Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = diamond abrasive grits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7177 KiB  
Article
Wear Resistance of the Refractory WC–Co Diamond-Reinforced Composite with Zirconia Additive
by Boranbay Ratov, Volodymyr Mechnik, Edvin Hevorkian, Miroslaw Rucki, Daniel Pieniak, Nikolai Bondarenko, Vasyl Kolodnitskyi, Sergii Starik, Viktor Bilorusets, Volodymyr Chishkala, Perizat Sundetova, Aldabergen Bektilevov, Anar Shukmanova and Askar Seidaliyev
Materials 2025, 18(9), 1965; https://doi.org/10.3390/ma18091965 - 25 Apr 2025
Cited by 1 | Viewed by 821
Abstract
This paper provides deeper insights into the performance of diamond particulate reinforced refractory composites used for cutting tools in the oil and gas industries. In particular, 25Cdiamond–70.5WC–4.5Co composites were enhanced with zirconia additives in proportions of 4 wt.% and 10 wt.% [...] Read more.
This paper provides deeper insights into the performance of diamond particulate reinforced refractory composites used for cutting tools in the oil and gas industries. In particular, 25Cdiamond–70.5WC–4.5Co composites were enhanced with zirconia additives in proportions of 4 wt.% and 10 wt.% via the spark plasma sintering method. Wear tests were performed, and the analyses of elemental composition, morphology, and microstructure were completed. It was found that the addition of yttria-stabilized zirconia increased the plasticity of the matrix and thus introduced the ductile fracture mechanism, reducing the role of abrasive wear. As a result, the specific wear rate was reduced by 44% after the addition of 4 wt.% of zirconia and by 80% with 10 wt.% of ZrO2. The presence of zirconia contributed to the increase in the retention force between the matrix and diamond grits, which further reduced the intensity of the abrasive mechanism. Full article
Show Figures

Figure 1

19 pages, 11831 KiB  
Article
Fabrication of Vitrified Bond Diamond Grinding Wheel via LCD Photopolymerization
by Zhaoqi Chen, Na Xiao, Ping Han, Zhao Wang and Guoju Bai
Coatings 2023, 13(12), 2079; https://doi.org/10.3390/coatings13122079 - 13 Dec 2023
Cited by 6 | Viewed by 2307
Abstract
In this paper, a liquid crystal display (LCD) photopolymerization method is proposed, and a vitrified bond diamond grinding wheel is successfully prepared. A high-performance vitrified bond was obtained by melting SiO2-B2O3-Al2O3-Na2O [...] Read more.
In this paper, a liquid crystal display (LCD) photopolymerization method is proposed, and a vitrified bond diamond grinding wheel is successfully prepared. A high-performance vitrified bond was obtained by melting SiO2-B2O3-Al2O3-Na2O ceramic raw materials and used for grinding wheel preparation. LCD photopolymerization technology is characterized by high precision in shaping, fast processing speed, and superior quality, making it a promising technology for fabricating vitrified bond diamond grinding wheels. The preparation of vitrified bond slurry with high solid content and low viscosity was extensively investigated to meet the fabrication requirements. The effects of dispersant, the particle size of the vitrified bond, and solid content on the viscosity of the slurry were systematically analyzed. The vitrified bond slurry with solid content up to 65 wt.% (approximately 45.5 vol.%) was successfully prepared and met the requirements for printing. Furthermore, we explored the optimal formulation of the grinding wheel, debinding and sintering conditions, sintering temperature, grit-to-bond ratio, and the evaluation of the grinding performance of the wheel on hard and brittle materials, such as silicon carbide ceramic. Vitrified bond and abrasive slurry systems with a solid content of 65 wt.% (approximately 42.8 vol.%) were prepared. The results show that the vitrified bond diamond grinding wheel exhibits optimal comprehensive performance, with a sintering temperature of 680 °C and a grit-to-bond ratio of 4:6. The minimum surface roughness of the workpiece after grinding was 1.767 μm, the material removal rate was 5.08 mg/s, the grinding ratio was 9.78, and the friction coefficient was stabilized at about 0.5 during grinding. This paper guides the manufacturing of vitrified bond diamond grinding wheels via LCD photopolymerization. Full article
(This article belongs to the Special Issue Recent Advances in the Machining of Metals and Composites)
Show Figures

Figure 1

13 pages, 49823 KiB  
Article
Improvement in Abrasive Wear Resistance of Metal Matrix Composites Used for Diamond–Impregnated Tools by Heat Treatment
by Elżbieta Cygan-Bączek, Sławomir Cygan, Piotr Wyżga, Pavel Novák, Ladislav Lapčák and Andrzej Romański
Materials 2023, 16(18), 6198; https://doi.org/10.3390/ma16186198 - 13 Sep 2023
Cited by 2 | Viewed by 1943
Abstract
This work presents the possibilities of producing a substitute for a commercial matrix material for sintered metal–diamond tools which is characterized by increased tribological properties required in machining natural stones and concrete. In this study, the improvement in wear behavior of sintered pre-alloyed [...] Read more.
This work presents the possibilities of producing a substitute for a commercial matrix material for sintered metal–diamond tools which is characterized by increased tribological properties required in machining natural stones and concrete. In this study, the improvement in wear behavior of sintered pre-alloyed matrix caused by a thermal treatment was investigated. Several mixtures made of commercially available powders were homogenized by ball milling and consolidated at 900 °C using the spark plasma sintering (SPS) method. During cooling down, the specimens were subjected to isothermal holding at 350 or 250 °C for 1 h. After consolidation, all specimens were tested for density and hardness, whereas selected specimens were characterized by scanning electron microscopy (SEM) and flexural strength tests. The specimens made of BDCM50 powder (a mixture of the base and pre-alloyed powders in 50:50 proportion) shows excellent properties including σ0.2 = 1045 MPa in the three-point bending test and HV10 ≈ 380. Resistance to abrasive wear evaluated in both three-body and two-body conditions in the MWT abrasion test was estimated at Ai3=18.1±3.9 μm/20 m and  Ai2=95.9±11.8 μm/20 m, respectively. A series of diamond-impregnated specimens (segments) was also produced and tested for wear rate on abrasive concrete. The potential graphitization of the diamond grits was investigated using Raman spectroscopy and X-ray diffraction. As a reference, both the base Fe-Mn-Cu-Sn-C and commercially available Co+20%WC alloy were used to compare selected properties of the investigated materials. It has been proved that heat-treated specimens made of the base mixture modified with pre-alloyed powders are characterized by increased hardness and resistance to abrasive wear. The BDCM50 matrix has a negligible effect on diamond graphitization and shows excellent field performance, which makes it a good potential substitute for replacing Co+20%WC in sintered diamond-impregnated tools. Full article
(This article belongs to the Special Issue Recent Application of Powder Metallurgy Materials)
Show Figures

Figure 1

12 pages, 7291 KiB  
Article
Strengthening Mechanisms and Retention Properties of Sintered Iron-Based Matrix Material for Metallic-Diamond Tools
by Elżbieta Cygan-Bączek and Andrzej Romański
Materials 2023, 16(15), 5307; https://doi.org/10.3390/ma16155307 - 28 Jul 2023
Cited by 2 | Viewed by 1721
Abstract
This work presents the analysis of mechanisms controlling the deformation strengthening of the surface during abrasion and their impact on structural changes and mechanical properties of Fe-Mn-Cu-Sn-C matrix material, which was prepared by means of powder metallurgy (PM). The powder mixture was ball-milled [...] Read more.
This work presents the analysis of mechanisms controlling the deformation strengthening of the surface during abrasion and their impact on structural changes and mechanical properties of Fe-Mn-Cu-Sn-C matrix material, which was prepared by means of powder metallurgy (PM). The powder mixture was ball-milled for 8 h and densified to <1% porosity using hot pressing at 900 °C and 35 MPa. Phases and structural transformations taking place in austenite during plastic deformation were identified. The participation, distribution, and morphology of the phases, as well as the physicomechanical properties of the matrix material, were tested. It has been shown that during grinding, deformation twins are generated in areas where an austenitic microstructure is present. To test the ability of the matrix to keep diamond crystals firmly cylindrical (Ø11.3 mm× 5 mm), diamond-impregnated specimens containing diamond grits of 30/40 mesh in size and at a concentration of 20 (5% vol.) were prepared. It was finally determined by the diamond-retention index, which is the number of retained diamond particles compared to the total number of diamond particles and the pullouts on the working surface of the segment. This research shows that materials containing Ti- and Si-coated diamond particles, deposited by the CVD method, have the highest abrasion resistance and, therefore, have the best retention properties. In order to determine the bonding mechanism at the matrix–diamond interface, specimens were also analyzed by SEM and TEM. Full article
(This article belongs to the Special Issue Recent Application of Powder Metallurgy Materials)
Show Figures

