Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = direct energy deposition using laser beam (DED-LB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 33891 KB  
Article
Influence of Substrate Preheating on Processing Dynamics and Microstructure of Alloy 718 Produced by Directed Energy Deposition Using a Laser Beam and Wire
by Atieh Sahraeidolatkhaneh, Achmad Ariaseta, Gökçe Aydin, Morgan Nilsen and Fredrik Sikström
Metals 2025, 15(11), 1184; https://doi.org/10.3390/met15111184 - 25 Oct 2025
Viewed by 924
Abstract
Effective thermal management is essential in metal additive manufacturing to ensure process stability and desirable material properties. Directed energy deposition using a laser beam and wire (DED-LB/w) enables the production of large, high-performance components but remains sensitive to adverse thermal effects during multi-layer [...] Read more.
Effective thermal management is essential in metal additive manufacturing to ensure process stability and desirable material properties. Directed energy deposition using a laser beam and wire (DED-LB/w) enables the production of large, high-performance components but remains sensitive to adverse thermal effects during multi-layer deposition due to heat accumulation. While prior studies have investigated interlayer temperature control and substrate preheating in DED modalities, including laser-powder and arc-based systems, the influence of substrate preheating in DED-LB/w has not been thoroughly examined. This study employs substrate preheating to simulate heat accumulation and assess its effects on melt pool geometry, wire–melt pool interaction, and the microstructural evolution of Alloy 718. Experimental results demonstrate that increased substrate temperatures lead to a gradual expansion of the melt pool, with a notable transition occurring beyond 400 °C. Microstructural analysis reveals that elevated preheat temperatures promote coarser secondary dendrite arm spacing and the development of wider columnar grains. Moreover, Nb-rich secondary phases, including the Laves phase, exhibit increased size but relatively unchanged area fractions. Observations from electrical conductance measurements and coaxial visual imaging show that preheat temperature significantly affects the process dynamics and microstructural evolution, providing a basis for advanced process control strategies. Full article
Show Figures

Figure 1

15 pages, 8851 KB  
Article
Directed Energy Deposition-Laser Beam of Semi-Austenitic Precipitation-Hardening Stainless Steel
by Alex Lourenço Barbosa, Fábio Edson Mariani, Fernanda Mariano Pereira, Osvaldo Mitsuyuki Cintho, Reginaldo Teixeira Coelho, Piter Gargarella and Kahl Zilnyk
J. Manuf. Mater. Process. 2025, 9(4), 114; https://doi.org/10.3390/jmmp9040114 - 29 Mar 2025
Cited by 1 | Viewed by 1258
Abstract
Directed Energy Deposition-Laser Beam (DED-LB) is an ideal Additive Manufacturing (AM) process to obtain very complex geometries, which can be important for several applications in industries such as aerospace and biomedical engineering. The present study aims to determine optimized DED-LB parameters for printing [...] Read more.
Directed Energy Deposition-Laser Beam (DED-LB) is an ideal Additive Manufacturing (AM) process to obtain very complex geometries, which can be important for several applications in industries such as aerospace and biomedical engineering. The present study aims to determine optimized DED-LB parameters for printing 17-7 PH stainless steel, a semi-austenitic precipitation-hardening alloy renowned for its exceptional combination of high yield strength, toughness, and corrosion resistance. The experimental work used different combinations of laser power, scanning speed, and powder feed rate to investigate the effects on the morphology, surface roughness, and microstructure of the deposited material. The results indicated that a powder feed rate of 4.7 g/min yielded uniform beads, reduced surface roughness, and increased substrate dilution, enhancing the metallurgical bond between the bead and substrate. Conversely, higher feed rates, such as a rate of 9.2 g/min, resulted in increased surface irregularities due to an excessive amount of partially melted powder particles. Microstructural analysis, supported by thermodynamic calculations, confirmed a ferritic–austenitic solidification mode. The austenite and ferrite fractions varied significantly, depending mainly on the substrate dilution due to the decrease in aluminum content. The combination of 400 W laser power and a 2000 mm/min scanning speed resulted in the optimal set of parameters, with an approximately 30% dilution and 80% austenite. Full article
Show Figures

