVO4, Fe2O3, WO3) and optimizing key parameters such as dopant selection, morphology, and catalyst interfaces. Particular attention is given to surrogate modeling, Bayesian optimization, convolutional neural networks, and explainable AI approaches that enable closed-loop synthesis-experiment-ML frameworks. ML-assisted performance prediction and tandem device design are also addressed. Finally, current challenges in data standardization, model generalizability, and experimental validation are outlined, and future perspectives are proposed for integrating ML with automated platforms and physics-informed modeling to facilitate scalable PEC material development for clean energy applications. Full article
(This article belongs to the Special Issue Nanomaterials for Novel Photoelectrochemical Devices)
Show Figures

Figure 1

26 pages, 5631 KiB  
Article
Decentralized Federated Learning with Node Incentive and Role Switching Mechanism for Network Traffic Prediction in NFV Environment
by Ying Hu, Ben Liu, Jianyong Li and Linlin Jia
Symmetry 2025, 17(6), 970; https://doi.org/10.3390/sym17060970 - 18 Jun 2025
Viewed by 254
Abstract
In network function virtualization (NFV) environments, dynamic network traffic prediction with unique symmetric and asymmetric traffic patterns is critical for efficient resource orchestration and service chain optimization. Traditional centralized prediction models face risks of cross-provider data privacy leakage when network service providers collaborate [...] Read more.
In network function virtualization (NFV) environments, dynamic network traffic prediction with unique symmetric and asymmetric traffic patterns is critical for efficient resource orchestration and service chain optimization. Traditional centralized prediction models face risks of cross-provider data privacy leakage when network service providers collaborate with resource providers to deliver services. To address this issue, we propose a decentralized federated learning method for network traffic prediction, which ensures that historical network traffic data remain stored locally without requiring cross-provider sharing. To further mitigate interference from malicious provider behaviors on network traffic prediction, we design a node incentive mechanism that dynamically adjusts node roles (e.g., “Aggregator”, “Worker Node”, “Residual Node”, and “Evaluator”). When a node exhibits malicious behavior, its contribution score is reduced; otherwise, it is rewarded. Simulation experiments conducted on an NFV platform using public network traffic datasets demonstrate that the proposed method maintains prediction accuracy even in scenarios with a high proportion of malicious nodes, alleviates their adverse effects, and ensures prediction stability. Full article
(This article belongs to the Special Issue Symmetry in Solving NP-Hard Problems)
Show Figures

Figure 1

27 pages, 1354 KiB  
Review
High-Resolution Global Land Cover Maps and Their Assessment Strategies
by Qiongjie Xu, Vasil Yordanov, Lorenzo Bruzzone and Maria Antonia Brovelli
ISPRS Int. J. Geo-Inf. 2025, 14(6), 235; https://doi.org/10.3390/ijgi14060235 - 18 Jun 2025
Viewed by 1392
Abstract
Global High-Resolution Land Cover Maps (GHRLCs), characterized by spatial resolutions higher than 30 m per pixel, have become essential tools for environmental monitoring, urban planning, and climate modeling. Over the past two decades, new GHRLCs have emerged, offering increasingly detailed and timely representations [...] Read more.
Global High-Resolution Land Cover Maps (GHRLCs), characterized by spatial resolutions higher than 30 m per pixel, have become essential tools for environmental monitoring, urban planning, and climate modeling. Over the past two decades, new GHRLCs have emerged, offering increasingly detailed and timely representations of Earth’s surface. This review provides an in-depth analysis of recent developments by examining the data sources, methodologies, and validation techniques utilized in 19 global binary and multi-class land cover products. The evolution of GHRLC production techniques is analyzed, starting from the use of singular source input data, such as multi-temporal remotely sensed optical imagery, to the integration of satellite radar and other geospatial data. The article highlights significant advances in data pre-processing and processing, showcasing a shift from classical methods to modern approaches, including machine learning (ML) and deep learning techniques (e.g., neural networks and transformers), and their direct application on powerful cloud-computing platforms. A comprehensive analysis of the temporal dimension of land cover products, where available, is conducted, highlighting a shift from decadal intervals to production intervals of less than a month. This review also addresses the ongoing challenge of land cover legend harmonization, a topic that remains crucial for ensuring consistency and comparability across datasets. Validation remains another critical aspect of GHRLC production. The methods used to assess map accuracy and reliability, including statistical techniques and visual inspections, are briefly discussed. The validation approaches adopted in recent studies are summarized, with an emphasis on their importance in maintaining data integrity and addressing emerging needs, such as the development of common validation datasets. Ultimately, this review aims to provide a comprehensive overview of the current state and future directions of GHRLC production and validation, highlighting the advancements that have shaped this rapidly evolving field. Full article
Show Figures

Figure 1

30 pages, 1237 KiB  
Article
Integrating Interactive Metaverse Environments and Generative Artificial Intelligence to Promote the Green Digital Economy and e-Entrepreneurship in Higher Education
by Ahmed Sadek Abdelmagid, Naif Mohammed Jabli, Abdullah Yahya Al-Mohaya and Ahmed Ali Teleb
Sustainability 2025, 17(12), 5594; https://doi.org/10.3390/su17125594 - 18 Jun 2025
Viewed by 599
Abstract
The rapid evolution of the Fourth Industrial Revolution has significantly transformed educational practices, necessitating the integration of advanced technologies into higher education to address contemporary sustainability challenges. This study explores the integration of interactive metaverse environments and generative artificial intelligence (GAI) in promoting [...] Read more.
The rapid evolution of the Fourth Industrial Revolution has significantly transformed educational practices, necessitating the integration of advanced technologies into higher education to address contemporary sustainability challenges. This study explores the integration of interactive metaverse environments and generative artificial intelligence (GAI) in promoting the green digital economy and developing e-entrepreneurship skills among graduate students. Grounded in a quasi-experimental design, the research was conducted with a sample of 25 postgraduate students enrolled in the “Computers in Education” course at King Khalid University. A 3D immersive learning environment (FrameVR) was combined with GAI platforms (ChatGPT version 4.0, Elai.io version 2.5, Tome version 1.3) to create an innovative educational experience. Data were collected using validated instruments, including the Green Digital Economy Scale, the e-Entrepreneurship Scale, and a digital product evaluation rubric. The findings revealed statistically significant improvements in students’ awareness of green digital concepts, entrepreneurial competencies, and their ability to produce sustainable digital products. The study highlights the potential of immersive virtual learning environments and AI-driven content creation tools in enhancing digital literacy and sustainability-oriented innovation. It also underscores the urgent need to update educational strategies and curricula to prepare future professionals capable of navigating and shaping green digital economies. This research provides a practical and replicable model for universities seeking to embed sustainability through emerging technologies, supporting broader goals such as SDG 4 (Quality Education) and SDG 9 (Industry, Innovation, and Infrastructure). Full article
Show Figures

Figure 1

Back to TopTop