Figure 1

20 pages, 5797 KiB  
Article
Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization
by Damien Sicard, Pascal Briois, Alain Billard, Jérôme Thevenot, Eric Boichut, Julien Chapellier and Frédéric Bernard
Appl. Sci. 2022, 12(24), 12606; https://doi.org/10.3390/app122412606 - 8 Dec 2022
Cited by 7 | Viewed by 3670
Abstract
Diamond grinding wheels (DGWs) have a central role in cutting-edge industries such as aeronautics or defense and spatial applications. Characterizations of DGWs are essential to optimize the design and machining performance of such cutting tools. Thus, the critical issue of DGW characterization lies [...] Read more.
Diamond grinding wheels (DGWs) have a central role in cutting-edge industries such as aeronautics or defense and spatial applications. Characterizations of DGWs are essential to optimize the design and machining performance of such cutting tools. Thus, the critical issue of DGW characterization lies in the detection of diamond grits. However, the traditional diamond detection methods rely on manual operations on DGW images. These methods are time-consuming, error-prone and inaccurate. In addition, the manual detection of diamond grits remains challenging even for a subject expert. To overcome these shortcomings, we introduce a deep learning approach for automatic diamond grit segmentation. Due to our small dataset of 153 images, the proposed approach leverages transfer learning techniques with pre-trained ResNet34 as an encoder of U-Net CNN architecture. Moreover, with more than 8600 hyperparameter combinations in our model, manually finding the best configuration is impossible. That is why we use a Bayesian optimization algorithm using Hyperband early stopping mechanisms to automatically explore the search space and find the best hyperparameter values. Moreover, considering our small dataset, we obtain overall satisfactory performance with over 53% IoU and 69% F1-score. Finally, this work provides a first step toward diamond grinding wheel characterization by using a data-driven approach for automatic semantic segmentation of diamond grits. Full article
Show Figures

Figure 1

15 pages, 5561 KiB  
Article
Machining Performance for Ultrasonic-Assisted Magnetic Abrasive Finishing of a Titanium Alloy: A Comparison with Magnetic Abrasive Finishing
by Fujian Ma, Ziguang Wang, Yu Liu, Zhihua Sha and Shengfang Zhang
Machines 2022, 10(10), 902; https://doi.org/10.3390/machines10100902 - 6 Oct 2022
Cited by 8 | Viewed by 2478
Abstract
Titanium alloys are widely used in aerospace, the military industry, electronics, automotive fields, etc., due to their excellent properties such as low density, high strength, high-temperature resistance, and corrosion resistance. Many components need to be finished precisely after being cut in these applications. [...] Read more.
Titanium alloys are widely used in aerospace, the military industry, electronics, automotive fields, etc., due to their excellent properties such as low density, high strength, high-temperature resistance, and corrosion resistance. Many components need to be finished precisely after being cut in these applications. In order to achieve high-quality and high-efficiency finishing of titanium alloys, ultrasonic-assisted magnetic abrasive finishing (UAMAF) was introduced in this research. The machining performance for UAMAF of a titanium alloy was studied by experimentally comparing UAMAF and magnetic abrasive finishing (MAF). The results show that the cutting force of UAMAF can reach 2 to 4 times that of MAF, and it decreases rapidly with the increase in the machining gap due to the energy loss of ultrasonic impact in the transmission between magnetic abrasives. The surface roughness of UAMAF can reach about Ra 0.075 μm, which is reduced by about 59% compared with MAF. The main wear type of the magnetic abrasive is that the diamond grits fell off the magnetic abrasive in both UAMAF and MAF. The uniform wear of the magnetic abrasive is realized, and the utilization ratio of the magnetic abrasive is obviously improved in UAMAF. Full article
(This article belongs to the Special Issue High Precision Abrasive Machining: Machines, Processes and Systems)
Show Figures

Figure 1

29 pages, 8830 KiB  
Article
Modelling and Analysis of Topographic Surface Properties of Grinding Wheels
by Praveen Sridhar, Daniel Mannherz and Kristin M. de Payrebrune
J. Manuf. Mater. Process. 2021, 5(4), 121; https://doi.org/10.3390/jmmp5040121 - 10 Nov 2021
Cited by 4 | Viewed by 3994
Abstract
Grinding is one of the effective manufacturing processes with which to produce highly accurate parts with an ultra-fine surface finish. The tool used to remove materials in grinding is called the grinding wheel. Abrasive grains made of extremely hard materials (alumina, silica, cubic [...] Read more.
Grinding is one of the effective manufacturing processes with which to produce highly accurate parts with an ultra-fine surface finish. The tool used to remove materials in grinding is called the grinding wheel. Abrasive grains made of extremely hard materials (alumina, silica, cubic boron nitride, and diamond) having a definite grit size but a random shape are bonded on the circumferential surface of the grinding wheel. The fabrication process is controlled so that the wheel exhibits a prescribed structure (in the scale of soft to hard). At the same time, the distribution of grains must follow a prescribed grade (in the scale of dense to open). After the fabrication, the wheel is dressed to make sure of its material removal effectiveness, which itself depends on the surface topography. The topography is quantified by the distribution and density of active abrasive grains located on the circumferential surface, the grains’ protrusion heights, and their pore volume ratio. The prediction of the surface topography mentioned above requires a model that considers the entire manufacturing process and the influences on the grinding wheel properties. This study fills this gap in modelling the grinding wheel by presenting a surface topography model and simulation framework for the effect of the grinding wheel fabrication process on the surface topography. The simulation results have been verified by conducting experiments. This study will thus help grinding wheel manufacturers in developing more effective grinding wheels. Full article
Show Figures

