Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (30,278)

Search Parameters:
Keywords = different locations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

21 pages, 3733 KiB  
Article
DNO-RL: A Reinforcement-Learning-Based Approach to Dynamic Noise Optimization for Differential Privacy
by Guixin Wang, Xiangfei Liu, Yukun Zheng, Zeyu Zhang and Zhiming Cai
Electronics 2025, 14(15), 3122; https://doi.org/10.3390/electronics14153122 - 5 Aug 2025
Abstract
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional [...] Read more.
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional static differential privacy mechanisms struggle to accommodate spatiotemporal heterogeneity in dynamic scenarios because of the use of a fixed privacy budget parameter, leading to wasted privacy budgets or insufficient protection of sensitive regions. This study proposes a reinforcement-learning-based dynamic noise optimization method (DNO-RL) that dynamically adjusts the Laplacian noise scale by real-time sensing of vehicle density, region sensitivity, and the remaining privacy budget via a deep Q-network (DQN), with the aim of providing context-adaptive differential privacy protection for cross-border vehicle location services. Simulation experiments of cross-border scenarios based on the T-Drive dataset showed that DNO-RL reduced the average localization error by 28.3% and saved 17.9% of the privacy budget compared with the local differential privacy under the same privacy budget. This study provides a new paradigm for the dynamic privacy–utility balancing of cross-border vehicular networking services. Full article
Show Figures

Figure 1

16 pages, 647 KiB  
Article
Geographic Scale Matters in Analyzing the Effects of the Built Environment on Choice of Travel Modes: A Case Study of Grocery Shopping Trips in Salt Lake County, USA
by Ensheng Dong, Felix Haifeng Liao and Hejun Kang
Urban Sci. 2025, 9(8), 307; https://doi.org/10.3390/urbansci9080307 - 5 Aug 2025
Abstract
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt [...] Read more.
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt Lake County, UT, this research investigated a variety of influential factors affecting mode choices associated with grocery shopping. We analyze how built environment (BE) characteristics, measured at seven spatial scales or different ways of aggregating spatial data—including straight-line buffers, network buffers, and census units—affect travel mode decisions. Key predictors of choosing walking, biking, or transit over driving include age, household size, vehicle ownership, income, land use mix, street density, and distance to the central business district (CBD). Notably, the influence of BE factors on mode choice is sensitive to different spatial aggregation methods and locations of origins and destinations. The straight-line buffer was a good indicator for the influence of store sales amount on mode choices; the network buffer was more suitable for the household built environment factors, whereas the measurement at the census block and block group levels was more effective for store-area characteristics. These findings underscore the importance of considering both the spatial analysis method and the location (home vs. store) when modeling non-work travel. A multi-scalar approach can enhance the accuracy of travel demand models and inform more effective land use and transportation planning strategies. Full article
24 pages, 3176 KiB  
Article
Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
by Kenia Barrantes-Jiménez, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez and María Arias-Andrés
Antibiotics 2025, 14(8), 798; https://doi.org/10.3390/antibiotics14080798 (registering DOI) - 5 Aug 2025
Abstract
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in [...] Read more.
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. Methods: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. Results: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. Conclusions: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. Full article
(This article belongs to the Special Issue Origins and Evolution of Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

