Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = dusts from steel manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5488 KiB  
Article
Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust
by Wolfgang Reiter, Loredana Di Sante, Vincenzo Pepe, Marta Guzzon and Klaus Doschek-Held
Metals 2025, 15(8), 867; https://doi.org/10.3390/met15080867 - 1 Aug 2025
Viewed by 147
Abstract
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is [...] Read more.
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is expected to increase in the next decade. However, the environmental burden associated with steel manufacturing must be mitigated to achieve sustainable production, which would align with the European Green Deal pathway. Such a burden is associated both with the GHG emissions and with the solid residues arising from steel manufacturing, considering both the integrated and electrical routes. The valorisation of the main steel residues from the electrical steelmaking is the central theme of this work, referring to the steel electric manufacturing in the Dalmine case study. The investigation was carried out from two different points of view, comprising the action of a plasma electric reactor and a RecoDust unit to optimize the recovery of iron and zinc, respectively, being the two main technologies envisioned in the EU-funded research project ReMFra. This work focuses on those preliminary steps required to detect the optimal recipes to consider for such industrial units, such as thermodynamic modelling, testing the mechanical properties of the briquettes produced, and the smelting trials carried out at pilot scale. However, tests for the usability of the dusty feedstock for RecoDust are carried out, and, with the results, some recommendations for pretreatment can be made. The outcomes show the high potential of these streams for metal and mineral recovery. Full article
21 pages, 7349 KiB  
Article
Effect of Ti Doping of Al0.7CoCrFeNi-Based High Entropy Alloys on Their Erosion Resistance by Solid Particles
by Wojciech J. Nowak, Tadeusz Kubaszek, Andrzej Gradzik, Małgorzata Grądzka-Dahlke, Dariusz Perkowski, Marzena Tokarewicz, Mariusz Walczak and Mirosław Szala
Materials 2025, 18(14), 3328; https://doi.org/10.3390/ma18143328 - 15 Jul 2025
Viewed by 259
Abstract
The erosion resistance of materials against solid particles is a very important property, especially in the transportation of powders or in aeronautics (dust inside jet engines). There is a strong need to introduce new materials that have higher solid particle erosion resistance than [...] Read more.
The erosion resistance of materials against solid particles is a very important property, especially in the transportation of powders or in aeronautics (dust inside jet engines). There is a strong need to introduce new materials that have higher solid particle erosion resistance than state-of-the-art materials. Thus, in the present work, the solid erosion particles of high entropy alloys (HEAs) based on the Al0.7CoCrFeNi matrix were studied compared to the state-of-the-art stainless steel AISI 304. Furthermore, the effect of the addition of Ti to HEAs on hardness and erosion resistance was investigated. Current research included the development of the chemical composition of a new kind of HEA designed on the basis of thermodynamical calculations performed in CALPHAD, its manufacturing, full characterization involving microstructural and phase analyses, hardness measurements, solid particle erosion tests, and finally, the elucidation of erosion mechanisms. It was found that HEAs showed higher hardness as well as erosion resistance than AISI 304. Moreover, it was found that the increase in Ti content in an HEA resulted in an increase in the hardness and resistance to the erosion of the studied HEA. As the main reason for this phenomenon, the stabilization of the β-BCC phase, suppression of the α-FCC phase, and the appearance of the Ni3Ti phase in the studied HEA were claimed. Full article
(This article belongs to the Special Issue New Advances in High Entropy Alloys)
Show Figures

