Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = disulfide connectivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2429 KB  
Review
Epipolythiodioxopiperazines: From Chemical Architectures to Biological Activities and Ecological Significance—A Comprehensive Review
by Qingqing Zhang, Mingyang Jia, Hongyi Li, Tingting Shi, Ying Xu, Taili Zhao, Lixin Zhang, Peipei Zhao and Xuekui Xia
Fermentation 2025, 11(12), 700; https://doi.org/10.3390/fermentation11120700 - 17 Dec 2025
Viewed by 602
Abstract
Epipolythiodioxopiperazines (ETPs), characterized by a diketopiperazine (DKP) core bridged by disulfide or polysulfide bonds, exhibit exceptional structural diversity and functional adaptability. This review comprehensively explores their multifaceted properties, covering chemical structural characteristics, therapeutic application potential, and ecological functional value. Structural diversity arises from [...] Read more.
Epipolythiodioxopiperazines (ETPs), characterized by a diketopiperazine (DKP) core bridged by disulfide or polysulfide bonds, exhibit exceptional structural diversity and functional adaptability. This review comprehensively explores their multifaceted properties, covering chemical structural characteristics, therapeutic application potential, and ecological functional value. Structural diversity arises from variations in the core DKP scaffold, sulfur bridge connectivity patterns, and additional modifications. Biosynthesis involves initial DKP assembly, enzyme-catalyzed sulfur incorporation and oxidation to form the signature sulfur bridge of ETPs, diversification by tailoring enzymes, and distinct regulatory mechanisms. ETPs possess diverse biological activities, including cytotoxicity, antitumor activity, antimicrobial properties, and immunomodulatory functions. From an ecological standpoint, ETPs mediate fungal–host interactions and influence competition and symbiosis within fungal communities. Furthermore, this review also addresses the current challenges and outlines future research directions. In summary, as a class of significant compounds spanning the fields of chemistry, biology, medicine, and ecology, ETPs deserve focused attention for their research value and application prospects. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Graphical abstract

11 pages, 7087 KB  
Article
Cu-Contamination-Free Hybrid Bonding via MoS2 Passivation Layer
by Hyunbin Choi, Kyungman Kim, Sihoon Son, Dongho Lee, Seongyun Je, Jieun Kang, Sunjae Jeong, Doo San Kim, Minjong Lee, Jiyoung Kim and Taesung Kim
Nanomaterials 2025, 15(20), 1600; https://doi.org/10.3390/nano15201600 - 21 Oct 2025
Viewed by 1374
Abstract
Hybrid bonding technology has emerged as a critical 3D integration solution for advanced semiconductor packaging, enabling simultaneous bonding of metal interconnects and dielectric materials. However, conventional hybrid bonding processes face significant contamination challenges during O2 plasma treatment required for OH group formation [...] Read more.
Hybrid bonding technology has emerged as a critical 3D integration solution for advanced semiconductor packaging, enabling simultaneous bonding of metal interconnects and dielectric materials. However, conventional hybrid bonding processes face significant contamination challenges during O2 plasma treatment required for OH group formation on SiCN or the other dielectric material surfaces. The aggressive plasma conditions cause Cu sputtering and metal migration, leading to chamber and substrate contamination that accumulates over time and degrades process reliability. In this work, we present a novel approach to address these contamination issues by implementing a molybdenum disulfide (MoS2) barrier layer formed through plasma-enhanced chemical vapor deposition (PECVD) sulfurization of Mo films. The ultrathin MoS2 layer acts as an effective barrier preventing Cu sputtering during O2 plasma processing, thereby eliminating chamber contamination, and it also enables post-bonding electrical connectivity through controlled Cu filament formation via memristive switching mechanisms. When voltage is applied to the Cu-MoS2-Cu structure after hybrid bonding, Cu ions migrate through the MoS2 layer to form conductive filaments, establishing reliable electrical connections without compromising the bonding interface integrity. This innovative approach successfully resolves the fundamental contamination problem in hybrid bonding while maintaining excellent electrical performance, offering a pathway toward contamination-free and high-yield hybrid bonding processes for next-generation 3D-integrated devices. Full article
Show Figures

Figure 1

29 pages, 2797 KB  
Review
Allosteric Disulfide Bridges in Integrins: The Molecular Switches of Redox Regulation of Integrin-Mediated Cell Functions
by Johannes A. Eble
Antioxidants 2025, 14(8), 1005; https://doi.org/10.3390/antiox14081005 - 16 Aug 2025
Viewed by 2212
Abstract
Almost every cell of a multicellular organism is in contact with the extracellular matrix (ECM), which provides the shape and mechanic stability of tissue, organs and the entire body. At the molecular level, cells contact the ECM via integrins. Integrins are transmembrane cell [...] Read more.
Almost every cell of a multicellular organism is in contact with the extracellular matrix (ECM), which provides the shape and mechanic stability of tissue, organs and the entire body. At the molecular level, cells contact the ECM via integrins. Integrins are transmembrane cell adhesion molecules that connect the ECM to the cytoskeleton, which they bind with their extracellular and intracellular domains. Cysteine residues are abundant in both integrin subunits α and β. If pairwise oxidized into disulfide bridges, they stabilize the folding and molecular structure of the integrin. However, despite the oxidative environment of the extracellular space, not all pairs of cysteines in the extracellular integrin domains are permanently engaged in disulfide bridges. Rather, the reversible and temporary linkage of cystine bridges of these cysteine pairs by oxidation or their reductive cleavage can cause major conformational changes within the integrin, thereby changing ligand binding affinity and altering cellular functions such as adhesion and migration. During recent years, several oxidoreductases and thiol isomerases have been characterized which target such allosteric disulfide bridges. This outlines much better, albeit not comprehensively, the role that such thiol switches play in the redox regulation of integrins. The platelet integrin αIIbβ3 is the best examined example so far. Mostly referring to this integrin, this review will provide insights into the thiol switch-based redox regulation of integrins and the known effects of their allosteric disulfide bridges on conformational changes and cell functions, as well as on the machinery of redox-modifying enzymes that contribute to the redox regulation of cell contacts with the ECM. Full article
(This article belongs to the Special Issue Redox Regulation in Inflammation and Disease—3rd Edition)
Show Figures

Figure 1

19 pages, 4907 KB  
Article
Comparative Molecular Dynamics Study of 19 Bovine Antibodies with Ultralong CDR H3
by Olena Denysenko, Anselm H. C. Horn and Heinrich Sticht
Antibodies 2025, 14(3), 70; https://doi.org/10.3390/antib14030070 - 13 Aug 2025
Viewed by 1231
Abstract
Background/Objectives: Cows produce antibodies with ultralong CDRH3 segments (ulCABs) that contain a disulfide-stabilized knob domain. This domain is connected to the globular core of the antibody by a β-strand stalk. In the crystal structures, the stalk protrudes from the core in an [...] Read more.
Background/Objectives: Cows produce antibodies with ultralong CDRH3 segments (ulCABs) that contain a disulfide-stabilized knob domain. This domain is connected to the globular core of the antibody by a β-strand stalk. In the crystal structures, the stalk protrudes from the core in an extended conformation and presents the knob at its distal end. However, the rigidity of this topology has been questioned due to the extensive crystal packing present in most ulCAB crystal structures. To gain more insight into the dynamics of ultralong CDRH3s, we performed a comparative molecular dynamics (MD) study of 19 unique ulCABs. Methods: For all 19 systems, one-microsecond MD simulations were performed in explicit solvent. The analyses included an investigation of the systems’ conformational stability and the dynamics of the knob domain as well as an energetic analysis of the intramolecular knob interactions. Results: The simulations show that the extended stalk–knob conformation observed in the crystal structures is not preserved in solution. There are significant differences in the degree of knob dynamics, the orientations of the knobs, the number of flexible stalk residues, and the frequency of the motions. Furthermore, interactions between the knob and the light chain (LC) of the ulCABs were observed in about half of the systems. Conclusions: The study reveals that pronounced knob dynamics is a general feature of ulCABs rather than an exception. The magnitude of knob motions depends on the system, thus reflecting the high sequence diversity of the CDRH3s in ulCABs. The observed knob–LC interactions might play a role in stabilizing distinct knob orientations. The MD simulations of ulCABs could also help to identify suitable knob fragments as mini-antibodies by suggesting appropriate truncation points based on flexible sites in the stalks. Full article
Show Figures

