Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = dividing wall column (DWC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1310 KiB  
Article
Enhancing Energy Efficiency of Electric Grade Isopropyl Alcohol Production Process by Using Noble Thermally Coupled Distillation Technology
by Neha Agarwal, Nguyen Nhu Nga, Le Cao Nhien, Raisa Aulia Hanifah, Minkyu Kim and Moonyong Lee
Energies 2025, 18(15), 4159; https://doi.org/10.3390/en18154159 - 5 Aug 2025
Abstract
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent [...] Read more.
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent feed that consists of IPA and water, along with other impurities. Modeling and energy optimization were performed for a conventional distillation train as a base case by using the rigorous process simulator Aspen Plus V12.1. To improve energy efficiency, various options for intensifying distillation were examined. The side-stream preconcentration column was subsequently replaced by a dividing wall column (DWC) with two side streams, i.e., a Kaibel column, reducing the total energy consumption of corresponding distillation columns by 9.1% compared to the base case. Further strengthening was achieved by combining two columns in the preconcentration process into a single Kaibel column, resulting in a 22.8% reduction in reboiler duty compared to the base case. Optimization using the response surface methodology identified key operating parameters, such as side-draw positions and stage design, which significantly influence both energy efficiency and separation quality. The intensified Kaibel setup offers significant energy efficiencies and simplified column design, suggesting enormous potential for process intensification in energy-intensive distillation processes at the industrial level, including the IPA purification process. Full article
Show Figures

Figure 1

21 pages, 2682 KiB  
Article
Environmental Assessment and Eco-Efficiency Analysis of the Dividing Wall Distillation Column for Separating a Benzene–Toluene–Xylene Mixture
by Fernanda Ribeiro Figueiredo and Diego Martinez Prata
Processes 2025, 13(2), 391; https://doi.org/10.3390/pr13020391 - 1 Feb 2025
Cited by 1 | Viewed by 1260
Abstract
The benzene–toluene–xylene (BTX) system represents an energy-intensive petrochemical process with various industrial applications. Global climate changes have forced modern industry to act toward environmental safety, which requires technological changes. Thus, the divided wall column (DWC) represents a significant advancement in multicomponent mixture separation. [...] Read more.
The benzene–toluene–xylene (BTX) system represents an energy-intensive petrochemical process with various industrial applications. Global climate changes have forced modern industry to act toward environmental safety, which requires technological changes. Thus, the divided wall column (DWC) represents a significant advancement in multicomponent mixture separation. To assess the impact of the conventional BTX process and its intensification proposal based on DWC technology, it is necessary to integrate an eco-efficiency approach that jointly analyzes the economic and environmental variables influencing the system, such as water consumption, CO2 emissions, and utility costs. An auxiliary utility plant was also considered for more realistic results in terms of energy and water consumption, which was identified as a lack in many research studies that performed an overall sustainability analysis. The results showed that the DWC scheme is 37.5% more eco-efficient than the conventional counterpart, mainly due to a 15.6% and 30.3% savings on energy and water consumption, respectively, which provided a 15.5% and 16.7% reduction on CO2 emissions and utility costs, respectively. In addition, all other environmental and safety indicators based on the waste algorithm reduction (WAR) were reduced by approximately 16%. Thus, the DWC proved to be a convenient technology with economic attractiveness and environmental friendliness. Full article
(This article belongs to the Special Issue Circular Economy and Efficient Use of Resources (Volume II))
Show Figures

