Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (937)

Search Parameters:
Keywords = disease identification network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
59 pages, 1351 KiB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 - 3 Aug 2025
Viewed by 131
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
Show Figures

Figure 1

25 pages, 4145 KiB  
Article
Advancing Early Blight Detection in Potato Leaves Through ZeroShot Learning
by Muhammad Shoaib Farooq, Ayesha Kamran, Syed Atir Raza, Muhammad Farooq Wasiq, Bilal Hassan and Nitsa J. Herzog
J. Imaging 2025, 11(8), 256; https://doi.org/10.3390/jimaging11080256 - 31 Jul 2025
Viewed by 246
Abstract
Potatoes are one of the world’s most widely cultivated crops, but their yield is coming under mounting pressure from early blight, a fungal disease caused by Alternaria solani. Early detection and accurate identification are key to effective disease management and yield protection. [...] Read more.
Potatoes are one of the world’s most widely cultivated crops, but their yield is coming under mounting pressure from early blight, a fungal disease caused by Alternaria solani. Early detection and accurate identification are key to effective disease management and yield protection. This paper introduces a novel deep learning framework called ZeroShot CNN, which integrates convolutional neural networks (CNNs) and ZeroShot Learning (ZSL) for the efficient classification of seen and unseen disease classes. The model utilizes convolutional layers for feature extraction and employs semantic embedding techniques to identify previously untrained classes. Implemented on the Kaggle potato disease dataset, ZeroShot CNN achieved 98.50% accuracy for seen categories and 99.91% accuracy for unseen categories, outperforming conventional methods. The hybrid approach demonstrated superior generalization, providing a scalable, real-time solution for detecting agricultural diseases. The success of this solution validates the potential in harnessing deep learning and ZeroShot inference to transform plant pathology and crop protection practices. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

25 pages, 2693 KiB  
Article
Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends
by Salvatore Pezzino, Stefano Puleo, Tonia Luca, Mariacarla Castorina and Sergio Castorina
Biomedicines 2025, 13(8), 1854; https://doi.org/10.3390/biomedicines13081854 - 30 Jul 2025
Viewed by 347
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the scientific landscape through bibliometric analysis, identifying emerging domains and future clinical translation directions. Methods: A comprehensive bibliometric analysis of 1002 publications from 2004 to 2025 was performed using thematic mapping, temporal trend evaluation, and network analysis. Analysis included geographical and institutional distributions, thematic cluster identification, and research paradigm evolution assessment, focusing specifically on adipokine–hepatokine signaling mechanisms and clinical implications. Results: The United States and China are at the forefront of research output, whereas European institutions significantly contribute to mechanistic discoveries. The thematic map analysis reveals the motor/basic themes residing at the heart of the field, such as insulin resistance, fatty liver, metabolic syndrome, steatosis, fetuin-A, and other related factors that drive innovation. Basic clusters include metabolic foundations (obesity, adipose tissue, FGF21) and adipokine-centered subjects (adiponectin, leptin, NASH). New themes focus on inflammation, oxidative stress, gut microbiota, lipid metabolism, and hepatic stellate cells. Niche areas show targeted fronts such as exercise therapies, pediatric/novel adipokines (chemerin, vaspin, omentin-1), and advanced molecular processes that focus on AMPK and endoplasmic-reticulum stress. Temporal analysis shows a shift from single liver studies to whole models that include the gut microbiota, mitochondrial dysfunction, and interactions between other metabolic systems. The network analysis identifies nine major clusters: cardiovascular–metabolic links, adipokine–inflammatory pathways, hepatokine control, and new therapeutic domains such as microbiome interventions and cellular stress responses. Conclusions: In summary, this study delineates current trends and emerging areas within the field and elucidates connections between mechanistic research and clinical translation to provide guidance for future research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