Graphical abstract

33 pages, 3764 KB  
Article
Cu2+ and Zn2+ Ions Affecting Biochemical Paths and DNA Methylation of Rye (Secale cereale L.) Anther Culture Influencing Plant Regeneration Efficiency
by Wioletta Monika Dynkowska, Renata Orłowska, Piotr Waligórski and Piotr Tomasz Bednarek
Cells 2025, 14(15), 1167; https://doi.org/10.3390/cells14151167 - 29 Jul 2025
Viewed by 782
Abstract
Rye regeneration in anther cultures is problematic and affected by albino plants. DNA methylation changes linked to Cu2+ ions in the induction medium affect reprogramming microspores from gametophytic to sporophytic path. Alternations in S-adenosyl-L-methionine (SAM), glutathione (GSH), or β-glucans and changes in [...] Read more.
Rye regeneration in anther cultures is problematic and affected by albino plants. DNA methylation changes linked to Cu2+ ions in the induction medium affect reprogramming microspores from gametophytic to sporophytic path. Alternations in S-adenosyl-L-methionine (SAM), glutathione (GSH), or β-glucans and changes in DNA methylation in regenerants obtained under different in vitro culture conditions suggest a crucial role of biochemical pathways. Thus, understanding epigenetic and biochemical changes arising from the action of Cu2+ and Zn2+ that participate in enzymatic complexes may stimulate progress in rye doubled haploid plant regeneration. The Methylation-Sensitive Amplified Fragment Length Polymorphism approach was implemented to identify markers related to DNA methylation and sequence changes following the quantification of variation types, including symmetric and asymmetric sequence contexts. Reverse-Phase High-Pressure Liquid Chromatography (RP-HPLC) connected with mass spectrometry was utilized to determine SAM, GSH, and glutathione disulfide, as well as phytohormones, and RP-HPLC with a fluorescence detector to study polyamines changes originating in rye regenerants due to Cu2+ or Zn2+ presence in the induction medium. Multivariate and regression analysis revealed that regenerants derived from two lines treated with Cu2+ and those treated with Zn2+ formed distinct groups based on DNA sequence and methylation markers. Zn2+ treated and control samples formed separate groups. Also, Cu2+ discriminated between controls and treated samples, but the separation was less apparent. Principal coordinate analysis explained 85% of the total variance based on sequence variation and 69% of the variance based on DNA methylation changes. Significant differences in DNA methylation characteristics were confirmed, with demethylation in the CG context explaining up to 89% of the variance across genotypes. Biochemical profiles also demonstrated differences between controls and treated samples. The changes had different effects on green and albino plant regeneration efficiency, with cadaverine (Cad) and SAM affecting regeneration parameters the most. Analyses of the enzymes depend on the Cu2+ or Zn2+ ions and are implemented in the synthesis of Cad, or SAM, which showed that some of them could be candidates for genome editing. Alternatively, manipulating SAM, GSH, and Cad may improve green plant regeneration efficiency in rye. Full article
Show Figures

Figure 1

11 pages, 2869 KB  
Article
An Orthogonal Protection Strategy for the Synthesis of Conotoxins Containing Three Disulfide Bonds
by Hengyu Zhang, Lai Yue Chan, Huanhuan Zhang, Tao Jiang, David J. Craik, Wenqing Cai and Rilei Yu
Mar. Drugs 2025, 23(4), 168; https://doi.org/10.3390/md23040168 - 14 Apr 2025
Cited by 4 | Viewed by 1606
Abstract
Disulfide bonds are crucial for stabilizing bioactive peptides such as conotoxins. We have developed a method for synthesizing conotoxins with three disulfide bonds using Mob, Trt, and Acm protection groups for regionally selective synthesis. This approach enabled the efficient synthesis of peptides with [...] Read more.
Disulfide bonds are crucial for stabilizing bioactive peptides such as conotoxins. We have developed a method for synthesizing conotoxins with three disulfide bonds using Mob, Trt, and Acm protection groups for regionally selective synthesis. This approach enabled the efficient synthesis of peptides with the desired disulfide bond connectivities independent of their sequences. Using our strategy, we synthesized five conotoxins, achieving yields of 20–30%. The results demonstrate the potential of our method for synthesizing complex peptides with multiple disulfide bonds. Full article
Show Figures

Figure 1

13 pages, 5884 KB  
Article
Strategic Optimization of the Middle Domain IIIA in RBP-Albumin IIIA-IB Fusion Protein to Enhance Productivity and Thermostability
by Myungho Sohn, Sanggil Kim, Hyeon Ju Jeong, In Young Ko, Ji Wook Moon, Dowon Lee and Junseo Oh
Int. J. Mol. Sci. 2025, 26(1), 137; https://doi.org/10.3390/ijms26010137 - 27 Dec 2024
Cited by 2 | Viewed by 1430
Abstract
The protein therapeutics market, including antibody and fusion proteins, has experienced steady growth over the past decade, underscoring the importance of optimizing amino acid sequences. In our previous study, we developed a fusion protein, R31, which combines retinol-binding protein (RBP) with albumin domains [...] Read more.
The protein therapeutics market, including antibody and fusion proteins, has experienced steady growth over the past decade, underscoring the importance of optimizing amino acid sequences. In our previous study, we developed a fusion protein, R31, which combines retinol-binding protein (RBP) with albumin domains IIIA and IB, linked by a sequence (AAAA), and includes an additional disulfide bond (N227C-V254C) in IIIA. This fusion protein effectively inhibited hepatic stellate cell activation. In this study, we further optimized the sequence. The G176K mutation at the C-terminus of RBP altered the initiation site of the first α-helix in domain IIIA, shifting it from P182 to K176, and promoted polar interactions between K176 and adjacent residues, enhancing the rigidity of the RBP/IIIA interface. The introduction of an additional disulfide bond (V231C/Y250C) connecting helices 3 and 4 in IIIA resulted in a three-fold increase in productivity and a 2 °C improvement in thermal stability compared to R31. Furthermore, combining the G176K mutation with V231C/Y250C further enhanced both productivity and anti-fibrotic activity. These findings suggest that the enhanced stability of domain IIIA, conferred by V231C/Y250C, along with the increased rigidity of the RBP/IIIA interface, optimizes interdomain distance and alignment, facilitating proper protein folding. Full article
Show Figures

Figure 1

27 pages, 23025 KB  
Article
Disulfidptosis: A New Target for Parkinson’s Disease and Cancer
by Tingting Liu, Xiangrui Kong and Jianshe Wei
Curr. Issues Mol. Biol. 2024, 46(9), 10038-10064; https://doi.org/10.3390/cimb46090600 - 12 Sep 2024
Cited by 3 | Viewed by 3630
Abstract
Recent studies have uncovered intriguing connections between Parkinson’s disease (PD) and cancer, two seemingly distinct disease categories. Disulfidptosis has garnered attention as a novel form of regulated cell death that is implicated in various pathological conditions, including neurodegenerative disorders and cancer. Disulfidptosis involves [...] Read more.
Recent studies have uncovered intriguing connections between Parkinson’s disease (PD) and cancer, two seemingly distinct disease categories. Disulfidptosis has garnered attention as a novel form of regulated cell death that is implicated in various pathological conditions, including neurodegenerative disorders and cancer. Disulfidptosis involves the dysregulation of intracellular redox homeostasis, leading to the accumulation of disulfide bonds and subsequent cell demise. This has sparked our interest in exploring common molecular mechanisms and genetic factors that may be involved in the relationship between neurodegenerative diseases and tumorigenesis. The Gene4PD database was used to retrieve PD differentially expressed genes (DEGs), the biological functions of differential expression disulfidptosis-related genes (DEDRGs) were analyzed, the ROCs of DEDRGs were analyzed using the GEO database, and the expression of DEDRGs was verified by an MPTP-induced PD mouse model in vivo. Then, the DEDRGs in more than 9000 samples of more than 30 cancers were comprehensively and systematically characterized by using multi-omics analysis data. In PD, we obtained a total of four DEDRGs, including ACTB, ACTN4, INF2, and MYL6. The enriched biological functions include the regulation of the NF-κB signaling pathway, mitochondrial function, apoptosis, and tumor necrosis factor, and these genes are rich in different brain regions. In the MPTP-induced PD mouse model, the expression of ACTB was decreased, while the expression of ACTN4, INF2, and MYL6 was increased. In pan-cancer, the high expression of ACTB, ACTN4, and MYL6 in GBMLGG, LGG, MESO, and LAML had a poor prognosis, and the high expression of INF2 in LIHC, LUAD, UVM, HNSC, GBM, LAML, and KIPAN had a poor prognosis. Our study showed that these genes were more highly infiltrated in Macrophages, NK cells, Neutrophils, Eosinophils, CD8 T cells, T cells, T helper cells, B cells, dendritic cells, and mast cells in pan-cancer patients. Most substitution mutations were G-to-A transitions and C-to-T transitions. We also found that miR-4298, miR-296-3p, miR-150-3p, miR-493-5p, and miR-6742-5p play important roles in cancer and PD. Cyclophosphamide and ethinyl estradiol may be potential drugs affected by DEDRGs for future research. This study found that ACTB, ACTN4, INF2, and MYL6 are closely related to PD and pan-cancer and can be used as candidate genes for the diagnosis, prognosis, and therapeutic biomarkers of neurodegenerative diseases and cancers. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

20 pages, 10263 KB  
Article
Subcellular Localization of Thioredoxin/Thioredoxin Reductase System—A Missing Link in Endoplasmic Reticulum Redox Balance
by Krisztina Veszelyi, Ibolya Czegle, Viola Varga, Csilla Emese Németh, Balázs Besztercei and Éva Margittai
Int. J. Mol. Sci. 2024, 25(12), 6647; https://doi.org/10.3390/ijms25126647 - 17 Jun 2024
Cited by 1 | Viewed by 1808
Abstract
The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the [...] Read more.
The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the thioredoxin (Trx)/thioredoxin reductase (TrxR) proteins, capable of linking the protein thiol and pyridine nucleotide pools in different compartments. It was shown that specific activity of TrxR in the ER is undetectable, whereas higher activities were measured in the cytoplasm and mitochondria. None of the Trx/TrxR isoforms were expressed in the ER by Western blot analysis. Co-localization studies of various isoforms of Trx and TrxR with ER marker Grp94 by immunofluorescent analysis further confirmed their absence from the lumen. The probability of luminal localization of each isoform was also predicted to be very low by several in silico analysis tools. ER-targeted transient transfection of HeLa cells with Trx1 and TrxR1 significantly decreased cell viability and induced apoptotic cell death. In conclusion, the absence of this electron transfer chain may explain the uncoupling of the redox systems in the ER lumen, allowing parallel presence of a reduced pyridine nucleotide and a probably oxidized protein pool necessary for cellular viability. Full article
(This article belongs to the Special Issue Advances in Endoplasmic Reticulum Stress and Apoptosis)
Show Figures