Graphical abstract

13 pages, 2505 KiB  
Proceeding Paper
Recent Advances in Reactive Distillation
by Demi Andrei Barrientos, Beatrice Fernandez, Rachel Morante, Hannah Ruth Rivera, Karen Simeon and Edgar Clyde R. Lopez
Eng. Proc. 2023, 56(1), 99; https://doi.org/10.3390/ASEC2023-15278 - 26 Oct 2023
Cited by 5 | Viewed by 7033
Abstract
Reactive distillation (RD) combines chemical reactions and separation in a single unit essential to equilibrium-limited reactions. This new technique encompasses multiple advantages over traditional processes, including lower operating costs, increased thermal energy efficiency, high product selectivity, high purity percentage, and lower environmental impact. [...] Read more.
Reactive distillation (RD) combines chemical reactions and separation in a single unit essential to equilibrium-limited reactions. This new technique encompasses multiple advantages over traditional processes, including lower operating costs, increased thermal energy efficiency, high product selectivity, high purity percentage, and lower environmental impact. This paper provided an overview of the features, industrial applications, and industrial perspective of advanced reactive distillation technologies (ARDTs). This study focused on five under-development ARDTs: reactive dividing wall column (R-DWC), reactive high-gravity distillation (R-HiGee), reactive heat-integrated distillation column (R-HIDiC), catalytic cyclic distillation (CCD), and membrane-assisted reactive distillation (MA-RD). The primary drivers for new RD applications are reduced number of vessels, reduced residence time and holdup volume, increased mass and heat transfer, overcoming azeotropes, and prefractionation or impurity removal. ARDT’s potential has yet to be studied, and research remains active to improve it further by investigating other RD technologies, simulation, and optimization techniques. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

22 pages, 3489 KiB  
Article
Dividing-Wall Column Design: Analysis of Methodologies Tailored to Process Simulators
by Gloria A. Buitimea-Cerón, Juergen Hahn, Nancy Medina-Herrera, Arturo Jiménez-Gutiérrez, José A. Loredo-Medrano and Salvador Tututi-Avila
Processes 2021, 9(7), 1189; https://doi.org/10.3390/pr9071189 - 8 Jul 2021
Cited by 9 | Viewed by 5416
Abstract
Dividing-wall columns (DWCs) are intensified processes that have attracted industrial and academic attention due to the reduction in operating and installation costs compared to traditional distillation systems. Several methodologies are available for the design of DWCs. Most of them consist of three parts: [...] Read more.
Dividing-wall columns (DWCs) are intensified processes that have attracted industrial and academic attention due to the reduction in operating and installation costs compared to traditional distillation systems. Several methodologies are available for the design of DWCs. Most of them consist of three parts: an analysis of operating variables; an analysis of the structural design (topology); and an optimization of the resulting preliminary design. This paper aims to study three widely used design methodologies reported in the literature for DWCs, i.e., Triantafyllou and Smith (T&S), minimum vapor (Vmin), and Sotudeh and Shahraki (S&S) methods, along with their implementation on process simulators. A proposed modification to the S&S methodology is also presented. A comparison of the methods is carried out and rated against designs with minimum total annual costs. The analysis considers the effect of different structural design variables to initialize the design procedure with each methodology. Five case studies involving mixtures with different ease of separation index were evaluated. The results show that the most efficient techniques were obtained with a modified Sotudeh and Shahraki’s methodology. It was also found that the T&S approach stands out from the other methods, as it provided excellent initial designs for the case studies tested in this work. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 2095 KiB  
Article
Impact of Various Feed Properties on the Performance of a Control System for a Multiple Dividing Wall Column Pilot Plant
by Ulrich Preißinger, Goran Lukač, Igor Dejanović and Thomas Grützner
ChemEngineering 2021, 5(2), 29; https://doi.org/10.3390/chemengineering5020029 - 8 Jun 2021
Cited by 2 | Viewed by 3421
Abstract
Despite the attractive savings potential of multiple Dividing Wall Columns (mDWC), there are no reports in the open literature of an existing application so far. In this perspective, the control of mDWCs has been a rather little-investigated field. Pilot plants are a necessary [...] Read more.
Despite the attractive savings potential of multiple Dividing Wall Columns (mDWC), there are no reports in the open literature of an existing application so far. In this perspective, the control of mDWCs has been a rather little-investigated field. Pilot plants are a necessary step needed to further expand the application window of this sustainable distillation technology. This contribution aimed to show that mDWCs are sufficiently flexible, providing stable operation, even with suboptimal control structures arising from design limitations imposed by equipment. For this purpose, the pilot column design was assessed using dynamic simulation to evaluate its operability in case of different disturbances as well as different feed mixtures. The results showed that, in all cases, the column could be stabilized and product purities maintained. This suggests that even complex configurations such as mDWCs offer sufficient amount of flexibility to allow for the application of one design in different services. Full article
(This article belongs to the Special Issue Process Intensification for Chemical Engineering and Processing)
Show Figures