Figure 1

12 pages, 4594 KB  
Article
Monitoring of Directed Energy Deposition Laser Beam of Nickel-Based Superalloy via High-Speed Mid-Wave Infrared Coaxial Camera
by Marco Mazzarisi, Andrea Angelastro, Sabina Luisa Campanelli, Vito Errico, Paolo Posa, Andrea Fusco, Teresa Colucci, Alexander John Edwards and Simona Corigliano
J. Manuf. Mater. Process. 2024, 8(6), 294; https://doi.org/10.3390/jmmp8060294 - 18 Dec 2024
Cited by 2 | Viewed by 3020
Abstract
Directed Energy Deposition Laser Beam (DED-LB) is a promising additive manufacturing technique that uses a laser source and a powder stream to build or repair metal components. Repair applications offer significant economic and environmental benefits but are more challenging to develop, especially for [...] Read more.
Directed Energy Deposition Laser Beam (DED-LB) is a promising additive manufacturing technique that uses a laser source and a powder stream to build or repair metal components. Repair applications offer significant economic and environmental benefits but are more challenging to develop, especially for components that are difficult to process due to their intricate geometries and materials. Process conditions can change precipitously, and it is essential to implement monitoring systems that ensure high process stability and, consequently, superior end-product quality. In the present work, a mid-wave infrared coaxial camera was used to monitor the melt pool geometry. To simulate the challenging repair process conditions of the DED-LB process, experimental tests were carried out on substrates with different thicknesses. The stability of the deposition process on nickel-based superalloys was analyzed by means of MATLAB algorithms. Thus, the effect of open-loop and closed-loop monitoring with back control on laser power on the process conditions was assessed and quantified. Metallographic analysis of the produced samples was carried out to validate the analyses performed by the monitoring system. The occurrence of production defects (lack of fusion and porosity) related to parameters not directly controllable by monitoring systems, such as penetration depth and dilution, was determined. Full article
Show Figures

Figure 1

24 pages, 4538 KB  
Article
Optimal Geometry for Focused Ion Beam-Milled Samples for Direct-Pull Micro-Tensile Testing Performed In Situ in a Scanning Electron Microscope
by Daniel B. Yin, Haiping Sun and Amit Misra
Materials 2024, 17(21), 5144; https://doi.org/10.3390/ma17215144 - 22 Oct 2024
Viewed by 1836
Abstract
A thorough procedure was developed to efficiently manufacture dogbone samples using focused ion beam (FIB) milling for micro-tensile testing. A Bruker PI 89 PicoIndenter, Billerica, MA, USA, was used as a case study, although the analysis and results are applicable to other micro-mechanical [...] Read more.
A thorough procedure was developed to efficiently manufacture dogbone samples using focused ion beam (FIB) milling for micro-tensile testing. A Bruker PI 89 PicoIndenter, Billerica, MA, USA, was used as a case study, although the analysis and results are applicable to other micro-mechanical testing systems capable of mounting a standard, Ø12.7 mm × Ø3.2 mm pin, scanning electron microscopy (SEM) pin stub (Ted Pella, Redding, CA, USA). Nine dogbones were made from an Fe-45Cu alloy additively manufactured using powder-fed laser-directed energy deposition (DED-LB). Testing showed that fracture was confined to the gauge section for all dogbones and that the fracture mode, ductile vs. brittle, was entirely dependent on the grain orientation relative to the loading direction. The analysis showed that the measured plastic strain to failure can vary from >11% (optimal geometry) to <1% (non-optimal geometry) in micro-tensile testing of high-tensile-strength (>1 GPa) metallic materials. Subsequently, a finite element analysis (FEA) was conducted to identify the improved dogbone geometries. A total of ten thousand dogbone geometries were tested, and their dimensions were defined by a set of four adjustable parameters (corner radius, load surface angle, load surface length, and dogbone head length). The gauge width and gauge length were fixed to 4 µm and 10 µm, respectively. Three-dimensional surface plots of the stress concentration as a function of two parameters were used to identify the optimal ranges of parameter values. The addition of maximum width and length constraints, measuring 25 µm and 30 µm, respectively, allowed us to identify an optimal geometry at load surface angles of 30° and 45°. Their respective dimensions (corner radius, load surface length, and dogbone head length) are, in µm, 12, 6, and 7 and 10, 7, and 7. Testing these two optimal geometries with a range of gauge lengths from 4 to 20 µm showed that smaller gauge lengths only slightly reduced the detrimental stress concentration outside the gauge section. However, smaller gauge lengths will notably improve the FIB surface polishing step as tapering is reduced with smaller dogbone lengths. Full article
Show Figures