Figure 1

14 pages, 4303 KB  
Article
An Injectable, Self-Healing, Adhesive Multifunctional Hydrogel Promotes Bacteria-Infected Wound Healing
by Ling Zhang, Yan Wang, Mingrui Yang, Wen Yu, Zheng Zhao and Yichao Liu
Polymers 2024, 16(10), 1316; https://doi.org/10.3390/polym16101316 - 8 May 2024
Cited by 14 | Viewed by 3858
Abstract
Bacterial infections have a serious impact on public health. It is urgent to develop antibacterial hydrogels with good biocompatibility to reduce the use of antibiotics. In this study, poly(lipoic acid-co-sodium lipoate)–phytic acid (P(LA-SL)-PA) hydrogels are prepared by a simple mixture of the natural [...] Read more.
Bacterial infections have a serious impact on public health. It is urgent to develop antibacterial hydrogels with good biocompatibility to reduce the use of antibiotics. In this study, poly(lipoic acid-co-sodium lipoate)–phytic acid (P(LA-SL)-PA) hydrogels are prepared by a simple mixture of the natural small molecules lipoic acid (LA) and phytic acid (PA) in a mild and green reaction environment. The crosslinking network is constructed through the connection of covalent disulfide bonds as well as the hydrogen bonds, which endow the injectable and self-healing properties. The P(LA-SL)-PA hydrogels exhibit an adjustable compression modulus and adhesion. The in vitro agar plates assay indicates that the antibacterial rate of hydrogels against Escherichia coli and Staphylococcus aureus is close to 95%. In the rat-infected wound model, the P(LA-SL)-PA hydrogels adhere closely to the tissue and promote epithelialization and collagen deposition with a significant effect on wound healing. These results prove that the P(LA-SL)-PA hydrogels could act as effective wound dressings for promoting the healing of infected wounds. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 2798 KB  
Review
Voltage-Gated Sodium Channel Inhibition by µ-Conotoxins
by Kirsten L. McMahon, Irina Vetter and Christina I. Schroeder
Toxins 2024, 16(1), 55; https://doi.org/10.3390/toxins16010055 - 18 Jan 2024
Cited by 8 | Viewed by 4027
Abstract
µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, [...] Read more.
µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, which can lead to undesirable side-effects. This review will focus on four areas of µ-conotoxin research: (1) mapping the interactions of µ-conotoxins with different NaV channel subtypes, (2) µ-conotoxin structure–activity relationship studies, (3) observed species selectivity of µ-conotoxins and (4) the effects of µ-conotoxin disulfide connectivity on activity. Our aim is to provide a clear overview of the current status of µ-conotoxin research. Full article
(This article belongs to the Special Issue Conotoxins: Evolution, Classifications and Targets)
Show Figures

Figure 1

10 pages, 3171 KB  
Article
Detection of Cleaved Stx2a in the Blood of STEC-Infected Patients
by Elisa Varrone, Domenica Carnicelli, Xiaohua He, Marco Grasse, Karin Stampfer, Silke Huber, Sára Kellnerová, Pier Luigi Tazzari, Francesca Ricci, Paola Paterini, Gianluigi Ardissino, Stefano Morabito, Dorothea Orth-Höller, Reinhard Würzner and Maurizio Brigotti
Toxins 2023, 15(12), 690; https://doi.org/10.3390/toxins15120690 - 8 Dec 2023
Cited by 3 | Viewed by 2131
Abstract
Typical hemolytic uremic syndrome (HUS) is mainly caused by Shiga toxin-producing Escherichia coli (STEC) releasing Shiga toxin 2 (Stx2). Two different structures of this AB5 toxin have been described: uncleaved, with intact B and A chains, and cleaved, with intact B and a [...] Read more.
Typical hemolytic uremic syndrome (HUS) is mainly caused by Shiga toxin-producing Escherichia coli (STEC) releasing Shiga toxin 2 (Stx2). Two different structures of this AB5 toxin have been described: uncleaved, with intact B and A chains, and cleaved, with intact B and a nicked A chain consisting of two fragments, A1 and A2, connected by a disulfide bond. Despite having the same toxic effect on sensitive cells, the two forms differ in their binding properties for circulating cells, serum components and complement factors, thus contributing to the pathogenesis of HUS differently. The outcome of STEC infections and the development of HUS could be influenced by the relative amounts of uncleaved or cleaved Stx2 circulating in patients’ blood. Cleaved Stx2 was identified and quantified for the first time in four out of eight STEC-infected patients’ sera by a method based on the inhibition of cell-free translation. Cleaved Stx2 was present in the sera of patients with toxins bound to neutrophils and in two out of three patients developing HUS, suggesting its involvement in HUS pathogenesis, although in association with other bacterial or host factors. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