Figure 1

19 pages, 7044 KiB  
Article
Comparison of Temperature Control and Temperature Difference Control for a Kaibel Dividing Wall Column
by Xing Qian, Rui Liu, Kejin Huang, Haisheng Chen, Yang Yuan, Liang Zhang and Shaofeng Wang
Processes 2019, 7(10), 773; https://doi.org/10.3390/pr7100773 - 21 Oct 2019
Cited by 11 | Viewed by 3849
Abstract
A dividing wall column (DWC) effectively intensifies the distillation process with a reduced energy consumption, capital investment, and space. The three-product DWC has been investigated intensively and extensively; however, the four-product Kaibel DWC has received scarce attention. This study aimed to propose feasible [...] Read more.
A dividing wall column (DWC) effectively intensifies the distillation process with a reduced energy consumption, capital investment, and space. The three-product DWC has been investigated intensively and extensively; however, the four-product Kaibel DWC has received scarce attention. This study aimed to propose feasible control structures for the Kaibel DWC using only temperature sensors in order to promote its industrialization. Two temperature control structures, two temperature difference control structures, and two double temperature difference control structures were studied. The feasibility of the six proposed control structures was verified with a wide variety of feed disturbances. In most cases, temperature difference control was better than temperature control to maintain product purities. The dynamic performances proved that the inserted feed disturbances were handled well. These results help to promote the industrialization of the Kaibel DWC. Full article
(This article belongs to the Special Issue Process Optimization and Control)
Show Figures

Figure 1

17 pages, 2845 KiB  
Article
Modeling/Simulation of the Dividing Wall Column by Using the Rigorous Model
by Chi Zhai, Qinjun Liu, Jose A. Romagnoli and Wei Sun
Processes 2019, 7(1), 26; https://doi.org/10.3390/pr7010026 - 8 Jan 2019
Cited by 6 | Viewed by 6965
Abstract
Dividing wall column (DWC) is an atypical distillation column with an internal, vertical WE partition wall that effectively accommodates two conventional distillation columns into one to improve the thermodynamic efficiency. In previous studies, different equivalent models by combining conventional columns are adopted to [...] Read more.
Dividing wall column (DWC) is an atypical distillation column with an internal, vertical WE partition wall that effectively accommodates two conventional distillation columns into one to improve the thermodynamic efficiency. In previous studies, different equivalent models by combining conventional columns are adopted to approximate the DWC modeling, which may not well describe the integration of the DWC; moreover, the computational cost increases when multiple columns are implemented to represent one DWC. In this paper, a rigorous mathematical model is proposed based on the mass balance, the energy and phase equilibrium of the DWC, where decision variables and state variables are equally treated. The model was developed in the general process modeling system (gPROMS). Based on the rigorous model, the influences of liquid split ratio and vapor split ratio are discussed, and it is shown that the heat duty is sensitive to changes on the liquid and vapor split ratio. Inappropriate liquid and vapor split ratio will increase the mixing effects at both ends of the dividing wall, and adversely affect the thermodynamic efficiency. Hence, the degree of mixing is defined to characterize the column efficiency. Furthermore, the middle component split ratio at the top of the pre-fractionator has an optimal point for better energy saving with certain liquid and vapor split ratios, and can be used as an indicator for the energy performance. Finally, the model was tested and validated against literature data by using the ternary benzene–toluene–xylene mixture system as a case study. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Chemical Processes)
Show Figures