Figure 1

24 pages, 2222 KB  
Review
Additive Manufacturing of PH 13-8 Mo Family: A Review
by Gökçe Aydin, Joel Andersson and Maria Asuncion Valiente Bermejo
Appl. Sci. 2024, 14(17), 7572; https://doi.org/10.3390/app14177572 - 27 Aug 2024
Cited by 3 | Viewed by 2800
Abstract
The PH 13-8 Mo family of steels belong to the martensitic precipitation hardening stainless steels (MPHSSs) category, which exhibits a good combination of mechanical properties and corrosion resistance. Additive manufacturing (AM) offers advantages, including reduced material waste and the capability to produce complex, [...] Read more.
The PH 13-8 Mo family of steels belong to the martensitic precipitation hardening stainless steels (MPHSSs) category, which exhibits a good combination of mechanical properties and corrosion resistance. Additive manufacturing (AM) offers advantages, including reduced material waste and the capability to produce complex, near-net-shape parts. Consequently, the application of AM techniques to the PH 13-8 Mo family is being increasingly explored across various industries. This review paper presents the existing literature on the topic and provides an overview. The review starts by presenting information about the PH 13-8 Mo family, including microstructure, chemical compositions, heat treatments, and mechanical properties. Afterwards, the work focuses on presenting the microstructure and resulting properties of PH 13-8 Mo family processed by three different additive manufacturing processes: Powder Bed Fusion using a Laser Beam (PBF-LB), Directed Energy Deposition using an Electric Arc (DED-Arc), and Directed Energy Deposition using a Laser Beam (DED-LB), both in their as-built condition and following post-processing heat treatments. The review concludes with a summary and outlook that highlights existing knowledge gaps and underscores the need for further research to tailor the microstructural evolution and enhance the properties. The findings indicate that AM of the PH 13-8 Mo family has the potential for industrial applications, yet further studies are necessary to optimize its performance. Full article
(This article belongs to the Special Issue High-Performance Alloys and Their Applications)
Show Figures

Figure 1

21 pages, 18729 KB  
Article
Influence of the Chemical Composition on the Solidification Path, Strengthening Mechanisms and Hardness of Ni-Cr-Si-Fe-B Self-Fluxing Alloys Obtained by Laser-Directed Energy Deposition
by Juan Carlos Pereira, Mari Carmen Taboada, Andrea Niklas, Emilio Rayón and Jerome Rocchi
J. Manuf. Mater. Process. 2023, 7(3), 110; https://doi.org/10.3390/jmmp7030110 - 5 Jun 2023
Cited by 9 | Viewed by 3436
Abstract
Nickel-based Ni-Cr-Si-B self-fluxing alloys are excellent candidates to replace cobalt-based alloys in aeronautical components. In this work, metal additive manufacturing by directed energy deposition using a laser beam (DED-LB, also known as LMD) and gas-atomized powders as a material feedstock is presented as [...] Read more.
Nickel-based Ni-Cr-Si-B self-fluxing alloys are excellent candidates to replace cobalt-based alloys in aeronautical components. In this work, metal additive manufacturing by directed energy deposition using a laser beam (DED-LB, also known as LMD) and gas-atomized powders as a material feedstock is presented as a potential manufacturing route for the complex processing of these alloys. This research deals with the advanced material characterization of these alloys obtained by LMD and the study and understanding of their solidification paths and strengthening mechanisms. The as-built microstructure, the Vickers hardness at room temperature and at high temperatures, the nanoindentation hardness and elastic modulus of the main phases and precipitates, and the strengthening mechanisms were studied in bulk cylinders manufactured under different chemical composition grades and DED-LB/p process parameter sets (slow, normal, and fast deposition speeds), with the aim of determining the influence of the chemical composition in commercial Ni-Cr-Si-Fe-B alloys. The hardening of Ni-Cr-Si-Fe-B alloys obtained by LMD is a combination of the solid solution hardening of gamma nickel dendrites and eutectics and the contribution of the precipitation hardening of small chromium-rich carbides and hard borides evenly distributed in the as-built microstructure. Full article
(This article belongs to the Special Issue Advances in Metal Additive Manufacturing/3D Printing)
Show Figures