20 pages, 2516 KB  
Article
Endoplasmic Reticulum Protein TXNDC5 Interacts with PRDX6 and HSPA9 to Regulate Glutathione Metabolism and Lipid Peroxidation in the Hepatic AML12 Cell Line
by Seyed Hesamoddin Bidooki, Javier Sánchez-Marco, Roberto Martínez-Beamonte, Tania Herrero-Continente, María A. Navarro, María J. Rodríguez-Yoldi and Jesús Osada
Int. J. Mol. Sci. 2023, 24(24), 17131; https://doi.org/10.3390/ijms242417131 - 5 Dec 2023
Cited by 11 | Viewed by 4074
Abstract
Non-alcoholic fatty liver disease or steatosis is an accumulation of fat in the liver. Increased amounts of non-esterified fatty acids, calcium deficiency, or insulin resistance may disturb endoplasmic reticulum (ER) homeostasis, which leads to the abnormal accumulation of misfolded proteins, activating the unfolded [...] Read more.
Non-alcoholic fatty liver disease or steatosis is an accumulation of fat in the liver. Increased amounts of non-esterified fatty acids, calcium deficiency, or insulin resistance may disturb endoplasmic reticulum (ER) homeostasis, which leads to the abnormal accumulation of misfolded proteins, activating the unfolded protein response. The ER is the primary location site for chaperones like thioredoxin domain-containing 5 (TXNDC5). Glutathione participates in cellular oxidative stress, and its interaction with TXNDC5 in the ER may decrease the disulfide bonds of this protein. In addition, glutathione is utilized by glutathione peroxidases to inactivate oxidized lipids. To characterize proteins interacting with TXNDC5, immunoprecipitation and liquid chromatography–mass spectrometry were used. Lipid peroxidation, reduced glutathione, inducible phospholipase A2 (iPLA2) and hepatic transcriptome were assessed in the AML12 and TXNDC5-deficient AML12 cell lines. The results showed that HSPA9 and PRDX6 interact with TXNDC5 in AML12 cells. In addition, TXNDC5 deficiency reduced the protein levels of PRDX6 and HSPA9 in AML12. Moreover, lipid peroxidation, glutathione and iPLA2 activities were significantly decreased in TXNDC5-deficient cells, and to find the cause of the PRDX6 protein reduction, proteasome suppression revealed no considerable effect on it. Finally, hepatic transcripts connected to PRDX6 and HSPA9 indicated an increase in the Dnaja3, Mfn2 and Prdx5 and a decrease in Npm1, Oplah, Gstp3, Gstm6, Gstt1, Serpina1a, Serpina1b, Serpina3m, Hsp90aa1 and Rps14 mRNA levels in AML12 KO cells. In conclusion, the lipid peroxidation system and glutathione mechanism in AML12 cells may be disrupted by the absence of TXNDC5, a novel protein–protein interacting partner of PRDX6 and HSPA9. Full article
(This article belongs to the Special Issue Advances in Protein-Protein Interactions—2nd Edition)
Show Figures