16 pages, 2293 KiB  
Article
BIM-Ken: Identifying Disease-Related miRNA Biomarkers Based on Knowledge-Enhanced Bio-Network
by Yanhui Zhang, Kunjie Dong, Wenli Sun, Zhenbo Gao, Jianjun Zhang and Xiaohui Lin
Genes 2025, 16(8), 902; https://doi.org/10.3390/genes16080902 - 28 Jul 2025
Viewed by 205
Abstract
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and [...] Read more.
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and define reliable miRNA biomarkers. To tackle this issue, we propose a disease-related miRNA biomarker identification method based on the knowledge-enhanced bio-network (BIM-Ken) by combining the miRNA expression data and prior knowledge. BIM-Ken constructs the miRNA cooperation network by examining the miRNA interactions based on the miRNA expression data, which contains characteristics about the specific disease, and the information of the network nodes (miRNAs) is enriched by miRNA knowledge (i.e., miRNA-disease associations) from databases. Further, BIM-Ken optimizes the miRNA cooperation network using the well-designed GAE (graph auto-encoder). We improve the loss function by introducing the functional consistency and the difference prompt, so as to facilitate the optimized network to keep the intrinsically important characteristics of the miRNA data about the specific disease and the prior knowledge. The experimental results on the public datasets showed the superiority of BIM-Ken in classification. Subsequently, BIM-Ken was applied to analyze renal cell carcinoma data, and the defined key modules demonstrated involvement in the cancer-related pathways with good discrimination ability. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

31 pages, 103100 KiB  
Article
Semantic Segmentation of Small Target Diseases on Tobacco Leaves
by Yanze Zou, Zhenping Qiang, Shuang Zhang and Hong Lin
Agronomy 2025, 15(8), 1825; https://doi.org/10.3390/agronomy15081825 - 28 Jul 2025
Viewed by 257
Abstract
The application of image recognition technology plays a vital role in agricultural disease identification. Existing approaches primarily rely on image classification, object detection, or semantic segmentation. However, a major challenge in current semantic segmentation methods lies in accurately identifying small target objects. In [...] Read more.
The application of image recognition technology plays a vital role in agricultural disease identification. Existing approaches primarily rely on image classification, object detection, or semantic segmentation. However, a major challenge in current semantic segmentation methods lies in accurately identifying small target objects. In this study, common tobacco leaf diseases—such as frog-eye disease, climate spots, and wildfire disease—are characterized by small lesion areas, with an average target size of only 32 pixels. This poses significant challenges for existing techniques to achieve precise segmentation. To address this issue, we propose integrating two attention mechanisms, namely cross-feature map attention and dual-branch attention, which are incorporated into the semantic segmentation network to enhance performance on small lesion segmentation. Moreover, considering the lack of publicly available datasets for tobacco leaf disease segmentation, we constructed a training dataset via image splicing. Extensive experiments were conducted on baseline segmentation models, including UNet, DeepLab, and HRNet. Experimental results demonstrate that the proposed method improves the mean Intersection over Union (mIoU) by 4.75% on the constructed dataset, with only a 15.07% increase in computational cost. These results validate the effectiveness of our novel attention-based strategy in the specific context of tobacco leaf disease segmentation. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

34 pages, 11716 KiB  
Article
UPLC-MS/MS Metabolomics Reveals Babao Dan’s Mechanisms in MASH Treatment with Integrating Network Pharmacology and Molecular Docking
by Shijiao Zhang, Yanding Su, Ao Han, He Qi, Jiade Zhao and Xiangjun Qiu
Pharmaceuticals 2025, 18(8), 1111; https://doi.org/10.3390/ph18081111 - 25 Jul 2025
Viewed by 237
Abstract
Background: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive disease that easily develops into cirrhosis and hepatocellular carcinoma, but its pathogenesis is not clear, and most therapeutic drugs have obvious limitations. However, Babao Dan (BBD) has a good therapeutic effect on liver disease, [...] Read more.
Background: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive disease that easily develops into cirrhosis and hepatocellular carcinoma, but its pathogenesis is not clear, and most therapeutic drugs have obvious limitations. However, Babao Dan (BBD) has a good therapeutic effect on liver disease, but its treatment mechanism is still to be studied. Therefore, we further investigated the mechanism of BBD in treating MASH. Methods: We predicted BBD-related targets through network pharmacology and further verified the binding ability of BBD-related targets through molecular docking. We also detected relevant indicators before and after model treatment, as well as metabolomics analysis and identification of the mechanism of action of BBD on MASH. Results: Through network pharmacology methods, 158 key cross targets and the top 10 core targets were identified, and it was determined that the PI3K-AKT signaling pathway plays an important regulatory role in the treatment of MASH with BBD. The molecular docking results indicate that the representative compounds quercetin and 17 Beta Estradiol have good binding activity with five core targets. Metabolomics has identified four metabolic biomarkers, such as Piceid, and it is determined that the key pathway for BBD treatment of MASH is the bile secretion pathway. Conclusions: BBD effectively treats MASH by modulating Piceid and other biomarkers, targeting ESR1 and other core proteins via quercetin and 17-beta-estradiol, and regulating the PI3K-AKT and bile secretion pathways to alleviate liver injury. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