Graphical abstract

13 pages, 2481 KB  
Article
Generation of Polyamide 12 Coatings on Stainless Steel Substrates by Directed Energy Deposition with a Thulium-Doped Fiber Laser (DED-LB/P)
by Alexander Wittmann, Oliver Hentschel, Alexander Sommereyns and Michael Schmidt
Polymers 2022, 14(18), 3729; https://doi.org/10.3390/polym14183729 - 7 Sep 2022
Cited by 8 | Viewed by 3681
Abstract
Due to their good material properties (e.g., corrosion and wear resistance, biocompatibility), thermoplastic materials like polyamide 12 (PA12) are interesting for functional coatings on metallic components. To ensure a spatially resolved coating and to shorten the process chain, directed energy deposition of polymer [...] Read more.
Due to their good material properties (e.g., corrosion and wear resistance, biocompatibility), thermoplastic materials like polyamide 12 (PA12) are interesting for functional coatings on metallic components. To ensure a spatially resolved coating and to shorten the process chain, directed energy deposition of polymer powders by means of a laser beam (DED-LB/P) offers a promising approach. Due to characteristic absorption bands, the use of a thulium fiber laser with a wavelength of 1.94 μm is investigated in a DED-LB/P setup to generate PA12 coatings on stainless steel substrates without the need to add any absorbing additives. The influence of the energy density and powder mass flow was analyzed by infrared thermography. Furthermore, the coatings were characterized by differential scanning calorimetry, laser-scanning-microscopy, optical microscopy and cross-cutting tests. The results in this study demonstrate for the first time the basic feasibility of an absorber-free DED-LB/P process by using a thulium fiber laser. PA12 coatings with a low porosity and good adhesion are achievable. Depending on the application-specific requirements, a trade-off must be made between the density and surface quality of the PA12 coatings. The use of infrared thermography is appropriate for in-situ detection of process instabilities caused by an excessive energy input. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 3259 KB  
Article
Tribocorrosion Behavior of NiTi Biomedical Alloy Processed by an Additive Manufacturing Laser Beam Directed Energy Deposition Technique
by Mihaela Buciumeanu, Allen Bagheri, Filipe Samuel Silva, Bruno Henriques, Andrés F. Lasagni and Nima Shamsaei
Materials 2022, 15(2), 691; https://doi.org/10.3390/ma15020691 - 17 Jan 2022
Cited by 21 | Viewed by 4231
Abstract
The purpose of the present study was to experimentally assess the synergistic effects of wear and corrosion on NiTi alloy in comparison with Ti-6Al-4V alloy, the most extensively used titanium alloy in biomedical applications. Both alloys were processed by an additive manufacturing laser [...] Read more.
The purpose of the present study was to experimentally assess the synergistic effects of wear and corrosion on NiTi alloy in comparison with Ti-6Al-4V alloy, the most extensively used titanium alloy in biomedical applications. Both alloys were processed by an additive manufacturing laser beam directed energy deposition (LB-DED) technique, namely laser engineered net shaping (LENS), and analyzed via tribocorrosion tests by using the ball-on-plate configuration. The tests were carried out in phosphate buffered saline solution at 37 °C under open circuit potential (OCP) to simulate the body environment and temperature. The synergistic effect of wear and corrosion was found to result in an improved wear resistance in both materials. It was also observed that, for the process parameters used, the LB-DED NiTi alloy exhibits a lower tendency to corrosion as compared to the LB-DED Ti-6Al-4V alloy. It is expected that, during the service life as an implant, the NiTi alloy is less susceptible to the metallic ions release when compared with the Ti-6Al-4V alloy. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications)
Show Figures

Figure 1

10 pages, 8212 KB  
Article
Using a Trial Sample on Stainless Steel 316L in a Direct Laser Deposition Process
by Artur Vildanov, Konstantin Babkin, Ruslan Mendagaliyev, Andrey Arkhipov and Gleb Turichin
Metals 2021, 11(10), 1550; https://doi.org/10.3390/met11101550 - 28 Sep 2021
Cited by 7 | Viewed by 2652
Abstract
Direct laser deposition technology is used for the manufacture of large-size products with complex geometries. As a rule, trial samples with small dimensions are made to determine the deposition parameters. In order for the resulting products to have the required performance characteristics, it [...] Read more.
Direct laser deposition technology is used for the manufacture of large-size products with complex geometries. As a rule, trial samples with small dimensions are made to determine the deposition parameters. In order for the resulting products to have the required performance characteristics, it is necessary to minimize the number of internal macrodefects. Non-fusion between the tracks are defects that depend on the technological mode (power, speed, track width, etc.). In this work, studies have been carried out to determine the power level at which non-fusion is formed, dwell time between the tracks on the model samples. This paper considers the issue of transferring the technological parameters of direct laser deposition from model samples to a large-sized part, and describes the procedure for making model samples. Full article
(This article belongs to the Special Issue Laser Processing of Metals and Alloys)
Show Figures