Figure 1

12 pages, 3886 KB  
Article
RbEr2AsS7: A Rubidium-Containing Erbium Sulfide Thioarsenate(III) with (S2)2− Ligands According to RbEr2S(S2)[AsS2(S2)]
by Katja Engel and Thomas Schleid
Inorganics 2023, 11(12), 465; https://doi.org/10.3390/inorganics11120465 - 1 Dec 2023
Cited by 2 | Viewed by 2167
Abstract
The new rubidium-containing erbium sulfide thioarsenate(III) with the structured formula RbEr2S(S2)[AsS2(S2)] was obtained from the syntheses of elemental erbium (Er), arsenic sesquisulfide (As2S3) and rubidium sesquisulfide (Rb2S3) [...] Read more.
The new rubidium-containing erbium sulfide thioarsenate(III) with the structured formula RbEr2S(S2)[AsS2(S2)] was obtained from the syntheses of elemental erbium (Er), arsenic sesquisulfide (As2S3) and rubidium sesquisulfide (Rb2S3) with elemental sulfur (S) at 773 K as transparent, orange, needle-shaped crystals. RbEr2AsS7 crystallizes monoclinically in the space group C2/c with a = 2339.86(12) pm, b = 541.78(3) pm, c = 1686.71(9) pm and β = 93.109(3) ° for Z = 8. The crystal structure features complex [AsS2(S2)]3− anions with two S2− anions and a (S2)2− disulfide dumbbell coordinating end-on as ligands for each As3+ cation. Even outside the ligand sphere of As3+, S2− and (S2)2− can be found as sulfide anions. Two distinct Er3+ cations are surrounded by either nine or seven sulfur atoms. The [ErS9] polyhedra are corner- and face-connected, while the [ErS7] units share common edges, both building chains along [010]. These different chains undergo edge connectivity with each other, resulting in the formation of corrugated layers, which are held together by Rb+ in chains of condensed [RbS9] polyhedra. So, a three-dimensional network is generated, offering empty channels along [010] apt to take up the As3+ lone-pair cations. Wavelength-dispersive X-ray spectroscopy verified a molar Rb:Er:As:S ratio of approximately 1:2:1:7 and diffuse reflectance spectroscopy showed the typical ff transitions of Er3+, while the optical band gap was found to be 2.42 eV. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

17 pages, 1585 KB  
Article
Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein
by Lin Li, Yatao Huang, Yanfang Liu, Yangyang Xiong, Xinrui Wang, Litao Tong, Fengzhong Wang, Bei Fan and Xiaojia Bai
Molecules 2023, 28(22), 7465; https://doi.org/10.3390/molecules28227465 - 7 Nov 2023
Cited by 15 | Viewed by 6572
Abstract
To identify the ideal soybean protein isolate for texturized vegetable protein processing, the effect of different soybean protein isolates on texturized vegetable protein composition was studied. Three different types of soybean protein isolates were selected and analyzed for functional properties (water holding capacity [...] Read more.
To identify the ideal soybean protein isolate for texturized vegetable protein processing, the effect of different soybean protein isolates on texturized vegetable protein composition was studied. Three different types of soybean protein isolates were selected and analyzed for functional properties (water holding capacity (WHC), emulsifying properties, foaming properties), amino acid content, and protein secondary structure. Then, using the same formulation, the soybean protein isolates were extruded to produce texturized vegetable protein, and its textural properties, degree of texturization, microstructure, free sulfhydryl (free SH), and disulfide (S-S) content were determined. Lastly, a correlation analysis was performed to examine the connection between soybean protein isolates and texturized vegetable proteins. After correlation analysis, the soybean protein isolate functional properties that affect the textural properties of the texturized vegetable protein were as follows: the emulsifying property affected the hardness, adhesiveness, springiness, gumminess, and chewiness of the texturized vegetable proteins; and the foaming property affected the gumminess, chewiness, and the degree of texturization of the texturized vegetable proteins. In addition, 16 amino acids including threonine (Thr), methionine (Met), and arginine (Arg) affect texturized vegetable proteins, mainly with respect to adhesiveness, springiness, and free SH. The effects of secondary structure (α-helix, random coil) on texturized vegetable proteins were degree of texturization, resilience, and cohesion, respectively. Therefore, choosing the soybean protein isolate with better emulsifying and foaming properties provides a more suitable approach for processing texturized vegetable protein. Full article
Show Figures

Graphical abstract

Back to TopTop