Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = dielectric decrement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2662 KB  
Article
Hydroxide and Hydrophobic Tetrabutylammonium Ions at the Hydrophobe–Water Interface
by Alex M. Djerdjev and James K. Beattie
Molecules 2025, 30(4), 785; https://doi.org/10.3390/molecules30040785 - 8 Feb 2025
Cited by 5 | Viewed by 1825
Abstract
Water and oil do not mix. This essential statement of the hydrophobic effect explains why oil-in-water (O/W) emulsions are unstable and why energy must be supplied to form such emulsions. Breaking O/W emulsions is an exothermic event. Yet metastable O/W emulsions can be [...] Read more.
Water and oil do not mix. This essential statement of the hydrophobic effect explains why oil-in-water (O/W) emulsions are unstable and why energy must be supplied to form such emulsions. Breaking O/W emulsions is an exothermic event. Yet metastable O/W emulsions can be prepared with only water acting as the stabilizer by the adsorption of hydroxide ions formed from the enhanced autolysis of interfacial water. The heat of desorption of the hydroxide ions from the oil–water interface is not directly accessible but is obtained from the difference between the heat of reaction and the sum of the neutralization and interfacial heats when an emulsion is broken by the addition of acid. This experimental value of 28.4 kBT is in good agreement with the theoretical estimate of 16–20 kBT made from the fluctuation/correlation model of the hydrophobic force and the value of 14 kBT obtained recently from surface spectroscopy. Subsequent verification of the force driving ions to hydrophobic surfaces is shown for tetrabutylammonium bromide with a dielectric decrement value of 26 M−1 compared to 20 M−1 for NaOH. The positive cation preferentially adsorbs at the oil–water interface over hydroxide ions in agreement with the predicted model. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Graphical abstract

8 pages, 4031 KB  
Proceeding Paper
Investigation of Transition Metal Ions Cu2+ and Mg2+ Doped Zinc Aluminate (ZnAl2O4) and Their Structural, Spectral, Optical, and Dielectric Study for High-Frequency Applications
by Yasmin Jamil, Gracie P. Jeyakumar and Geetha Deivasigamani
Mater. Proc. 2023, 14(1), 2; https://doi.org/10.3390/IOCN2023-14478 - 5 May 2023
Cited by 4 | Viewed by 1863
Abstract
Zinc Aluminate is an excellent dielectric material suitable for a variety of technological applications due to its high-quality factor, low dielectric loss, and appreciable conductivity. Here in this study, the preparation of Zn1−xMxAl2O4 (M = Cu [...] Read more.
Zinc Aluminate is an excellent dielectric material suitable for a variety of technological applications due to its high-quality factor, low dielectric loss, and appreciable conductivity. Here in this study, the preparation of Zn1−xMxAl2O4 (M = Cu2+, Mg2+: x = 0, 0.10) powders were carried out using the citrate-based combustion route. The structural, spectral, optical, stoichiometry composition, and dielectric performance of the synthesized nanoparticles were evaluated to explore the substitution effect of Cu2+ and Mg2+ ions. It was confirmed from XRD results that all the samples exhibited a monophase spinel structure. The estimated average crystallite size is calculated to be 23 nm. The functional group identification of the samples was monitored by FTIR spectroscopy. Scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy analysis (EDAX) was utilized to confirm the composition of the samples. UV–Visible absorption spectroscopy demonstrated decrement in the band gap due to doping. Impedance spectroscopy displayed improved dielectric properties for the doped samples. The Cole–Cole plots enlightened the relaxation processes and provided information about the complex electrical behavior of the material. It was established that non-Debye relaxation was found to be prominent in the investigated aluminates. From the electrical parameters obtained, it displays the semiconducting nature of the zinc aluminate particles, and it can be utilized for high-frequency applications such as ceramic capacitors, resonators, and filters in high-frequency electronics. Overall, Zinc Aluminate is a versatile material with potential application in various fields of science and electronics. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Nanomaterials)
Show Figures