17 pages, 1927 KiB  
Article
ConvTransNet-S: A CNN-Transformer Hybrid Disease Recognition Model for Complex Field Environments
by Shangyun Jia, Guanping Wang, Hongling Li, Yan Liu, Linrong Shi and Sen Yang
Plants 2025, 14(15), 2252; https://doi.org/10.3390/plants14152252 - 22 Jul 2025
Viewed by 366
Abstract
To address the challenges of low recognition accuracy and substantial model complexity in crop disease identification models operating in complex field environments, this study proposed a novel hybrid model named ConvTransNet-S, which integrates Convolutional Neural Networks (CNNs) and transformers for crop disease identification [...] Read more.
To address the challenges of low recognition accuracy and substantial model complexity in crop disease identification models operating in complex field environments, this study proposed a novel hybrid model named ConvTransNet-S, which integrates Convolutional Neural Networks (CNNs) and transformers for crop disease identification tasks. Unlike existing hybrid approaches, ConvTransNet-S uniquely introduces three key innovations: First, a Local Perception Unit (LPU) and Lightweight Multi-Head Self-Attention (LMHSA) modules were introduced to synergistically enhance the extraction of fine-grained plant disease details and model global dependency relationships, respectively. Second, an Inverted Residual Feed-Forward Network (IRFFN) was employed to optimize the feature propagation path, thereby enhancing the model’s robustness against interferences such as lighting variations and leaf occlusions. This novel combination of a LPU, LMHSA, and an IRFFN achieves a dynamic equilibrium between local texture perception and global context modeling—effectively resolving the trade-offs inherent in standalone CNNs or transformers. Finally, through a phased architecture design, efficient fusion of multi-scale disease features is achieved, which enhances feature discriminability while reducing model complexity. The experimental results indicated that ConvTransNet-S achieved a recognition accuracy of 98.85% on the PlantVillage public dataset. This model operates with only 25.14 million parameters, a computational load of 3.762 GFLOPs, and an inference time of 7.56 ms. Testing on a self-built in-field complex scene dataset comprising 10,441 images revealed that ConvTransNet-S achieved an accuracy of 88.53%, which represents improvements of 14.22%, 2.75%, and 0.34% over EfficientNetV2, Vision Transformer, and Swin Transformer, respectively. Furthermore, the ConvTransNet-S model achieved up to 14.22% higher disease recognition accuracy under complex background conditions while reducing the parameter count by 46.8%. This confirms that its unique multi-scale feature mechanism can effectively distinguish disease from background features, providing a novel technical approach for disease diagnosis in complex agricultural scenarios and demonstrating significant application value for intelligent agricultural management. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 22580 KiB  
Article
Life-Threatening Ventricular Arrhythmia Identification Based on Multiple Complex Networks
by Zhipeng Cai, Menglin Yu, Jiawen Yu, Xintao Han, Jianqing Li and Yangyang Qu
Electronics 2025, 14(15), 2921; https://doi.org/10.3390/electronics14152921 - 22 Jul 2025
Viewed by 189
Abstract
Ventricular arrhythmias (VAs) are critical cardiovascular diseases that require rapid and accurate detection. Conventional approaches relying on multi-lead ECG or deep learning models have limitations in computational cost, interpretability, and real-time applicability on wearable devices. To address these issues, a lightweight and interpretable [...] Read more.
Ventricular arrhythmias (VAs) are critical cardiovascular diseases that require rapid and accurate detection. Conventional approaches relying on multi-lead ECG or deep learning models have limitations in computational cost, interpretability, and real-time applicability on wearable devices. To address these issues, a lightweight and interpretable framework based on multiple complex networks was proposed for the detection of life-threatening VAs using short-term single-lead ECG signals. The input signals were decomposed using the fixed-frequency-range empirical wavelet transform, and sub-bands were subsequently analyzed through multiscale visibility graphs, recurrence networks, cross-recurrence networks, and joint recurrence networks. Eight topological features were extracted and input into an XGBoost classifier for VA identification. Ten-fold cross-validation results on the MIT-BIH VFDB and CUDB databases demonstrated that the proposed method achieved a sensitivity of 99.02 ± 0.53%, a specificity of 98.44 ± 0.43%, and an accuracy of 98.73 ± 0.02% for 10 s ECG segments. The model also maintained robust performance on shorter segments, with 97.23 ± 0.76% sensitivity, 98.85 ± 0.95% specificity, and 96.62 ± 0.02% accuracy on 2 s segments. The results outperformed existing feature-based and deep learning approaches while preserving model interpretability. Furthermore, the proposed method supports mobile deployment, facilitating real-time use in wearable healthcare applications. Full article
(This article belongs to the Special Issue Smart Bioelectronics, Wearable Systems and E-Health)
Show Figures