Figure 1

17 pages, 3592 KiB  
Review
Towards the Circularity of the EU Steel Industry: Modern Technologies for the Recycling of the Dusts and Recovery of Resources
by Marco Simoni, Wolfgang Reiter, Julian Suer, Loredana Di Sante, Filippo Cirilli, Fabio Praolini, Manuel Mosconi, Marta Guzzon, Enrico Malfa, David Algermissen and Johannes Rieger
Metals 2024, 14(2), 233; https://doi.org/10.3390/met14020233 - 14 Feb 2024
Cited by 9 | Viewed by 3376
Abstract
The EU steel industry accounts for a crude steel production of 140 Mt/y, provided by the integrated (57%) and electric (43%) routes, which respectively require up to 6.0 and 0.6 MWh/tCrudeSteel of energy input, and emits on average 1.85 and 0.4 t [...] Read more.
The EU steel industry accounts for a crude steel production of 140 Mt/y, provided by the integrated (57%) and electric (43%) routes, which respectively require up to 6.0 and 0.6 MWh/tCrudeSteel of energy input, and emits on average 1.85 and 0.4 tCO2/tCrudeSteel. The mitigation of such CO2 emissions is crucial, and would involve the direct avoidance of carbon, improvement of energy efficiency, and carbon capture. However, the environmental burden of the steel industry cannot be limited to this, given the very large amount (approximately 5 Mt) of residues landfilled every year in the EU. This practice cannot be sustained anymore, since it represents a detrimental waste of resources and burden to the environment. These aspects require prompt action to meet the Green Deal goals envisioned for 2030. This review paper aims to provide an overview of the main state-of-the-art technologies commercially (and not) available for the effective treatment of a wide variety of residues. To enrich this overview with further potential candidates towards a more sustainable steel manufacturing process, the combined application of two technologies (a plasma reactor and a RecoDust unit for the recovery of metals and minerals, respectively) at TRL 5-6 is also investigated here. Full article
(This article belongs to the Topic Energy-Saving and Emission Reduction in Metallurgy)
Show Figures

Figure 1

15 pages, 7015 KiB  
Article
Bioleaching of Zinc from Blast Furnace Cast House Dust
by Amaia Sasiain, Sophie Thallner, Clemens Habermaier, Sabine Spiess, Ludwig Birklbauer, Martin Wallner and Marianne Haberbauer
Minerals 2023, 13(8), 1007; https://doi.org/10.3390/min13081007 - 28 Jul 2023
Cited by 3 | Viewed by 1591
Abstract
Metallurgical dusts are by-products from steel manufacturing. The high iron content of cast house dust (~64%) makes this by-product an interesting iron feedstock alternative. Therefore, its return into the internal steelmaking circuit, specifically in the sinter plant, is a common practice in the [...] Read more.
Metallurgical dusts are by-products from steel manufacturing. The high iron content of cast house dust (~64%) makes this by-product an interesting iron feedstock alternative. Therefore, its return into the internal steelmaking circuit, specifically in the sinter plant, is a common practice in the steel industry. However, this dust fraction also contains heavy metals, as zinc. As a result of the re-entry of zinc into the process, the zinc concentration in the blast furnace flue gas dust also increases. This prevents the full recirculation of the blast furnace flue gas dust in the steelmaking process despite its relatively high iron content (~35%), thus causing part of the blast furnace flue gas dust to end in the landfill. The goal of this study was to investigate the usage of bacteria, such as the sulfur oxidizing Acidithiobacillus thiooxidans or the iron and sulfur oxidizing Acidithiobacillus ferrooxidans, to leach the undesirable element zinc from the cast house dust while preventing the leaching of iron, by adjusting the sulfur addition and avoiding, at the same time, the accumulation of sulfur in the solid fraction. Experiments proved that a co-culture of A. thiooxidans and A. ferrooxidans can effectively leach zinc from metallurgical dusts, maintaining high iron concentrations in the material. The influence of elemental sulfur on the efficiencies reached was shown, since higher removal efficiencies were achieved with increasing sulfur concentrations. Maximum zinc leaching efficiencies of ~63% (w/w) and an iron enrichment of ~7% (w/w) in the remaining residue were achieved with sulfur concentrations of 15 g/L for cast house gas concentrations of 125 g/L. Full article
Show Figures