16 pages, 745 KiB  
Review
Bidirectional Interplay Between Microglia and Mast Cells
by Szandra Lakatos and Judit Rosta
Int. J. Mol. Sci. 2025, 26(15), 7556; https://doi.org/10.3390/ijms26157556 (registering DOI) - 5 Aug 2025
Abstract
Microglia, the brain’s resident innate immune cells, play a fundamental role in maintaining neural homeostasis and mediating responses to injury or infection. Upon activation, microglia undergo morphological and functional changes, including phenotypic switching between pro- and anti-inflammatory types and the release of different [...] Read more.
Microglia, the brain’s resident innate immune cells, play a fundamental role in maintaining neural homeostasis and mediating responses to injury or infection. Upon activation, microglia undergo morphological and functional changes, including phenotypic switching between pro- and anti-inflammatory types and the release of different inflammatory mediators. These processes contribute to neuroprotection and the pathogenesis of various central nervous system (CNS) disorders. Mast cells, although sparsely located in the brain, exert a significant influence on neuroinflammation through their interactions with microglia. Through degranulation and secretion of different mediators, mast cells disrupt the blood–brain barrier and modulate microglial responses, including alteration of microglial phenotypes. Notably, mast cell-derived factors, such as histamine, interleukins, and tryptase, activate microglia through various pathways including protease-activated receptor 2 and purinergic receptors. These interactions amplify inflammatory cascades via various signaling pathways. Previous studies have revealed an exceedingly complex crosstalk between mast cells and microglia suggesting a bidirectional regulation of CNS immunity, implicating their cooperation in both neurodegenerative progression and repair mechanisms. Here, we review some of the diverse communication pathways involved in this complex interplay. Understanding this crosstalk may offer novel insights into the cellular dynamics of neuroinflammation and highlight potential therapeutic targets for a variety of CNS disorders. Full article
Show Figures

Figure 1

27 pages, 4239 KiB  
Article
Implementing Zero Trust: Expert Insights on Key Security Pillars and Prioritization in Digital Transformation
by Francesca Santucci, Gabriele Oliva, Maria Teresa Gonnella, Maria Elena Briga, Mirko Leanza, Marco Massenzi, Luca Faramondi and Roberto Setola
Information 2025, 16(8), 667; https://doi.org/10.3390/info16080667 - 5 Aug 2025
Abstract
As organizations continue to embrace digital transformation, the need for robust cybersecurity strategies has never been more critical. This paper explores the Zero Trust Architecture (ZTA) as a contemporary cybersecurity framework that addresses the challenges posed by increasingly interconnected systems. Zero Trust (ZT) [...] Read more.
As organizations continue to embrace digital transformation, the need for robust cybersecurity strategies has never been more critical. This paper explores the Zero Trust Architecture (ZTA) as a contemporary cybersecurity framework that addresses the challenges posed by increasingly interconnected systems. Zero Trust (ZT) operates under the principle of “never trust, always verify,” ensuring that every access request is thoroughly authenticated, regardless of the requester’s location within or outside the network. However, implementing ZT is a challenging task, requiring an adequate roadmap to prioritize the different initiatives in agreement with company culture, exposure and cyber posture. We apply multi-criteria decision analysis (MCDA) to evaluate the relative importance of various components within a ZT framework, using the Incomplete Analytic Hierarchy Process (IAHP). Expert opinions from professionals in cybersecurity and IT governance were gathered through structured questionnaires, leading to a prioritized ranking of the eight key ZT pillars, as defined by the Cybersecurity and Infrastructure Security Agency (CISA), Washington, DC, USA, along with a prioritization of the sub-elements within each pillar. The study provides actionable insights into the implementation of ZTA, helping organizations prioritize security efforts to mitigate risks effectively and build a resilient digital infrastructure. The evaluation results were used to create a prioritized framework, integrated into the ZEUS platform, developed with Teleconsys S.p.A., to enable detailed assessments of a firm’s cyber partner regarding ZT and identify improvement areas. The paper concludes by offering recommendations for future research and practical guidance for organizations transitioning to a ZT model. Full article
(This article belongs to the Section Information Security and Privacy)
Show Figures