Figure 1

22 pages, 2514 KiB  
Article
High-Accuracy Recognition Method for Diseased Chicken Feces Based on Image and Text Information Fusion
by Duanli Yang, Zishang Tian, Jianzhong Xi, Hui Chen, Erdong Sun and Lianzeng Wang
Animals 2025, 15(15), 2158; https://doi.org/10.3390/ani15152158 - 22 Jul 2025
Viewed by 318
Abstract
Poultry feces, a critical biomarker for health assessment, requires timely and accurate pathological identification for food safety. Conventional visual-only methods face limitations due to environmental sensitivity and high visual similarity among feces from different diseases. To address this, we propose MMCD (Multimodal Chicken-feces [...] Read more.
Poultry feces, a critical biomarker for health assessment, requires timely and accurate pathological identification for food safety. Conventional visual-only methods face limitations due to environmental sensitivity and high visual similarity among feces from different diseases. To address this, we propose MMCD (Multimodal Chicken-feces Diagnosis), a ResNet50-based multimodal fusion model leveraging semantic complementarity between images and descriptive text to enhance diagnostic precision. Key innovations include the following: (1) Integrating MASA(Manhattan self-attention)and DSconv (Depthwise Separable convolution) into the backbone network to mitigate feature confusion. (2) Utilizing a pre-trained BERT to extract textual semantic features, reducing annotation dependency and cost. (3) Designing a lightweight Gated Cross-Attention (GCA) module for dynamic multimodal fusion, achieving a 41% parameter reduction versus cross-modal transformers. Experiments demonstrate that MMCD significantly outperforms single-modal baselines in Accuracy (+8.69%), Recall (+8.72%), Precision (+8.67%), and F1 score (+8.72%). It surpasses simple feature concatenation by 2.51–2.82% and reduces parameters by 7.5M and computations by 1.62 GFLOPs versus the base ResNet50. This work validates multimodal fusion’s efficacy in pathological fecal detection, providing a theoretical and technical foundation for agricultural health monitoring systems. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