Figure 1

19 pages, 3212 KiB  
Article
Robust Initialization of Rigorous Process Simulations of Multiple Dividing Wall Columns via Vmin Diagrams
by Lena-Marie Ränger, Ulrich Preißinger and Thomas Grützner
ChemEngineering 2018, 2(2), 25; https://doi.org/10.3390/chemengineering2020025 - 4 Jun 2018
Cited by 16 | Viewed by 5149 | Correction
Abstract
Dividing Wall Columns (DWCs) allow the separation of a ternary mixture in one column shell by applying a vertical partition wall, yielding a reduction of operational and capital costs of up to 30%. Multiple DWC (mDWC), the consequent advancement of standard DWC, makes [...] Read more.
Dividing Wall Columns (DWCs) allow the separation of a ternary mixture in one column shell by applying a vertical partition wall, yielding a reduction of operational and capital costs of up to 30%. Multiple DWC (mDWC), the consequent advancement of standard DWC, makes use of more than one partitioning wall, allowing the separation of quaternary or even higher mixtures in one column shell accompanied by a further reduction of energy consumption. Since no dedicated models for these columns are available in commercial process simulators, thermodynamic consistent flowsheets have to be designed and implemented. The thermally fully coupled Petlyuk arrangement is one important example. However, the initial convergence of these substituting flowsheets is demanding, since a large number of meaningful initial guesses have to be provided. A promising method for generating these first estimates are minimum vapor (Vmin) diagrams. All internal flows can be extracted from these diagrams and used for robust initialization of the simulation. The goal of this work is to present the Vmin method in a comprehensive way in order to initialize mDWC simulations to predict the separation of four component mixtures. Additionally, the adaptation of the diagram to configurations different than Petlyuk arrangements for mDWC is evaluated and a systematic procedure to obtain them is presented. In the end, an example of a converging simulation is given, which was obtained with the values from the Vmin diagram. Full article
Show Figures

Figure 1

11 pages, 1201 KiB  
Article
Energy Efficiency Improvement in a Modified Ethanol Process from Acetic Acid
by Young Han Kim
Entropy 2016, 18(12), 422; https://doi.org/10.3390/e18120422 - 24 Nov 2016
Cited by 2 | Viewed by 9217
Abstract
For the high utilization of abundant lignocellulose, which is difficult to directly convert into ethanol, an energy-efficient ethanol production process using acetic acid was examined, and its energy saving performance, economics, and thermodynamic efficiency were compared with the conventional process. The raw ethanol [...] Read more.
For the high utilization of abundant lignocellulose, which is difficult to directly convert into ethanol, an energy-efficient ethanol production process using acetic acid was examined, and its energy saving performance, economics, and thermodynamic efficiency were compared with the conventional process. The raw ethanol synthesized from acetic acid and hydrogen was fed to the proposed ethanol concentration process. The proposed process utilized an extended divided wall column (DWC), for which the performance was investigated with the HYSYS simulation. The performance improvement of the proposed process includes a 27% saving in heating duty and a 41% reduction in cooling duty. The economics shows a 16% saving in investment cost and a 24% decrease in utility cost over the conventional ethanol concentration process. The exergy analysis shows a 9.6% improvement in thermodynamic efficiency for the proposed process. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

20 pages, 1222 KiB  
Article
Analysis of Multi-Loop Control Structures of Dividing-Wall Distillation Columns Using a Fundamental Model
by Salvador Tututi-Avila, Arturo Jiménez-Gutiérrez and Juergen Hahn
Processes 2014, 2(1), 180-199; https://doi.org/10.3390/pr2010180 - 24 Feb 2014
Cited by 13 | Viewed by 18389
Abstract
Dividing-wall columns (DWCs) have significant potential as energy-efficient processes for the separation of multicomponent mixtures. However, in addition to an efficient steady state design, dynamics and control also play a major part for the success of a technology. This is especially so for [...] Read more.
Dividing-wall columns (DWCs) have significant potential as energy-efficient processes for the separation of multicomponent mixtures. However, in addition to an efficient steady state design, dynamics and control also play a major part for the success of a technology. This is especially so for complex distillation systems. This paper investigates the dynamics of a dividing wall column used for the separation of ternary mixtures. A detailed dynamic first principles-based model of the column I s developed in gPROMS. The model is used to generate data used for control loop pairing via the Relative Gain Array (RGA), and controller parameters are found by using Internal Model Control (IMC) tuning. The best control structures for DWC systems, involving four different ternary mixtures, and two different feed compositions for each mixture, are investigated. Full article
Show Figures

Figure 1

Back to TopTop