Figure 1

23 pages, 3055 KiB  
Article
A Markerless Approach for Full-Body Biomechanics of Horses
by Sarah K. Shaffer, Omar Medjaouri, Brian Swenson, Travis Eliason and Daniel P. Nicolella
Animals 2025, 15(15), 2281; https://doi.org/10.3390/ani15152281 - 5 Aug 2025
Abstract
The ability to quantify equine kinematics is essential for clinical evaluation, research, and performance feedback. However, current methods are challenging to implement. This study presents a motion capture methodology for horses, where three-dimensional, full-body kinematics are calculated without instrumentation on the animal, offering [...] Read more.
The ability to quantify equine kinematics is essential for clinical evaluation, research, and performance feedback. However, current methods are challenging to implement. This study presents a motion capture methodology for horses, where three-dimensional, full-body kinematics are calculated without instrumentation on the animal, offering a more scalable and labor-efficient approach when compared with traditional techniques. Kinematic trajectories are calculated from multi-camera video data. First, a neural network identifies skeletal landmarks (markers) in each camera view and the 3D location of each marker is triangulated. An equine biomechanics model is scaled to match the subject’s shape, using segment lengths defined by markers. Finally, inverse kinematics (IK) produces full kinematic trajectories. We test this methodology on a horse at three gaits. Multiple neural networks (NNs), trained on different equine datasets, were evaluated. All networks predicted over 78% of the markers within 25% of the length of the radius bone on test data. Root-mean-square-error (RMSE) between joint angles predicted via IK using ground truth marker-based motion capture data and network-predicted data was less than 10 degrees for 25 to 32 of 35 degrees of freedom, depending on the gait and data used for network training. NNs trained over a larger variety of data improved joint angle RMSE and curve similarity. Marker prediction error, the average distance between ground truth and predicted marker locations, and IK marker error, the distance between experimental and model markers, were used to assess network, scaling, and registration errors. The results demonstrate the potential of markerless motion capture for full-body equine kinematic analysis. Full article
(This article belongs to the Special Issue Advances in Equine Sports Medicine, Therapy and Rehabilitation)
Show Figures

Figure 1

11 pages, 1381 KiB  
Article
Fertilization Promotes the Recovery of Plant Productivity but Decreases Biodiversity in a Khorchin Degraded Grassland
by Lina Zheng, Wei Zhao, Shaobo Gao, Ruizhen Wang, Haoran Yan and Mingjiu Wang
Nitrogen 2025, 6(3), 64; https://doi.org/10.3390/nitrogen6030064 - 4 Aug 2025
Abstract
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted [...] Read more.
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted a four-year (2017–2020) N, P, K addition experiment in the Khorchin Grassland, a degraded typical grassland located in Zhalute Banner, Tongliao City, Inner Mongolia, to investigate the effects of fertilization treatment on plant functional groups and microbial communities after grazing exclusion. Our results showed that the addition of P, NP, and NPK compound fertilizers significantly increased aboveground biomass of the plant community, which is mainly related to the improvement of nutrient availability to promote the growth of specific plant functional groups, especially annual and biennial plants and perennial bunchgrasses. However, the addition of N, P, and NP fertilizers significantly reduced the species diversity of the plant community. At the same time, the addition of N, P, and NP fertilizers and the application of N and NP significantly reduced fungal species diversity but had no significant effect on soil bacteria. Our study provides new insights into the relationships between different types of fertilization and plant community productivity and biodiversity in degraded grasslands over four years of fertilization, which is critical for evaluating the effect of fertilization on the restoration of degraded grassland. Full article
Show Figures

Figure 1

12 pages, 569 KiB  
Systematic Review
Intravascular Lithotripsy in the Aorta and Iliac Vessels: A Literature Review of the Past Decade
by Nicola Troisi, Giulia Bertagna, Sofia Pierozzi, Valerio Artini and Raffaella Berchiolli
J. Clin. Med. 2025, 14(15), 5493; https://doi.org/10.3390/jcm14155493 - 4 Aug 2025
Abstract
Background/Objectives: Nowadays, intravascular lithotripsy (IVL) has emerged as a novel technique for treatment of vascular calcifications, first in coronary and then in peripheral arteries. In the current literature there is little evidence that describes IVL as an effective and safe solution in [...] Read more.
Background/Objectives: Nowadays, intravascular lithotripsy (IVL) has emerged as a novel technique for treatment of vascular calcifications, first in coronary and then in peripheral arteries. In the current literature there is little evidence that describes IVL as an effective and safe solution in treating severe aortic and aorto-iliac calcifications. The aim of this study is to report current available data about the use of IVL in treating aortic and aorto-iliac calcified lesions and its application in facilitating other endovascular procedures. Methods: the present review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) Guidelines. Preliminary searches were conducted on MEDLINE and Pubmed from January 2015 to February 2025. Studies were divided into 3 main categories depending on the location of calcifications and the type of treatment: IVL in visceral and infrarenal obstructive disease (group 1), IVL in aorto-iliac obstructive disease (group 2), IVL used to facilitate other endovascular procedures. Main primary outcomes in the perioperative period were technical and clinical successes and perioperative complications. Primary outcomes at 30 days and mid-term (2 years) were overall survival, limb salvage rate, primary patency, primary assisted patency, secondary patency, and residual stenosis. Results: Sixteen studies were identified for a total of 1674 patients. Technical and clinical successes were 100%, with low rates of perioperative complications. Dissection rate reaches up to 16.1% in some studies, without any differences compared to plain old balloon angioplasty (POBA) alone (22.8%; p = 0.47). At 30 days, limb salvage and survival rates were 100%. At 2 years, primary patency, assisted primary patency, and secondary patency were 95%, 98%, and 100%, respectively, with no difference compared to IVL + stenting. Conclusions: IVL has emerged as a novel approach to treat severe calcified lesions in visceral and aorto-iliac atherosclerotic disease and to facilitate other endovascular procedures. This technique seems to offer satisfactory early and mid-term outcomes in terms of primary, primary assisted patency, and secondary patency with low complication rates. Full article
(This article belongs to the Special Issue Endovascular Surgery: State of the Art and Clinical Perspectives)
Show Figures

Figure 1

31 pages, 9610 KiB  
Article
Can the Building Make a Difference to User’s Health in Indoor Environments? The Influence of PM2.5 Vertical Distribution on the IAQ of a Student House over Two Periods in Milan in 2024
by Yong Yu, Marco Gola, Gaetano Settimo and Stefano Capolongo
Atmosphere 2025, 16(8), 936; https://doi.org/10.3390/atmos16080936 (registering DOI) - 4 Aug 2025
Abstract
This study investigates indoor and outdoor air quality monitoring in a student dormitory located in northern Milan (Italy) using low-cost sensors. This research compares two monitoring periods in June and October 2024 to examine common PM2.5 vertical patterns and differences at the [...] Read more.
This study investigates indoor and outdoor air quality monitoring in a student dormitory located in northern Milan (Italy) using low-cost sensors. This research compares two monitoring periods in June and October 2024 to examine common PM2.5 vertical patterns and differences at the building level, as well as their influence on the indoor spaces at the corresponding positions. In each period, around 30 sensors were installed at various heights and orientations across indoor and outdoor spots for 2 weeks to capture spatial variations around the building. Meanwhile, qualitative surveys on occupation presence, satisfaction, and well-being were distributed in selected rooms. The analysis of PM2.5 data reveals that the building’s lower floors tended to have slightly higher outdoor PM2.5 concentrations, while the upper floors generally had lower PM2.5 indoor/outdoor (I/O) ratios, with the top-floor rooms often below 1. High outdoor humidity reduced PM infiltration, but when outdoor PM fell below 20 µg/m3 in these two periods, indoor sources became dominant, especially on the lower floors. Air pressure I/O differences had minimal impact on PM2.5 I/O ratios, though slightly positive indoor pressure might help prevent indoor PM infiltration. Lower ventilation in Period-2 possibly contributed to more reported symptoms, especially in rooms with higher PM from shared kitchens. While outdoor air quality affects IAQ, occupant behavior—especially window opening and ventilation management—remains crucial in minimizing indoor pollutants. Users can also manage exposure by ventilating at night based on comfort and avoiding periods of high outdoor PM. Full article
(This article belongs to the Special Issue Air Quality in Metropolitan Areas and Megacities (Second Edition))
Show Figures

Figure 1

15 pages, 726 KiB  
Article
Surgical Management of Pulmonary Typical Carcinoids: A Single-Centre Experience Comparing Anatomical and Non-Anatomical Resections
by Carmelina Cristina Zirafa, Beatrice Manfredini, Gaetano Romano, Ilaria Ceccarelli, Fabrizia Calabrò, Riccardo Morganti, Greta Alì, Franca Melfi and Federico Davini
J. Clin. Med. 2025, 14(15), 5488; https://doi.org/10.3390/jcm14155488 - 4 Aug 2025
Abstract
Background/Objectives: Pulmonary typical carcinoid (TC) is a rare type of primary neuroendocrine neoplasm of the lung with indolent behavior and a good prognosis. The main treatment strategy is surgery, the extent of which is controversial given the nature of the disease. The aim [...] Read more.
Background/Objectives: Pulmonary typical carcinoid (TC) is a rare type of primary neuroendocrine neoplasm of the lung with indolent behavior and a good prognosis. The main treatment strategy is surgery, the extent of which is controversial given the nature of the disease. The aim of this study is to assess whether the extent of resection influences survival and recurrence in patients undergoing lung resection and lymphadenectomy for TC and to investigate negative prognostic factors for OS. Methods: A single-centre retrospective study of 15 years’ experience was conducted. Data from all patients who underwent lung resection and lymphadenectomy for TC were collected. Patients were divided into two groups: anatomical and non-anatomical resections. Perioperative and long-term oncological results were analyzed. Results: In total, 115 patients were surgically treated for TC, of whom 83 (72%) underwent anatomical resection and 32 (28%) non-anatomical resection. Univariate analyses showed that age, left lower lobe, and many comorbidities had a detrimental effect on OS, whereas on multivariate analysis, only left lower lobe location and a high Charlson–Deyo comorbidity index (CCI) were confirmed as negative prognostic factors for OS. At a median follow-up of 93 months (IQR 57-129), the OS survival curves show a slightly lower trend for non-anatomical resections (p 0.152), while no differences were found for DFS. Conclusions: The results of this study confirm that in selected patients at risk for major resections, non-anatomical resection can be used to treat TC when R0 is achievable. These data, together with evidence from the literature, highlight the importance of patient-centred care in this rare disease. Full article
Show Figures

Figure 1

29 pages, 4883 KiB  
Article
Stochastic Vibration of Damaged Cable System Under Random Loads
by Yihao Wang, Wei Li and Drazan Kozak
Vibration 2025, 8(3), 44; https://doi.org/10.3390/vibration8030044 - 4 Aug 2025
Abstract
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and [...] Read more.
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and its static configuration is determined. Using the Pearl River Huangpu Bridge as a case study, the accuracy of the analytical solution for the cable’s sag displacement is validated through the finite difference method (FDM). Furthermore, a quantitative relationship between the damage parameters and structural response under stochastic excitation is developed, and the nonlinear stochastic dynamic equations governing the in-plane and out-of-plane motions of the damaged cable are derived. Subsequently, a Gaussian Radial Basis Function Neural Network (GRBFNN) method is employed to solve for the steady-state probability density function of the system response, enabling a detailed analysis of how various damage parameters affect structural behavior. Finally, the First-Order and Second-Order Reliability Method (FORM/SORM) are used to compute the reliability index and failure probability, which are further validated using Monte Carlo simulation (MCS). Results show that the severity parameter η shows the highest sensitivity in influencing the failure probability among the damage parameters. For the system of the Pearl River Huangpu bridge, an increase in the damage extent δ from 0.1 to 0.4 can reduce the reliability-based service life of by approximately 40% under fixed values of the damage severity and location, and failure risk is highest when the damage is located at the midspan of the cable. This study provides a theoretical framework from the point of stochastic vibration for evaluating the response and associated reliability of mechanical systems; the results can be applied in practice with guidance for the engineering design and avoid potential damages of suspended cables. Full article
Show Figures