Figure 1

14 pages, 30764 KB  
Article
Additive Manufacturing of Compositionally-Graded AISI 316L to CoCrMo Structures by Directed Energy Deposition
by Niklas Sommer, Philipp Kluge, Florian Stredak, Sascha Eigler, Horst Hill, Thomas Niendorf and Stefan Böhm
Crystals 2021, 11(9), 1043; https://doi.org/10.3390/cryst11091043 - 30 Aug 2021
Cited by 14 | Viewed by 4434
Abstract
In the present study, compositionally-graded structures of AISI 316L and CoCrMo alloy are manufactured by powder-based laser-beam directed energy deposition (DED-LB). Through a process-integrated adjustment of powder flow, in situ alloying of the two materials becomes feasible. Thus, a sharp and a smooth [...] Read more.
In the present study, compositionally-graded structures of AISI 316L and CoCrMo alloy are manufactured by powder-based laser-beam directed energy deposition (DED-LB). Through a process-integrated adjustment of powder flow, in situ alloying of the two materials becomes feasible. Thus, a sharp and a smooth transition with a mixture of both alloys can be realized. In order to investigate the phase formation during in situ alloying, a simulation approach considering equilibrium calculations is employed. The findings reveal that a precise compositional as well as functional gradation of the two alloys is possible. Thereby, the chemical composition can be directly correlated with the specimen hardness. Moreover, phases, which are identified by equilibrium calculations, can also be observed experimentally using scanning electron microscopy (SEM) and energy-dispersive X-ray-spectroscopy (EDS). Electron backscatter diffraction (EBSD) reveals epitaxial grain growth across the sharp transition region with a pronounced <001>-texture, while the smooth transition acts as nucleus for the growth of new grains with <101>-orientation. In light of envisaged applications in the biomedical sector, the present investigation demonstrates the high potential of an AISI 316L/CoCrMo alloy material combination. Full article
(This article belongs to the Special Issue Microstructure Characterization and Design of Alloys)
Show Figures

Figure 1

12 pages, 4119 KB  
Article
High-Strain Deformation and Spallation Strength of 09CrNi2MoCu Steel Obtained by Direct Laser Deposition
by Olga Klimova-Korsmik, Gleb Turichin, Ruslan Mendagaliyev, Sergey Razorenov, Gennady Garkushin, Andrey Savinykh and Rudolf Korsmik
Metals 2021, 11(8), 1305; https://doi.org/10.3390/met11081305 - 18 Aug 2021
Cited by 11 | Viewed by 2791
Abstract
In this work, the critical fracture stresses during spalling of high-strength steel 09CrNi2MoCu samples obtained by direct laser deposition (DLD) were measured under shock compression of up to ~5.5 GPa. The microstructure and mechanical properties of DLD steel samples in the initial state [...] Read more.
In this work, the critical fracture stresses during spalling of high-strength steel 09CrNi2MoCu samples obtained by direct laser deposition (DLD) were measured under shock compression of up to ~5.5 GPa. The microstructure and mechanical properties of DLD steel samples in the initial state and after heat treatment were studied and compared to traditional hot rolled one. The microstructural features of steel before and after heat treatment were revealed. The heat treatment modes of the deposit specimens on their strength properties under both static and dynamic loads have been investigated. The spall strength of the deposited specimens is somewhat lower than the strength of steel specimens after hot rolling regardless of their heat treatment. The minimum elastic limit of elasticity is exhibited by the deposit specimens. After heat treatment of the deposit samples, the elastic limit increases and approximately doubles. Subsequent heat treatment in the form of hardening and tempering allows obtaining strength properties under Hugoniot loads in traditional hot-rolled products. Full article
(This article belongs to the Special Issue Laser Processing of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop