Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = dynamic collaboration of flows

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 891 KiB  
Review
The Evolution of Landscape Ecology in the Democratic Republic of the Congo (2005–2025): Scientific Advances, Methodological Challenges, and Future Directions
by Yannick Useni Sikuzani and Jan Bogaert
Earth 2025, 6(3), 97; https://doi.org/10.3390/earth6030097 - 13 Aug 2025
Viewed by 251
Abstract
Since 2005, landscape ecology has emerged as a structured scientific field in the Democratic Republic of Congo, notably shaped by the contributions of Professor Jan Bogaert. The evolution of research in this field can be divided into three main phases. The first phase [...] Read more.
Since 2005, landscape ecology has emerged as a structured scientific field in the Democratic Republic of Congo, notably shaped by the contributions of Professor Jan Bogaert. The evolution of research in this field can be divided into three main phases. The first phase (2005–2012) focused on the quantitative analysis of forest fragmentation using Geographic Information Systems and landscape metrics. From 2013 to 2019, research approaches broadened to include the social sciences, marking a shift toward a socio-ecological perspective on landscapes. Since 2020, the field has increasingly adopted holistic frameworks that integrate climatic factors and forward-looking modeling. Key research themes now include ecological flows across landscape mosaics, land-use dynamics, and the anthropogenic transformation of ecosystems. However, several challenges persist, including the lack of long-term temporal datasets, uneven geographic coverage, and limited integration of local knowledge systems. Notable advances have been made through high-resolution remote sensing and participatory methods, although their application is still limited by technical and financial constraints. This manuscript advocates for stronger interdisciplinary collaboration, improved field methodologies, and the development of context-appropriate tools to support sustainable and locally grounded landscape management in the Congolese context. Full article
Show Figures

Figure 1

17 pages, 1922 KiB  
Article
A Road-Level Transport Network Model with Microscopic Operational Features for Aircraft Taxi-Out Time Prediction
by Xiaowei Tang, Wenjie Zhang, Shengrun Zhang and Cheng-Lung Wu
Aerospace 2025, 12(8), 721; https://doi.org/10.3390/aerospace12080721 - 13 Aug 2025
Viewed by 136
Abstract
For aircraft departure, which is a process of multi-resource coordination, strict time limitations, and complex condition constraints, the optimization of taxi-out time prediction is critical for enhancing airport surface operational efficiency, optimizing runway slot utilization, and reducing aircraft ground delay and fuel consumption. [...] Read more.
For aircraft departure, which is a process of multi-resource coordination, strict time limitations, and complex condition constraints, the optimization of taxi-out time prediction is critical for enhancing airport surface operational efficiency, optimizing runway slot utilization, and reducing aircraft ground delay and fuel consumption. By combining aircraft taxi path and network traffic flow features, a refined airport road-level transport network model is constructed to accurately characterize the taxi path topology and node-edge attributes. On this basis, two new micro-features are introduced: estimated taxi time and the number of handovers. Experimental results show that after the introduction of the micro-features, the prediction accuracy of the taxi-out time prediction model within the error of 1 min increases from 49.29% to 54.41%, and the prediction accuracy within the error of 5 min reaches 99.42%. This method effectively addresses the limitations of traditional models that focus solely on the overall taxiing process while neglecting microscopic airfield network dynamics and time consumption during control handover procedures. The method can be integrated into the Airport Collaborative Decision Making (A-CDM) system to provide minute-level support for departure taxi-out time prediction, thereby providing a more precise and operationally aligned temporal benchmark for intelligent apron operations scheduling, aircraft sequencing optimization, and other collaborative decision making processes. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
Show Figures

Figure 1

28 pages, 9378 KiB  
Article
HC-SPA: Hyperbolic Cosine-Based Symplectic Phase Alignment for Fusion Optimization
by Wenlong Zhang, Aiqing Fang, Ying Li and Yan Wei
Sensors 2025, 25(16), 5003; https://doi.org/10.3390/s25165003 - 13 Aug 2025
Viewed by 208
Abstract
In multimodal collaborative learning, the gradient dynamics of heterogeneous modalities face significant challenges due to the curvature heterogeneity of parameter manifolds and mismatches in phase evolution. Traditional Euclidean optimization methods struggle to capture the complex interdependencies between heterogeneous modalities on non-Euclidean or geometrically [...] Read more.
In multimodal collaborative learning, the gradient dynamics of heterogeneous modalities face significant challenges due to the curvature heterogeneity of parameter manifolds and mismatches in phase evolution. Traditional Euclidean optimization methods struggle to capture the complex interdependencies between heterogeneous modalities on non-Euclidean or geometrically inconsistent parameter manifolds. Furthermore, static alignment strategies often fail to suppress bifurcations and oscillatory behaviors in high-dimensional gradient flows, leading to unstable optimization trajectories across modalities. To address these issues, inspired by hyperbolic geometry and symplectic structures, this paper proposes the Hyperbolic Cosine-Based Symplectic Phase Alignment (HC-SPA) fusion optimization framework. The proposed approach leverages the geometric properties of hyperbolic space to coordinate gradient flows between modalities, aligns gradient update directions through a phase synchronization mechanism, and dynamically adjusts the optimization step size to adapt to manifold curvature. Experimental results on public fusion and semantic segmentation datasets demonstrate that HC-SPA significantly improves multimodal fusion performance and optimization stability, providing a new optimization perspective for complex multimodal tasks. Full article
Show Figures

Figure 1

22 pages, 7832 KiB  
Article
Investigation into the Dynamic Evolution Characteristics of Gear Injection Lubrication Based on the CFD-VOF Model
by Yihong Gu, Xinxing Zhang, Lin Li and Qing Yan
Processes 2025, 13(8), 2540; https://doi.org/10.3390/pr13082540 - 12 Aug 2025
Viewed by 206
Abstract
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of [...] Read more.
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of oil-jet lubrication is developed based on computational fluid dynamics (CFD). The model integrates the Volume of Fluid (VOF) multiphase flow method with the shear stress transport (SST) k−ω turbulence model. This framework enables the accurate capture of oil-jet interface fragmentation, reattachment, and turbulence-coupled behavior within the gear meshing region. A parametric study is conducted on oil injection velocities ranging from 20 to 50 m/s to elucidate the coupling mechanisms between geometric configuration and flow dynamics, as well as their impacts on oil film evolution, energy dissipation, and thermal management. The results reveal that the proposed method can reveal the dynamic evolution characteristics of the gear injection lubrication. Adopting an appropriately moderate injection velocity (30 m/s) improves oil film coverage and continuity, with the lubricant transitioning from discrete droplets to a dense wedge-shaped film within the meshing zone. Optimal lubrication performance is achieved at this velocity, where oil shear-carrying capacity and kinetic energy utilization efficiency are maximized, while excessive turbulent kinetic energy dissipation is effectively suppressed. Dynamic monitoring data at point P further corroborate that a well-tuned injection velocity stabilizes lubricant-velocity fluctuations and improves lubricant oil distribution, thereby promoting consistent oil film formation and more efficient heat transfer. The proposed closed-loop collaborative framework—comprising model initialization, numerical solution, and post-processing—together with the introduced quantitative evaluation metrics, provides a solid theoretical foundation and engineering reference for structural optimization, energy control, and thermal reliability design of gearbox lubrication systems. This work offers important insights into precision lubrication of high-speed transmissions and contributes to the sustainable, green development of industrial machinery. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

18 pages, 5865 KiB  
Article
Multi-Lane Congestion Control Model for Intelligent Connected Vehicles Integrating Optimal Traffic Flow Difference Information in V2X Environment
by Li Zhou, Chuan Tian and Shuhong Yang
World Electr. Veh. J. 2025, 16(8), 457; https://doi.org/10.3390/wevj16080457 - 11 Aug 2025
Viewed by 216
Abstract
In the V2X environment, intelligent connected vehicles can obtain multi-dimensional traffic flow data in real time through the vehicle–road collaborative cyber–physical fusion system. Based on this, this study proposes a multi-lane traffic flow lattice model integrating optimal traffic flow difference estimation information to [...] Read more.
In the V2X environment, intelligent connected vehicles can obtain multi-dimensional traffic flow data in real time through the vehicle–road collaborative cyber–physical fusion system. Based on this, this study proposes a multi-lane traffic flow lattice model integrating optimal traffic flow difference estimation information to effectively suppress traffic congestion. The linear stability criterion of the system is derived through linear stability analysis, proving that the optimal traffic flow difference estimation can significantly expand the stable region and suppress traffic fluctuations caused by small disturbances. Furthermore, the perturbation method is used to derive the mKdV equation near the critical stability point of the system, revealing the nonlinear characteristics of traffic congestion propagating in the form of kink solitary waves, and indicating that the new consideration effect can effectively slow down the congestion propagation speed by adjusting the parameters of solitary waves (such as wave speed and amplitude). The numerical simulation results show that compared to the traditional model, the improved model exhibits enhanced traffic flow stability and robustness. Meanwhile, it reveals the nonlinear relationship between the increase of the number of lanes and the alleviation of congestion, and there is an optimal lane configuration threshold. The research results not only provide theoretical support for the optimization of traffic flow efficiency in intelligent transportation systems, but also provide a decision-making basis for dynamic lane management strategies in the V2X environment. Full article
Show Figures

Figure 1

22 pages, 4498 KiB  
Review
A Comprehensive Review of Slag-Coating Mechanisms in Blast-Furnace Staves: Furnace Profile Optimization and Material-Structure Design
by Qunwei Zhang, Hongwei Xing, Aimin Yang, Jie Li and Yang Han
Materials 2025, 18(16), 3727; https://doi.org/10.3390/ma18163727 - 8 Aug 2025
Viewed by 314
Abstract
Blast-furnace staves serve as critical protective components in ironmaking, requiring synergistic optimization of slag-coating behavior and self-protection capability to extend furnace lifespan and reduce energy consumption. Traditional integer-order heat transfer models, constrained by assumptions of homogeneous materials and instantaneous heat conduction, fail to [...] Read more.
Blast-furnace staves serve as critical protective components in ironmaking, requiring synergistic optimization of slag-coating behavior and self-protection capability to extend furnace lifespan and reduce energy consumption. Traditional integer-order heat transfer models, constrained by assumptions of homogeneous materials and instantaneous heat conduction, fail to accurately capture the cross-scale thermal memory effects and non-local diffusion characteristics in multiphase heterogeneous blast-furnace systems, leading to substantial inaccuracies in predicting dynamic slag-layer evolution. This review synthesizes recent advancements across three interlinked dimensions: first, analyzing design principles of zonal staves and how refractory material properties influence slag-layer formation, proposing a “high thermal conductivity–low thermal expansion” material matching strategy to mitigate thermal stress cracks through optimized synergy; second, developing a mechanistic model by introducing the Caputo fractional derivative to construct a non-Fourier heat-transfer framework (i.e., a heat-transfer model that accounts for thermal memory effects and non-local diffusion, beyond the instantaneous heat conduction assumption of Fourier’s law), which effectively describes fractal heat flow in micro-porous structures and interfacial thermal relaxation, addressing limitations of conventional models; and finally, integrating industrial case studies to validate the improved prediction accuracy of the fractional-order model and exploring collaborative optimization of cooling intensity and slag-layer thickness, with prospects for multiscale interfacial regulation technologies in long-life, low-carbon stave designs. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

22 pages, 4670 KiB  
Article
Integrated Carbon Flow Tracing and Topology Reconfiguration for Low-Carbon Optimal Dispatch in DG-Embedded Distribution Networks
by Rao Fu, Guofeng Xia, Sining Hu, Yuhao Zhang, Handaoyuan Li and Jiachuan Shi
Mathematics 2025, 13(15), 2395; https://doi.org/10.3390/math13152395 - 25 Jul 2025
Viewed by 270
Abstract
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging [...] Read more.
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging “carbon perspective” requirements, this research integrated Carbon Emission Flow (CEF) theory to analyze spatiotemporal carbon flow characteristics within DN. Recognizing the limitations of the single-objective approach in balancing multifaceted demands, a multi-objective optimization model was formulated. This model could capture the spatiotemporal dynamics of nodal carbon intensity for low-carbon dispatching while comprehensively incorporating diverse operational economic costs to achieve collaborative low-carbon and economic dispatch in DG-embedded DN. To efficiently solve this complex constrained model, a novel Q-learning enhanced Moth Flame Optimization (QMFO) algorithm was proposed. QMFO synergized the global search capability of the Moth Flame Optimization (MFO) algorithm with the adaptive decision-making of Q-learning, embedding an adaptive exploration strategy to significantly enhance solution efficiency and accuracy for multi-objective problems. Validated on a 16-node three-feeder system, the method co-optimizes switch configurations and DG outputs, achieving dual objectives of loss reduction and carbon emission mitigation while preserving radial topology feasibility. Full article
(This article belongs to the Special Issue Mathematical and Computational Methods for Mechanics and Engineering)
Show Figures

Figure 1

11 pages, 15673 KiB  
Article
Automating GIS-Based Cloudburst Risk Mapping Using Generative AI: A Framework for Scalable Hydrological Analysis
by Alexander Adiyasa, Andrea Niccolò Mantegna and Irma Kveladze
Hydrology 2025, 12(8), 196; https://doi.org/10.3390/hydrology12080196 - 23 Jul 2025
Viewed by 434
Abstract
Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. [...] Read more.
Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km2 catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems. Full article
Show Figures

Figure 1

36 pages, 8047 KiB  
Article
Fed-DTB: A Dynamic Trust-Based Framework for Secure and Efficient Federated Learning in IoV Networks: Securing V2V/V2I Communication
by Ahmed Alruwaili, Sardar Islam and Iqbal Gondal
J. Cybersecur. Priv. 2025, 5(3), 48; https://doi.org/10.3390/jcp5030048 - 19 Jul 2025
Viewed by 561
Abstract
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial [...] Read more.
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial attacks, and the handling of available resources. This paper introduces Fed-DTB, a new dynamic trust-based framework for FL that aims to overcome these challenges in the context of IoV. Fed-DTB integrates the adaptive trust evaluation that is capable of quickly identifying and excluding malicious clients to maintain the authenticity of the learning process. A performance comparison with previous approaches is shown, where the Fed-DTB method improves accuracy in the first two training rounds and decreases the per-round training time. The Fed-DTB is robust to non-IID data distributions and outperforms all other state-of-the-art approaches regarding the final accuracy (87–88%), convergence rate, and adversary detection (99.86% accuracy). The key contributions include (1) a multi-factor trust evaluation mechanism with seven contextual factors, (2) correlation-based adaptive weighting that dynamically prioritises trust factors based on vehicular conditions, and (3) an optimisation-based client selection strategy that maximises collaborative reliability. This work opens up opportunities for more accurate, secure, and private collaborative learning in future intelligent transportation systems with the help of federated learning while overcoming the conventional trade-off of security vs. efficiency. Full article
Show Figures

Figure 1

24 pages, 1163 KiB  
Article
The Analysis of Cultural Convergence and Maritime Trade Between China and Saudi Arabia: Toda–Yamamoto Granger Causality
by Nashwa Mostafa Ali Mohamed, Jawaher Binsuwadan, Rania Hassan Mohammed Abdelkhalek and Kamilia Abd-Elhaleem Ahmed Frega
Sustainability 2025, 17(14), 6501; https://doi.org/10.3390/su17146501 - 16 Jul 2025
Viewed by 511
Abstract
This study investigates the dynamic relationship between maritime trade and cultural convergence between China and Saudi Arabia, with a particular focus on the roles of creative goods and information and communication technology (ICT) exports as proxies for sociocultural integration. Utilizing quarterly data from [...] Read more.
This study investigates the dynamic relationship between maritime trade and cultural convergence between China and Saudi Arabia, with a particular focus on the roles of creative goods and information and communication technology (ICT) exports as proxies for sociocultural integration. Utilizing quarterly data from 2012 to 2021, the analysis employs the Toda–Yamamoto Granger causality approach within a Vector Autoregression (VAR) framework. This methodology offers a robust means of testing causality without requiring data stationarity or cointegration, thereby reducing estimation bias and enhancing applicability to real-world economic data. The empirical model examines causal interactions among maritime trade, creative goods exports, ICT exports, and population, the latter serving as a control variable to account for demographic scale effects on trade dynamics. The results indicate statistically significant bidirectional causality between maritime trade and both creative goods and ICT exports, suggesting a reciprocal reinforcement between trade and cultural–technological exchange. In contrast, the relationship between maritime trade and population is found to be unidirectional. These findings underscore the strategic importance of cultural and technological flows in shaping maritime trade patterns. Furthermore, the study contextualizes its results within broader policy initiatives, notably China’s Belt and Road Initiative and Saudi Arabia’s Vision 2030, both of which aim to promote mutual economic diversification and regional integration. The study contributes to the literature on international trade and cultural economics by demonstrating how cultural convergence can serve as a catalyst for strengthening bilateral trade relations. Policy implications include the promotion of cultural and technological collaboration, investment in maritime infrastructure, and the incorporation of cultural dimensions into trade policy formulation. Full article
Show Figures

Figure 1

26 pages, 891 KiB  
Article
Modeling the Interactions Between Smart Urban Logistics and Urban Access Management: A System Dynamics Perspective
by Gaetana Rubino, Domenico Gattuso and Manfred Gronalt
Appl. Sci. 2025, 15(14), 7882; https://doi.org/10.3390/app15147882 - 15 Jul 2025
Viewed by 381
Abstract
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach [...] Read more.
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach to investigate how urban logistics and access management policies may interact. At the center, there is a Causal Loop Diagram (CLD) that illustrates dynamic interdependencies among fleet composition, access regulations, logistics productivity, and environmental externalities. The CLD is a conceptual basis for future stock-and-flow simulations to support data-driven decision-making. The approach highlights the importance of route optimization, dynamic access control, and smart parking management systems as strategic tools, increasingly enabled by Industry 4.0 technologies, such as IoT, big data analytics, AI, and cyber-physical systems, which support real-time monitoring and adaptive planning. In alignment with the Industry 5.0 paradigm, this technological integration is paired with social and environmental sustainability goals. The study also emphasizes public–private collaboration in designing access policies and promoting alternative fuel vehicle adoption, supported by specific incentives. These coordinated efforts contribute to achieving the objectives of the 2030 Agenda, fostering a cleaner, more efficient, and inclusive urban logistics ecosystem. Full article
Show Figures

Figure 1

23 pages, 1666 KiB  
Article
Mapping Complexity: Refugee Students’ Participation and Retention in Education Through Community-Based System Dynamics
by Nidan Oyman Bozkurt
Systems 2025, 13(7), 574; https://doi.org/10.3390/systems13070574 - 12 Jul 2025
Viewed by 394
Abstract
Global refugee flows’ increasing scale and complexity pose significant challenges to national education systems. Turkey, hosting one of the largest populations of refugees and individuals under temporary protection, faces unique pressures in ensuring equitable educational access for refugee students. Addressing these challenges requires [...] Read more.
Global refugee flows’ increasing scale and complexity pose significant challenges to national education systems. Turkey, hosting one of the largest populations of refugees and individuals under temporary protection, faces unique pressures in ensuring equitable educational access for refugee students. Addressing these challenges requires a shift from linear, fragmented interventions toward holistic, systemic approaches. This study applies a Community-Based System Dynamics (CBSD) methodology to explore the systemic barriers affecting refugee students’ participation in education. Through structured Group Model Building workshops involving teachers, administrators, and Non-Governmental Organization (NGO) representatives, a causal loop diagram (CLD) was collaboratively developed to capture the feedback mechanisms and interdependencies sustaining educational inequalities. Five thematic subsystems emerged: language and academic integration, economic and family dynamics, psychosocial health and trauma, institutional access and legal barriers, and social cohesion and discrimination. The analysis reveals how structural constraints, social dynamics, and individual behaviors interact to perpetuate exclusion or facilitate integration. This study identifies critical feedback loops and leverage points and provides actionable insights for policymakers and practitioners seeking to design sustainable, systems-informed interventions. Our findings emphasize the importance of participatory modeling in addressing complex societal challenges and contribute to advancing systems thinking in refugee education. Full article
Show Figures

Figure 1

24 pages, 4098 KiB  
Essay
Spatiotemporal Changes in Synergy Effect Between Tourism Industry and Urban–Rural Integration Development in Yellow River Basin, China
by Wenjia Jiang, Xiaonan Qin and Yuzhu Guo
Land 2025, 14(7), 1404; https://doi.org/10.3390/land14071404 - 3 Jul 2025
Viewed by 387
Abstract
The imbalance between urban and rural development has become a global structural problem that needs to be solved urgently. In this context, the tourism industry, with its strong correlation and cross-regional integration characteristics, provides a key practical entry point and mechanism for systematically [...] Read more.
The imbalance between urban and rural development has become a global structural problem that needs to be solved urgently. In this context, the tourism industry, with its strong correlation and cross-regional integration characteristics, provides a key practical entry point and mechanism for systematically promoting integrated development by stimulating factor flow, reconstructing the value chain, and reshaping local identity. Based on the synergetic theory, this paper constructs the theoretical framework of the synergetic evolution of the tourism industry and urban–rural integration, and analyzes the synergetic effect of the tourism industry and urban–rural integration in 58 prefecture-level cities in the Yellow River Basin from 2007 to 2021 and the dynamic characteristics of its spatio-temporal evolution by using the entropy TOPSIS, Haken model, and spatial Markov chain methods. The results show the following: ① As the order parameter of synergistic evolution, the tourism industry dominates the evolution direction of the whole system, mainly showing positive feedback effect, showing a significant stage characteristic in general, and gradually reducing the difference from the initial regional differentiation to the middle stage, finally reaching a higher level of unity. ② The synergic evolution of the tourism industry and urban–rural integration in the Yellow River Basin presents significant temporal and spatial differences in the upstream, midstream, and downstream, with the overall characteristics of “collaborative improvement in the upstream, significant agglomeration in the midstream, and reverse decoupling in the downstream”. ③ The dynamic evolution of the synergistic development of the tourism industry and urban–rural integration in the Yellow River Basin has significant characteristics of spatial interaction and dynamic transfer. Its level has the effect of “path dependence”, showing a good trend of upward transfer, and the spatial neighborhood has a significant impact on the synergetic level transfer. The development trend of each region shows that “the upstream region is upward and stable, the midstream region has significant agglomeration and diffusion effects, and the downstream region is driven by polar nuclei and spatial differentiation”. Full article
Show Figures

Figure 1

68 pages, 10407 KiB  
Review
Bioinspired Morphing in Aerodynamics and Hydrodynamics: Engineering Innovations for Aerospace and Renewable Energy
by Farzeen Shahid, Maqusud Alam, Jin-Young Park, Young Choi, Chan-Jeong Park, Hyung-Keun Park and Chang-Yong Yi
Biomimetics 2025, 10(7), 427; https://doi.org/10.3390/biomimetics10070427 - 1 Jul 2025
Viewed by 1725
Abstract
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, [...] Read more.
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, and hydrofoils that actively change shape, reducing drag, improving maneuverability, and harvesting energy from unsteady flows. This review surveys over 296 studies, with primary emphasis on literature published between 2015 and 2025, distilling four biological archetypes—avian wing morphing, bat-wing elasticity, fish-fin compliance, and tubercled marine flippers—and tracing their translation into morphing aircraft, ornithopters, rotorcraft, unmanned aerial vehicles, and tidal or wave-energy converters. We compare experimental demonstrations and numerical simulations, identify consensus performance gains (up to 30% increase in lift-to-drag ratio, 4 dB noise reduction, and 15% boost in propulsive or power-capture efficiency), and analyze materials, actuation, control strategies, certification, and durability as the main barriers to deployment. Advances in multifunctional composites, electroactive polymers, and model-based adaptive control have moved prototypes from laboratory proof-of-concept toward field testing. Continued collaboration among biology, materials science, control engineering, and fluid dynamics is essential to unlock robust, scalable morphing technologies that meet future efficiency and sustainability targets. Full article
Show Figures

Figure 1

27 pages, 12374 KiB  
Article
A Novel Neural Network-Based Adaptive Formation Control for Cooperative Transportation of an Underwater Payload Using a Fleet of UUVs
by Wen Pang, Daqi Zhu, Mingzhi Chen, Wentao Xu and Bin Wang
Drones 2025, 9(7), 465; https://doi.org/10.3390/drones9070465 - 30 Jun 2025
Viewed by 487
Abstract
This article studies the cooperative underwater payload transportation problem for multiple unmanned underwater vehicles (UUVs) operating in a constrained workspace with both static and dynamic obstacles. A novel cooperative formation control algorithm has been presented in this paper for the transportation of a [...] Read more.
This article studies the cooperative underwater payload transportation problem for multiple unmanned underwater vehicles (UUVs) operating in a constrained workspace with both static and dynamic obstacles. A novel cooperative formation control algorithm has been presented in this paper for the transportation of a large payload in underwater scenarios. More precisely, by using the advantages of multi-UUV formation cooperation, based on rigidity graph theory and backstepping technology, the distance between each UUV, as well as the UUV and the transport payload, is controlled to form a three-dimensional rigid structure so that the load remains balanced and stable, to coordinate the transport of objects within the feasible area of the workspace. Moreover, a neural network (NN) is utilized to maintain system stability despite unknown nonlinearities and disturbances in the system dynamics. In addition, based on the interfered fluid flow algorithm, a collision-free motion trajectory was planned for formation systems. The control scheme also performs real-time formation reconfiguration according to the size and position of obstacles in space, thereby enhancing the flexibility of cooperative handling. The uniform ultimate boundedness of the formation distance errors is comprehensively demonstrated by utilizing the Lyapunov stability theory. Finally, the simulation results show that the UUVs can quickly form and maintain the desired formation, transport the payload along the planned trajectory to shuttle in multi-obstacle environments, verify the feasibility of the method proposed in this paper, and achieve the purpose of the collaborative transportation of large underwater payload by multiple UUVs and their targeted delivery. Full article
Show Figures

Figure 1

Back to TopTop