Figure 1

14 pages, 4626 KiB  
Article
Coupled Thermodynamics and Phase Diagram Analysis of Gas-Duct Concretion Formation in Pyro-Processing Ironmaking and Steelmaking Dust
by Daya Wang, Shaoguang Hua, Liushun Wu, Kunlong Liu and Haichuan Wang
Minerals 2021, 11(10), 1125; https://doi.org/10.3390/min11101125 - 13 Oct 2021
Cited by 3 | Viewed by 2038
Abstract
In recent years, the steel industry has accumulated approximately 100 million tons of dust annually, severely threatening the environment. Rotary kiln technology is one of the main industrial methods used to process this dust. However, some substances in flue gas congeal on the [...] Read more.
In recent years, the steel industry has accumulated approximately 100 million tons of dust annually, severely threatening the environment. Rotary kiln technology is one of the main industrial methods used to process this dust. However, some substances in flue gas congeal on the cooling wall of the gas duct and seriously affect production. In this study, the properties and formation mechanisms of the coagulum were investigated on the basis of experimental and thermodynamic analyses. The experimental results showed that the coagulum is mainly composed of chlorides (KCl, NaCl, and ZnCl2), oxides (ZnO, FeO), and carbon, with three structures: lumps, fibers, and particles. Based on a thermodynamic analysis, a reasonable explanation was proposed to clarify the formation mechanism. The liquid phase (a eutectic system of KCl–NaCl–ZnCl2), dendrites (KCl, NaCl), and particles (ZnO, FeO, C) were found to act as binders, stiffeners, and aggregates in the coagulum, respectively, constituting a composite structure. Liquids acting as binders are essential for coagulum formation, and dendrites and particles strengthen this effect. Furthermore, the eutectic system of chlorides plays a crucial role in coagulum formation. The results of the present study offer a theoretical understanding of gas-duct coagulation and will provide guidance for adopting alleviation measures. Full article
Show Figures

Figure 1

17 pages, 2291 KiB  
Article
Leaching of Zinc for Subsequent Recovery by Hydrometallurgical Techniques from Electric Arc Furnace Dusts and Utilisation of the Leaching Process Residues for Ceramic Materials for Construction Purposes
by Juan María Terrones-Saeta, Jorge Suárez-Macías, Evaristo Rafael Moreno-López and Francisco Antonio Corpas-Iglesias
Metals 2021, 11(10), 1603; https://doi.org/10.3390/met11101603 - 9 Oct 2021
Cited by 9 | Viewed by 2375
Abstract
Steel is one of the most widely used materials in the past and today. Various techniques are used to recycle this material, including the electric arc furnace. This process has several advantages, but it also has a major disadvantage, namely, the generation of [...] Read more.
Steel is one of the most widely used materials in the past and today. Various techniques are used to recycle this material, including the electric arc furnace. This process has several advantages, but it also has a major disadvantage, namely, the generation of waste such as electric arc furnace dusts. Electric arc furnace dusts are classified as hazardous waste due to their high percentage of heavy metals, including zinc. Consequently, in the present research, the leaching of zinc for recovery with sulfuric acid solutions at ambient temperature and atmospheric pressure is evaluated, as well as the reuse of the leaching process residue as a raw material for ceramic materials. The sulfuric acid solutions were 0.125, 0.25, 0.5, and 1 molar, using clay for ceramic conforming and percentages of the leaching residue from 0–50%. The results showed that the optimum solution was 1 molar sulfuric acid, recovering all the zinc in the sample in 36 h. Furthermore, it was found that the clay-conformed ceramics with less than 40% leaching residue showed acceptable physical and mechanical properties according to standards. Therefore, this research develops a new environmental hydrometallurgy in which metallic elements of interest are valorized and the production of waste is avoided, reducing the deposition of hazardous waste in landfills and the extraction of raw materials for the manufacture of construction materials. Full article
Show Figures

Figure 1

24 pages, 9125 KiB  
Article
Behavior of Quarry Rock Dust, Fly Ash and Slag Based Geopolymer Concrete Columns Reinforced with Steel Fibers under Eccentric Loading
by Rana Muhammad Waqas and Faheem Butt
Appl. Sci. 2021, 11(15), 6740; https://doi.org/10.3390/app11156740 - 22 Jul 2021
Cited by 12 | Viewed by 3115
Abstract
Geopolymer concrete, also known as an earth-friendly concrete, has been under continuous study due to its environmental benefits and a sustainable alternative to conventional concrete construction. The supplies of many source materials, such as fly ash (FA) or slag (SG), to produce geopolymer [...] Read more.
Geopolymer concrete, also known as an earth-friendly concrete, has been under continuous study due to its environmental benefits and a sustainable alternative to conventional concrete construction. The supplies of many source materials, such as fly ash (FA) or slag (SG), to produce geopolymer concrete (GPC) may be limited; however, quarry rock dust (QRD) wastes (limestone, dolomite, or silica powders) formed by crushing rocks appear virtually endless. Although significant experimental research has been carried out on GPC, with a major focus on the mix design development, rheological, durability, and mechanical properties of the GPC mixes; still the information available on the structural behavior of GPC is rather limited. This has implications in extending GPC application from a laboratory-based technology to an at-site product. This study investigates the structural behavior of quarry-rock-dust-incorporated fiber-reinforced GPC columns under concentric and eccentric loading. In this study, a total of 20 columns with 200 mm square cross-section and 1000 mm height were tested. The FA and SG were used as source materials to produce GPC mixtures. The QRD was incorporated as a partial replacement (20%) of SG. The conventional concrete (CC) columns were prepared as the reference specimens. The effect of incorporating quarry rock dust as a replacement of SG, steel fibers, and loading conditions (concentric and eccentric loading) on the structural behavior of GPC columns were studied. The test results revealed that quarry rock dust is an adequate material that can be used as a source material in GPC to manufacture structural concrete members with satisfactory performance. The general performance of the GPC columns incorporating QRD (20%) is observed to be similar to that of GPC columns (without QRD) and CC columns. The addition of steel fibers considerably improves the loading capacity, ductility, and axial load–displacement behavior of the tested columns. The load capacities of fiber-reinforced GPC columns were about 5–7% greater in comparison to the CC columns. The spalling of concrete cover at failure was detected in all plain GPC columns, whereas the failure mode of all fiber-reinforced GPC columns is characterized with surface cracking leading to disintegration of concrete cover. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 5502 KiB  
Article
Using Wastes from the Process of Blasting with Steel Shot to Make a Radiation Shield in Mortar
by Richard Thomas Lermen, Márcio Baldissera Prauchner, Rodrigo de Almeida Silva and Francieli Tiecher Bonsembiante
Sustainability 2020, 12(16), 6674; https://doi.org/10.3390/su12166674 - 18 Aug 2020
Cited by 5 | Viewed by 5449
Abstract
The waste generated from the process of steel shot blasting must be safely disposed of due to its classification, non-hazardous and non-inert, and, consequently, is sent to landfills. One of the possibilities for reusing this waste is in the cement materials industry. In [...] Read more.
The waste generated from the process of steel shot blasting must be safely disposed of due to its classification, non-hazardous and non-inert, and, consequently, is sent to landfills. One of the possibilities for reusing this waste is in the cement materials industry. In this context, the aim of this study was to evaluate the addition of waste from steel shot blasting, thereby replacing natural sand, for the manufacture of cementitious material with properties that shield against ionizing radiation. Three forms of steel shot (commercial steel shot—AG1, intermediate steel shot waste—AG2, and steel shot dust—AG3) were used to replace natural sand in different proportions (0%, 10%, 20%, 30%, and 40% by volume). Compressive strength results were found with values above the minimum compressive strength (20 MPa) requirement of structural concrete. The results indicated that AG1, AG2, and AG3 can be used to attenuate X-ray radiation. Regarding the reference samples (mortar developed without natural sand replacement), an increase in X-ray shielding of 76.7%, 72.5%, and 59.3% was found for samples with AG1, AG2, and AG3, respectively. Therefore, the waste generated in the steel shot blasting process had the potential to be used in mortar developed to attenuate X-ray radiation. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