Figure 1

24 pages, 6558 KiB  
Article
Utilizing Forest Trees for Mitigation of Low-Frequency Ground Vibration Induced by Railway Operation
by Zeyu Zhang, Xiaohui Zhang, Zhiyao Tian and Chao He
Appl. Sci. 2025, 15(15), 8618; https://doi.org/10.3390/app15158618 (registering DOI) - 4 Aug 2025
Abstract
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer [...] Read more.
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer method is employed to derive an explicit Green’s function corresponding to a har-monic point load acting on a layered half-space, which is subsequently applied to couple the foundation with the track system. The forest trees are modeled as surface oscillators coupled on the ground surface to evaluate the characteristics of multiple scattered wavefields. The vibration attenuation capacity of forest trees in mitigating railway-induced ground vibrations is systematically investigated using the proposed method. In the direction perpendicular to the track on the ground surface, a graded array of forest trees with varying heights is capable of forming a broad mitigation frequency band below 80 Hz. Due to the interaction of wave fields excited by harmonic point loads at multiple locations, the attenuation performance of the tree system varies significantly across different positions on the surface. The influence of variability in tree height, radius, and density on system performance is subsequently examined using a Monte Carlo simulation. Despite the inherent randomness in tree characteristics, the forest still demonstrates notable attenuation effectiveness at frequencies below 80 Hz. Among the considered parameters, variations in tree height exert the most pronounced effect on the uncertainty of attenuation performance, followed sequentially by variations in density and radius. Full article
Show Figures

Figure 1

13 pages, 1870 KiB  
Article
Study on the Spatiotemporal Distribution Characteristics and Constitutive Relationship of Foggy Airspace in Mountainous Expressways
by Xiaolei Li, Yinxia Zhan, Tingsong Cheng and Qianghui Song
Appl. Sci. 2025, 15(15), 8615; https://doi.org/10.3390/app15158615 (registering DOI) - 4 Aug 2025
Abstract
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal [...] Read more.
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal distribution characteristics of agglomerate fog, the airspace constitutive model of agglomerate fog in mountainous expressways was constructed based on Newton constitutive theory. Firstly, the properties of the Newtonian fluid and cluster fog were compared and analyzed, and the influence mechanism of environmental factors such as the altitude difference, topography, water system, valley effect, and vegetation on the generation and dissipation of agglomerate fog in mountainous expressways was analyzed. Based on Newton’s constitutive theory, the constitutive model of temperature, humidity, wind speed, and agglomerate fog points in the foggy airspace of the mountainous expressway was established. Then, the time and spatial distribution of fog in Chongqing and Guizhou from 2021 to 2023 were analyzed. Finally, the model was verified by using the meteorological data and fog warning data of Liupanshui City, Guizhou Province in 2023. The results show that the foggy airspace of mountainous expressways can be defined as “the space occupied by the agglomerate fog that occurs above the mountain expressway”; The temporal and spatial distribution of foggy airspace on expressways in mountainous areas is closely related to the topography, water system, vegetation distribution, and local microclimate formed by thermal radiation. The horizontal and vertical movements of the atmosphere have little influence on the foggy airspace on expressways in mountainous areas. The specific manifestation of time distribution is that the occurrence of agglomerate fog is concentrated from November to April of the following year, and the daily occurrence time is mainly concentrated between 4:00–8:00 and 18:00–22:00. The calculation results of the foggy airspace constitutive model of the expressway in the mountainous area show that when there is low surface radiation or no surface radiation, the fogging value range is [90, 100], and the fogging value range is [50, 70] when there is high surface radiation (>200), and there is generally no fog in other intervals. The research results can provide a theoretical basis for traffic safety management and control of mountainous expressway fog sections. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

Back to TopTop