Figure 1

19 pages, 5032 KB  
Article
Impact of Mo-Doping on the Structural, Optical, and Electrocatalytic Degradation of ZnO Nanoparticles: Novel Approach
by Vanga Ganesh, Mai S. A. Hussien, Ummar Pasha Shaik, Ramesh Ade, Mervat I. Mohammed, Thekrayat H. AlAbdulaal, Heba Y. Zahran, Ibrahim S. Yahia and Mohamed Sh. Abdel-wahab
Crystals 2022, 12(9), 1239; https://doi.org/10.3390/cryst12091239 - 1 Sep 2022
Cited by 14 | Viewed by 3585
Abstract
Pure and Molybdenum (Mo)-doped zinc oxide (ZnO) nanoparticles were prepared by a cost-effective combustion synthesis route. XRD results revealed the decrement in crystallite size of ZnO with an increase in Mo-doping concentration. Optical bandgap (Eg) values were determined using optical [...] Read more.
Pure and Molybdenum (Mo)-doped zinc oxide (ZnO) nanoparticles were prepared by a cost-effective combustion synthesis route. XRD results revealed the decrement in crystallite size of ZnO with an increase in Mo-doping concentration. Optical bandgap (Eg) values were determined using optical reflectance spectra of these films measured in the range of 190–800 nm. The Eg values decreased with increasing the Mo-doping concentration. The dielectric properties of these samples were studied to determine the dielectric constant values. Raman spectra of these samples were recorded to know the structure. These sample absorption spectra were recorded for electrocatalytic applications. All the prepared samples were subjected to electrocatalytic degradation of Rhodamine B. The 0.01 wt% Mo doped ZnO showed 100% in 7 min electrocatalytic degradation. Full article
(This article belongs to the Special Issue 1D and 2D Nanomaterials for Sensor Applications)
Show Figures

Figure 1

25 pages, 4358 KB  
Review
Surface Plasmons Excited by X-rays in the Surface Layers of Solids
by Valery M. Stozharov
Solids 2022, 3(1), 122-146; https://doi.org/10.3390/solids3010009 - 1 Mar 2022
Cited by 2 | Viewed by 3664
Abstract
The phenomenon of total external reflection of X-rays at a sliding angle of incidence of a beam of incident X-rays is investigated. For metals, a quantitative law of direct dependence of the refractive index decrement on the interplane distance is obtained. The excitation [...] Read more.
The phenomenon of total external reflection of X-rays at a sliding angle of incidence of a beam of incident X-rays is investigated. For metals, a quantitative law of direct dependence of the refractive index decrement on the interplane distance is obtained. The excitation of surface plasmons by X-rays that have experienced complete external reflection is detected. For surface plasmons, a dimensional effect was observed, expressed in an increase in the energy of plasmons and the concentration of conduction electrons with an increase in the depth of the output of surface plasmons. By the method of dispersion of surface plasmons, internal mechanical micro-stresses and spontaneous polarization of the surface layers of glassy dielectrics and in thin layers of vanadium dioxide were determined. The absence of micro-stresses in the lithium fluoride ionic single crystal was found out, and the polarization observed in it is due to the large dipole moment of the molecules of this crystal. In thin films of vanadium dioxide, the dependence of micro-stresses on the stresses in the substrates was found. Full article
(This article belongs to the Special Issue Solids in Europe)
Show Figures