20 pages, 1791 KiB  
Review
Regulation of Bombyx mori–BmNPV Protein Interactions: Study Strategies and Molecular Mechanisms
by Dan Guo, Bowen Liu, Mingxing Cui, Heying Qian and Gang Li
Viruses 2025, 17(7), 1017; https://doi.org/10.3390/v17071017 - 20 Jul 2025
Viewed by 475
Abstract
As a pivotal model organism in Lepidoptera research, the silkworm (Bombyx mori) holds significant importance in life science due to its economic value and biotechnological applications. Advancements in proteomics and bioinformatics have enabled substantial progress in characterizing the B. mori proteome. [...] Read more.
As a pivotal model organism in Lepidoptera research, the silkworm (Bombyx mori) holds significant importance in life science due to its economic value and biotechnological applications. Advancements in proteomics and bioinformatics have enabled substantial progress in characterizing the B. mori proteome. Systematic screening and identification of protein–protein interactions (PPIs) have progressively elucidated the molecular mechanisms governing key biological processes, including viral infection, immune regulation, and growth development. This review comprehensively summarizes traditional PPI detection techniques, such as yeast two-hybrid (Y2H) and immunoprecipitation (IP), alongside emerging methodologies such as mass spectrometry-based interactomics and artificial intelligence (AI)-driven PPI prediction. We critically analyze the strengths, limitations, and technological integration strategies for each approach, highlighting current field challenges. Furthermore, we elaborate on the molecular regulatory networks of Bombyx mori nucleopolyhedrovirus (BmNPV) from multiple perspectives: apoptosis and cell cycle regulation; viral protein invasion and trafficking; non-coding RNA-mediated modulation; metabolic reprogramming; and host immune evasion. These insights reveal the dynamic interplay between viral replication and host defense mechanisms. Collectively, this synthesis aims to provide a robust theoretical foundation and technical guidance for silkworm genetic improvement, infectious disease management, and the advancement of related biotechnological applications. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

24 pages, 9664 KiB  
Article
Frequency-Domain Collaborative Lightweight Super-Resolution for Fine Texture Enhancement in Rice Imagery
by Zexiao Zhang, Jie Zhang, Jinyang Du, Xiangdong Chen, Wenjing Zhang and Changmeng Peng
Agronomy 2025, 15(7), 1729; https://doi.org/10.3390/agronomy15071729 - 18 Jul 2025
Viewed by 323
Abstract
In rice detection tasks, accurate identification of leaf streaks, pest and disease distribution, and spikelet hierarchies relies on high-quality images to distinguish between texture and hierarchy. However, existing images often suffer from texture blurring and contour shifting due to equipment and environment limitations, [...] Read more.
In rice detection tasks, accurate identification of leaf streaks, pest and disease distribution, and spikelet hierarchies relies on high-quality images to distinguish between texture and hierarchy. However, existing images often suffer from texture blurring and contour shifting due to equipment and environment limitations, which affects the detection performance. In view of the fact that pests and diseases affect the whole situation and tiny details are mostly localized, we propose a rice image reconstruction method based on an adaptive two-branch heterogeneous structure. The method consists of a low-frequency branch (LFB) that recovers global features using orientation-aware extended receptive fields to capture streaky global features, such as pests and diseases, and a high-frequency branch (HFB) that enhances detail edges through an adaptive enhancement mechanism to boost the clarity of local detail regions. By introducing the dynamic weight fusion mechanism (CSDW) and lightweight gating network (LFFN), the problem of the unbalanced fusion of frequency information for rice images in traditional methods is solved. Experiments on the 4× downsampled rice test set demonstrate that the proposed method achieves a 62% reduction in parameters compared to EDSR, 41% lower computational cost (30 G) than MambaIR-light, and an average PSNR improvement of 0.68% over other methods in the study while balancing memory usage (227 M) and inference speed. In downstream task validation, rice panicle maturity detection achieves a 61.5% increase in mAP50 (0.480 → 0.775) compared to interpolation methods, and leaf pest detection shows a 2.7% improvement in average mAP50 (0.949 → 0.975). This research provides an effective solution for lightweight rice image enhancement, with its dual-branch collaborative mechanism and dynamic fusion strategy establishing a new paradigm in agricultural rice image processing. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

15 pages, 5441 KiB  
Article
Task-Related EEG as a Biomarker for Preclinical Alzheimer’s Disease: An Explainable Deep Learning Approach
by Ziyang Li, Hong Wang and Lei Li
Biomimetics 2025, 10(7), 468; https://doi.org/10.3390/biomimetics10070468 - 16 Jul 2025
Viewed by 470
Abstract
The early detection of Alzheimer’s disease (AD) in cognitively healthy individuals remains a major preclinical challenge. EEG is a promising tool that has shown effectiveness in detecting AD risk. Task-related EEG has been rarely used in Alzheimer’s disease research, as most studies have [...] Read more.
The early detection of Alzheimer’s disease (AD) in cognitively healthy individuals remains a major preclinical challenge. EEG is a promising tool that has shown effectiveness in detecting AD risk. Task-related EEG has been rarely used in Alzheimer’s disease research, as most studies have focused on resting-state EEG. An interpretable deep learning framework—Interpretable Convolutional Neural Network (InterpretableCNN)—was utilized to identify AD-related EEG features. EEG data were recorded during three cognitive task conditions, and samples were labeled based on APOE genotype and polygenic risk scores. A 100-fold leave-p%-subjects-out cross-validation (LPSO-CV) was used to evaluate model performance and generalizability. The model achieved an ROC AUC of 60.84% across the tasks and subjects, with a Kappa value of 0.22, indicating fair agreement. Interpretation revealed a consistent focus on theta and alpha activity in the parietal and temporal regions—areas commonly associated with AD pathology. Task-related EEG combined with interpretable deep learning can reveal early AD risk signatures in healthy individuals. InterpretableCNN enhances transparency in feature identification, offering a valuable tool for preclinical screening. Full article
Show Figures

Graphical abstract

22 pages, 3438 KiB  
Article
Revolutionizing Detection of Minimal Residual Disease in Breast Cancer Using Patient-Derived Gene Signature
by Chen Yeh, Hung-Chih Lai, Nathan Grabbe, Xavier Willett and Shu-Ti Lin
Onco 2025, 5(3), 35; https://doi.org/10.3390/onco5030035 - 12 Jul 2025
Viewed by 324
Abstract
Background: Many patients harbor minimal residual disease (MRD)—small clusters of residual tumor cells that survive therapy and evade conventional detection but drive recurrence. Although advances in molecular and computational methods have improved circulating tumor DNA (ctDNA)-based MRD detection, these approaches face challenges: ctDNA [...] Read more.
Background: Many patients harbor minimal residual disease (MRD)—small clusters of residual tumor cells that survive therapy and evade conventional detection but drive recurrence. Although advances in molecular and computational methods have improved circulating tumor DNA (ctDNA)-based MRD detection, these approaches face challenges: ctDNA shedding fluctuates widely across tumor types, disease stages, and histological features. Additionally, low levels of driver mutations originating from healthy tissues can create background noise, complicating the accurate identification of bona fide tumor-specific signals. These limitations underscore the need for refined technologies to further enhance MRD detection beyond DNA sequences in solid malignancies. Methods: Profiling circulating cell-free mRNA (cfmRNA), which is hyperactive in tumor and non-tumor microenvironments, could address these limitations to inform postoperative surveillance and treatment strategies. This study reported the development of OncoMRD BREAST, a customized, gene signature-informed cfmRNA assay for residual disease monitoring in breast cancer. OncoMRD BREAST introduces several advanced technologies that distinguish it from the existing ctDNA-MRD tests. It builds on the patient-derived gene signature for capturing tumor activities while introducing significant upgrades to its liquid biopsy transcriptomic profiling, digital scoring systems, and tracking capabilities. Results: The OncoMRD BREAST test processes inputs from multiple cutting-edge biomarkers—tumor and non-tumor microenvironment—to provide enhanced awareness of tumor activities in real time. By fusing data from these diverse intra- and inter-cellular networks, OncoMRD BREAST significantly improves the sensitivity and reliability of MRD detection and prognosis analysis, even under challenging and complex conditions. In a proof-of-concept real-world pilot trial, OncoMRD BREAST’s rapid quantification of potential tumor activity helped reduce the risk of incorrect treatment strategies, while advanced predictive analytics contributed to the overall benefits and improved outcomes of patients. Conclusions: By tailoring the assay to individual tumor profiles, we aimed to enhance early identification of residual disease and optimize therapeutic decision-making. OncoMRD BREAST is the world’s first and only gene signature-powered test for monitoring residual disease in solid tumors. Full article
Show Figures