28 pages, 6475 KiB  
Article
Valorization of Slags Produced by Smelting of Metallurgical Dusts and Lateritic Ore Fines in Manufacturing of Slag Cements
by Theofani Tzevelekou, Paraskevi Lampropoulou, Panagiota P. Giannakopoulou, Aikaterini Rogkala, Petros Koutsovitis, Nikolaos Koukouzas and Petros Petrounias
Appl. Sci. 2020, 10(13), 4670; https://doi.org/10.3390/app10134670 - 7 Jul 2020
Cited by 13 | Viewed by 4810
Abstract
A pyrometallurgical process was developed for the recycling of Ni bearing dusts and laterite ore fines by direct reduction smelting in DC (direct current) arc furnace. In the course of the performed industrial trials, besides the Ni-recovery in the liquid bath, slag composition [...] Read more.
A pyrometallurgical process was developed for the recycling of Ni bearing dusts and laterite ore fines by direct reduction smelting in DC (direct current) arc furnace. In the course of the performed industrial trials, besides the Ni-recovery in the liquid bath, slag composition was deliberately adjusted in order to produce a series of metallurgical slags with different chemical and mineralogical composition. The aim of this study was to investigate their suitability as clinker substitute in cement manufacturing. Examined parameters were slag FeOx content, basicity and applied cooling media (air, water cooling). A series of composite Portland and slag cements were manufactured in laboratory scale incorporating 20% and 40% of each slag, respectively; the rest being clinker of OPC (ordinary Portland cement) and 5% gypsum. The extended mineralogical analysis and microstructural properties of the produced slags were examined and correlated with the properties of the produced cements. The physical and mechanical characteristics of all examined cement products were found to meet the requirements of the regulation set for cements. The present research revealed that the most critical parameter in the compressive strength development of the slag cements is the mineralogical composition of the slag. Even in cases where rapid cooling to obtain glassy matrix is not feasible, adjustment of slag analysis to obtain mineralogical phases similar to those met in clinker of OPC, even at higher FeO contents (up to ~21wt.%), can result in production of slag with considerable latent hydraulic properties. These results indicate that there is potentially space for adjustments in conventional EAF (electric arc furnace) steel slags composition to allow for their wider use in cement manufacturing with significant environmental and economic benefits resulting from the reduction of energy requirements, CO2 emissions and natural raw materials consumption. Full article
Show Figures

Figure 1

19 pages, 4297 KiB  
Article
The Potential of Remedial Techniques for Hazard Reduction of Steel Process by Products: Impact on Steel Processing, Waste Management, the Environment and Risk to Human Health
by Kiri Rodgers, Iain McLellan, Simon Cuthbert, Victoria Masaguer Torres and Andrew Hursthouse
Int. J. Environ. Res. Public Health 2019, 16(12), 2093; https://doi.org/10.3390/ijerph16122093 - 13 Jun 2019
Cited by 8 | Viewed by 5107
Abstract
The negative impact from industrial pollution of the environment is still a global occurrence, and as a consequence legislation and subsequent regulation is becoming increasingly stringent in response, in particular, to minimising potential impact on human health. These changes have generated growing pressures [...] Read more.
The negative impact from industrial pollution of the environment is still a global occurrence, and as a consequence legislation and subsequent regulation is becoming increasingly stringent in response, in particular, to minimising potential impact on human health. These changes have generated growing pressures for the steel industry to innovate to meet new regulations driving a change to the approach to waste management across the industrial landscape, with increasing focus on the principles of a circular economy. With a knowledge of the compositional profiles of process by-products, we have assessed chemical cleaning to improve environmental performance and minimise disruption to manufacturing processes, demonstrating re-use and recycling capacity. We show that with a knowledge of phase composition, we are able to apply stabilisation methods that can either utilise waste streams directly or allow manipulation, making them suitable for re-use and/or inert disposal. We studied blast furnace slags and Portland cement mixes (50%/50% and 30%/70%) with a variety of other plant wastes (electrostatic precipitator dusts (ESP), blast furnace (BF) sludge and basic oxygen furnace (BOF) sludge) which resulted in up to 90% immobilisation of hazardous constituents. The addition of organic additives i.e., citric acid can liberate or immobilise problematic constituents; in the case of K, both outcomes occurred depending on the waste type; ESP dust BF sludge and BOF fine sludge. Pb and Zn however were liberated with a 50–80% and 50–60% residue reduction respectively, which generates possibilities for alternative uses of materials to reduce environmental and human health impact. Full article
(This article belongs to the Special Issue Hazardous Waste and Human Health)
Show Figures

Figure 1

Back to TopTop