Figure 1

15 pages, 3878 KB  
Article
Effects of Particle Size on the Dielectric, Mechanical, and Thermal Properties of Recycled Borosilicate Glass-Filled PTFE Microwave Substrates
by Ibrahim Abubakar Alhaji, Zulkifly Abbas, Mohd Hafiz Mohd Zaid and Ahmad Mamoun Khamis
Polymers 2021, 13(15), 2449; https://doi.org/10.3390/polym13152449 - 26 Jul 2021
Cited by 14 | Viewed by 4663
Abstract
Low dielectric loss and low-cost recycled borosilicate (BRS) glass-reinforced polytetrafluoroethylene (PTFE) composites were fabricated for microwave substrate applications. The composites were prepared through a dry powder processing technique by dispersing different micron sizes (25 µm, 45 µm, 63 µm, 90 µm, and 106 [...] Read more.
Low dielectric loss and low-cost recycled borosilicate (BRS) glass-reinforced polytetrafluoroethylene (PTFE) composites were fabricated for microwave substrate applications. The composites were prepared through a dry powder processing technique by dispersing different micron sizes (25 µm, 45 µm, 63 µm, 90 µm, and 106 µm) of the recycled BRS filler in the PTFE matrix. The effect of the filler sizes on the composites’ thermal, mechanical, and dielectric properties was studied. The dielectric properties of the composites were characterised in the frequency range of 1–12 GHz using an open-ended coaxial probe (OCP) connected to a vector network analyser (VNA). XRD patterns confirmed the phase formation of PTFE and recycled BRS glass. The scanning electron microscope also showed good filler dispersion at larger filler particle sizes. In addition, the composites’ coefficient of thermal expansion and tensile strength decreased from 12.93 MPa and 64.86 ppm/°C to 7.12 MPa and 55.77 ppm/°C when the filler size is reduced from 106 μm to 25 μm. However, moisture absorption and density of the composites increased from 0.01% and 2.17 g/cm3 to 0.04% and 2.21 g/cm3. The decrement in filler size from 106 μm to 25 μm also increased the mean dielectric constant and loss tangent of the composites from 2.07 and 0.0010 to 2.18 and 0.0011, respectively, while it reduced the mean signal transmission speed from 2.088 × 108 m/s to 2.031 × 108 m/s. The presented results showed that PTFE/recycled BRS composite exhibited comparable characteristics with commercial high-frequency laminates. Full article
Show Figures

Figure 1

12 pages, 3027 KB  
Article
A Comparative Study on Electro-Optic Effects of Organic N-Benzyl-2-Methyl-4-Nitroaniline and Morpholinium 2-Chloro-4-Nitrobenzoate Doped in Nematic Liquid Crystals E7
by Pravinraj Selvaraj, Karthick Subramani, Che-Ju Hsu and Chi-Yen Huang
Polymers 2020, 12(12), 2977; https://doi.org/10.3390/polym12122977 - 13 Dec 2020
Cited by 8 | Viewed by 3537
Abstract
Improvements in electro-optical responses of LC devices by doping organic N-benzyl-2-methyl-4-nitroaniline (BNA) and Morpholinium 2-chloro-4-nitrobenzoate (M2C4N) in nematic liquid crystals (LCs) have been reported in this study. BNA and M2C4N-doped LC cells have the fall time that is fivefold and threefold faster than [...] Read more.
Improvements in electro-optical responses of LC devices by doping organic N-benzyl-2-methyl-4-nitroaniline (BNA) and Morpholinium 2-chloro-4-nitrobenzoate (M2C4N) in nematic liquid crystals (LCs) have been reported in this study. BNA and M2C4N-doped LC cells have the fall time that is fivefold and threefold faster than the pristine LC cell, respectively. The superior performance in fall time of BNA-doped LC cell is attributed to the significant decrements in the rotational viscosity and threshold voltage by 44% and 25%, respectively, and a strong additional restoring force resulted from the spontaneous polarization electric field of BNA. On the other hand, the dielectric anisotropy (Δε) of LC mixture is increased by 16% and 6%, respectively, with M2C4N and BNA dopants. M2C4N dopant induces a large dielectric anisotropy, because the phenyl-amine/hydroxyl in M2C4N induces a strong intermolecular interaction with LCs. Furthermore, BNA dopant causes a strong absorbance near the wavelength of 400 nm that filters the blue light. The results indicate that M2C4N doping can be used to develop a high Δε of LC mixture, and BNA doping is appropriate to fabricate a fast response and blue-light filtering LC device. Density Functional Theory calculation also confirms that BNA and M2C4N increase the dipole moment, polarization anisotropy, and hence Δε of LC mixture. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

21 pages, 3555 KB  
Article
Drawbacks of Low Lattice Energy Ammonium Salts for Ion-Conducting Polymer Electrolyte Preparation: Structural, Morphological and Electrical Characteristics of CS:PEO:NH4BF4-Based Polymer Blend Electrolytes
by Mohamad A. Brza, Shujahadeen B. Aziz, Muaffaq M. Nofal, Salah R. Saeed, Shakhawan Al-Zangana, Wrya O. Karim, Sarkawt A. Hussen, Rebar T. Abdulwahid and Mohd F. Z. Kadir
Polymers 2020, 12(9), 1885; https://doi.org/10.3390/polym12091885 - 21 Aug 2020
Cited by 45 | Viewed by 4665
Abstract
In the present work it was shown that low lattice energy ammonium salts are not favorable for polymer electrolyte preparation for electrochemical device applications. Polymer blend electrolytes based on chitosan:poly(ethylene oxide) (CS:PEO) incorporated with various amounts of low lattice energy NH4BF [...] Read more.
In the present work it was shown that low lattice energy ammonium salts are not favorable for polymer electrolyte preparation for electrochemical device applications. Polymer blend electrolytes based on chitosan:poly(ethylene oxide) (CS:PEO) incorporated with various amounts of low lattice energy NH4BF4ammonium salt have been prepared using the solution cast technique. Both structural and morphological studies were carried out to understand the phenomenon of ion association. Sharp peaks appeared in X-ray diffraction (XRD) spectra of the samples with high salt concentration. The degree of crystallinity increased from 8.52 to 65.84 as the salt concentration increased up to 40 wt.%. These are correlated to the leakage of the associated anions and cations of the salt to the surface of the polymer. The structural behaviors were further confirmed by morphological study. The morphological results revealed the large-sized protruded salts at high salt concentration. Based on lattice energy of salts, the phenomena of salt leakage were interpreted. Ammonium salts with lattice energy lower than 600 kJ/mol are not preferred for polymer electrolyte preparation due to the significant tendency of ion association among cations and anions. Electrical impedance spectroscopy was used to estimate the conductivity of the samples. It was found that the bulk resistance increased from 1.1 × 104 ohm to 0.7 × 105 ohm when the salt concentration raised from 20 wt.% to 40 wt.%, respectively; due to the association of cations and anions. The low value of direct current (DC) conductivity (7.93 × 10−7 S/cm) addressed the non-suitability of the electrolytes for electrochemical device applications. The calculated values of the capacitance over the interfaces of electrodes-electrolytes (C2) were found to drop from 1.32 × 10−6 F to 3.13 × 10−7 F with increasing salt concentration. The large values of dielectric constant at low frequencies are correlated to the electrode polarization phenomena while their decrements with rising frequency are attributed to the lag of ion polarization in respect of the fast orientation of the applied alternating current (AC) field. The imaginary part of the electric modulus shows obvious peaks known as conduction relaxation peaks. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films II)
Show Figures

Graphical abstract

15 pages, 2839 KB  
Article
Optical Dielectric Loss as a Novel Approach to Specify the Types of Electron Transition: XRD and UV-vis as a Non-Destructive Techniques for Structural and Optical Characterization of PEO Based Nanocomposites
by Dana S. Muhammed, Mohamad A. Brza, Muaffaq M. Nofal, Shujahadeen B. Aziz, Sarkawt A. Hussen and Rebar T. Abdulwahid
Materials 2020, 13(13), 2979; https://doi.org/10.3390/ma13132979 - 3 Jul 2020
Cited by 41 | Viewed by 3817
Abstract
The structure and optical properties of polyethylene oxide (PEO) doped with tin titanate (SnTiO3) nano-filler were studied by X-ray diffraction (XRD) and UV-Vis spectroscopy as non-destructive techniques. PEO-based composed polymer electrolytes inserted with SnTiO3 nano-particles (NPs) were synthesized through the [...] Read more.
The structure and optical properties of polyethylene oxide (PEO) doped with tin titanate (SnTiO3) nano-filler were studied by X-ray diffraction (XRD) and UV-Vis spectroscopy as non-destructive techniques. PEO-based composed polymer electrolytes inserted with SnTiO3 nano-particles (NPs) were synthesized through the solution cast technique. The change from crystalline phase to amorphous phase of the host polymer was established by the lowering of the intensity and broadening of the crystalline peaks. The optical constants of PEO/SnTiO3 nano-composite (NC), such as, refractive index (n), optical absorption coefficient (α), dielectric loss (εi), as well as dielectric constant (εr) were determined for pure PEO and PEO/SnTiO3 NC. From these findings, the value of n of PEO altered from 2.13 to 2.47 upon the addition of 4 wt.% SnTiO3NPs. The value of εr also increased from 4.5 to 6.3, with addition of 4 wt.% SnTiO3. The fundamental optical absorption edge of the PEO shifted toward lower photon energy upon the addition of the SnTiO3 NPs, confirming a decrement in the optical band gap energy of PEO. The band gap shifted from 4.78 eV to 4.612 eV for PEO-doped with 4 wt.% SnTiO3. The nature of electronic transitions in the pure and the composite material were studied on the basis of Tauc’s model, while optical εi examination was also carried out to calculate the optical band gap. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

24 pages, 4966 KB  
Article
Employing of Trukhan Model to Estimate Ion Transport Parameters in PVA Based Solid Polymer Electrolyte
by Shujahadeen B. Aziz, Rawezh B. Marif, M. A. Brza, M. H. Hamsan and M. F. Z. Kadir
Polymers 2019, 11(10), 1694; https://doi.org/10.3390/polym11101694 - 16 Oct 2019
Cited by 73 | Viewed by 5689
Abstract
In the current paper, ion transport parameters in poly (vinyl alcohol) (PVA) based solid polymer electrolyte were examined using Trukhan model successfully. The desired amount of lithium trifluoromethanesulfonate (LiCF3SO3) was dissolved in PVA host polymer to synthesis of solid [...] Read more.
In the current paper, ion transport parameters in poly (vinyl alcohol) (PVA) based solid polymer electrolyte were examined using Trukhan model successfully. The desired amount of lithium trifluoromethanesulfonate (LiCF3SO3) was dissolved in PVA host polymer to synthesis of solid polymer electrolytes (SPEs). Ion transport parameters such as mobility (μ), diffusion coefficient (D), and charge carrier number density (n) are investigated in detail using impedance spectroscopy. The data results from impedance plots illustrated a decrement of bulk resistance with an increase in temperature. Using electrical equivalent circuits (EEC), electrical impedance plots (ZivsZr) are fitted at various temperatures. The results of impedance study demonstrated that the resistivity of the sample decreases with increasing temperature. The decrease of resistance or impedance with increasing temperature distinguished from Bode plots. The dielectric constant and dielectric loss values increased with an increase in temperature. The loss tangent peaks shifted to higher frequency region and the intensity increased with an increase in temperature. In this contribution, ion transport as a complicated subject in polymer physics is studied. The conductivity versus reciprocal of temperature was found to obey Arrhenius behavior type. The ion transport mechanism is discussed from the tanδ spectra. The ion transport parameters at ambient temperature are found to be 9 × 10−8 cm2/s, 0.8 × 1017 cm−3, and 3 × 10−6 cm2/Vs for D, n, andμ respectively. All these parameters have shown increasing as temperature increased. The electric modulus parameters are studied in an attempt to understand the relaxation dynamics and to clarify the relaxation process and ion dynamics relationship. Full article
(This article belongs to the Special Issue Polyelectrolyte Complexes in Polymer Science and Technology)
Show Figures

Graphical abstract

Back to TopTop