Figure 1

22 pages, 13466 KiB  
Article
FR-BINN: Biologically Informed Neural Networks for Enhanced Biomarker Discovery and Pathway Analysis
by Yangkun Cao, Chaoyi Yin, Xinsen Zhou and Yonghe Zhao
Int. J. Mol. Sci. 2025, 26(14), 6670; https://doi.org/10.3390/ijms26146670 - 11 Jul 2025
Viewed by 390
Abstract
Chronic inflammation plays a pivotal role in human health, with certain inflammatory conditions significantly increasing the risk of cancer, while others do not. However, the molecular mechanisms underlying this divergent risk remain poorly understood. In this study, we propose FR-BINN, a biologically informed [...] Read more.
Chronic inflammation plays a pivotal role in human health, with certain inflammatory conditions significantly increasing the risk of cancer, while others do not. However, the molecular mechanisms underlying this divergent risk remain poorly understood. In this study, we propose FR-BINN, a biologically informed neural network framework for disease prediction and interpretability. Incorporating Fenton reaction (FR)-related biological priors and leveraging multiple interpretability methods, FR-BINN identifies key genes driving cancer-prone and non-cancer-prone chronic inflammatory diseases. The experimental results demonstrate that FR-BINN achieves superior classification performance while offering biologically interpretable insights. Moreover, attribution results derived from different explainable techniques show high consistency, and intra-method results exhibit distinct patterns across disease categories. We further combine large language models with feature attributions to identify candidate biomarkers, and independent datasets confirm the robustness of these findings. Notably, genes such as NCOA1 and SDHB are identified as being associated with cancer susceptibility. The framework further reveals distinct patterns in energy metabolism, oxidative stress, and pH regulation between cancer-prone and non-cancer-prone inflammatory diseases. These insights enhance our understanding of inflammation-associated tumorigenesis and contribute to the identification of potential biomarkers and therapeutic targets. Full article
Show Figures

Figure 1

23 pages, 10698 KiB  
Article
Unmanned Aerial Vehicle-Based RGB Imaging and Lightweight Deep Learning for Downy Mildew Detection in Kimchi Cabbage
by Yang Lyu, Xiongzhe Han, Pingan Wang, Jae-Yeong Shin and Min-Woong Ju
Remote Sens. 2025, 17(14), 2388; https://doi.org/10.3390/rs17142388 - 10 Jul 2025
Viewed by 390
Abstract
Downy mildew is a highly destructive fungal disease that significantly reduces both the yield and quality of kimchi cabbage. Conventional detection methods rely on manual scouting, which is labor-intensive and prone to subjectivity. This study proposes an automated detection approach using RGB imagery [...] Read more.
Downy mildew is a highly destructive fungal disease that significantly reduces both the yield and quality of kimchi cabbage. Conventional detection methods rely on manual scouting, which is labor-intensive and prone to subjectivity. This study proposes an automated detection approach using RGB imagery acquired by an unmanned aerial vehicle (UAV), integrated with lightweight deep learning models for leaf-level identification of downy mildew. To improve disease feature extraction, Simple Linear Iterative Clustering (SLIC) segmentation was applied to the images. Among the evaluated models, Vision Transformer (ViT)-based architectures outperformed Convolutional Neural Network (CNN)-based models in terms of classification accuracy and generalization capability. For late-stage disease detection, DeiT-Tiny recorded the highest test accuracy (0.948) and macro F1-score (0.913), while MobileViT-S achieved the highest diseased recall (0.931). In early-stage detection, TinyViT-5M achieved the highest test accuracy (0.970) and macro F1-score (0.918); however, all models demonstrated reduced diseased recall under early-stage conditions, with DeiT-Tiny achieving the highest recall at 0.774. These findings underscore the challenges of identifying early symptoms using RGB imagery. Based on the classification results, prescription maps were generated to facilitate variable-rate pesticide application. Overall, this study demonstrates the potential of UAV-based RGB imaging for precision agriculture, while highlighting the importance of integrating multispectral data and utilizing domain adaptation techniques to enhance early-stage disease detection. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Food Security)
Show Figures

Figure 1

Back to TopTop