Figure 1

23 pages, 29813 KiB  
Article
CNC Edge Finishing of Granite: Effect of Machining Conditions on Part Quality, Cutting Forces, and Particle Emissions
by Haithem Bahri, Victor Songmene, Jules Kouam, Agnes Marie Samuel and Fawzy Hosny Samuel
Materials 2021, 14(21), 6496; https://doi.org/10.3390/ma14216496 - 29 Oct 2021
Cited by 4 | Viewed by 3007
Abstract
Edge finishing is a shaping process that is extremely important in the granite and marble processing industries. It does not only shape the edge but also makes it shiny and durable. However, this process generates dust (fine and ultrafine particles) that can have [...] Read more.
Edge finishing is a shaping process that is extremely important in the granite and marble processing industries. It does not only shape the edge but also makes it shiny and durable. However, this process generates dust (fine and ultrafine particles) that can have a significant impact on air quality in the workshop and can put workers’ health at risk. While environmental requirements and occupational health and safety regulations are becoming increasingly stringent, at the same time, industries must continue to produce quality parts at competitive prices. The purpose of this study was to examine the surface quality, the cutting forces, and the emission of fine (FP) and ultrafine (UFP) particles during wet and dry edge finishing of granite edges as a function of the machining parameters and abrasive grit sizes. Three machining operations were investigated: roughing, semi-finishing, and finishing, using diamond abrasives (with grit sizes 45, 150, 300, 600, 1500, and 3000). The experiments were carried out on two granites, one being black and the other white. The tested spindle speeds ranged from 1500 rpm to 3500 rpm and the feed rates from 500–1500 mm/min. It was found that roughing operations produce more fine particles while finishing operations produce more ultrafine particles. These particle emissions, as well as the part quality and the cutting forces are strongly dependent on cutting speed and on the grit size of the abrasive used. Full article
(This article belongs to the Special Issue Machining and Machinability of Advanced Materials and Composites)
Show Figures

Figure 1

13 pages, 11575 KiB  
Article
Novel Abrasive-Impregnated Pads and Diamond Plates for the Grinding and Lapping of Single-Crystal Silicon Carbide Wafers
by Ming-Yi Tsai, Kun-Ying Li and Sun-Yu Ji
Appl. Sci. 2021, 11(4), 1783; https://doi.org/10.3390/app11041783 - 17 Feb 2021
Cited by 7 | Viewed by 4641
Abstract
In this study, special ceramic grinding plates impregnated with diamond grit and other abrasives, as well as self-made lapping plates, were used to prepare the surface of single-crystal silicon carbide (SiC) wafers. This novel approach enhanced the process and reduced the final chemical [...] Read more.
In this study, special ceramic grinding plates impregnated with diamond grit and other abrasives, as well as self-made lapping plates, were used to prepare the surface of single-crystal silicon carbide (SiC) wafers. This novel approach enhanced the process and reduced the final chemical mechanical planarization (CMP) polishing time. Two different grinding plates with pads impregnated with mixed abrasives were prepared: one with self-modified diamond + SiC and a ceramic binder and one with self-modified diamond + SiO2 + Al2O3 + SiC and a ceramic binder. The surface properties and removal rate of the SiC substrate were investigated and a comparison with the traditional method was conducted. The experimental results showed that the material removal rate (MRR) was higher for the SiC substrate with the mixed abrasive lapping plate than for the traditional method. The grinding wear rate could be reduced by 31.6%. The surface roughness of the samples polished using the diamond-impregnated lapping plate was markedly better than that of the samples polished using the copper plate. However, while the surface finish was better and the grinding efficiency was high, the wear rate of the mixed abrasive-impregnated polishing plates was high. This was a clear indication that this novel method was effective and could be used for SiC grinding and lapping. Full article
Show Figures

Figure 1

14 pages, 2789 KiB  
Article
Use of Waste from Granite Gang Saws to Manufacture Ultra-High Performance Concrete Reinforced with Steel Fibers
by Fernando López Gayarre, Jesús Suárez González, Iñigo Lopez Boadella, Carlos López-Colina Pérez and Miguel Serrano López
Appl. Sci. 2021, 11(4), 1764; https://doi.org/10.3390/app11041764 - 17 Feb 2021
Cited by 3 | Viewed by 3406
Abstract
The purpose of this study is to analyze the feasibility of using the ultra-fine waste coming from the granite cutting waste gang saws (GCW-GS) to manufacture ultra-high performance, steel-fiber reinforced concrete (UHPFRC). These machines cut granite blocks by abrasion using a steel blade [...] Read more.
The purpose of this study is to analyze the feasibility of using the ultra-fine waste coming from the granite cutting waste gang saws (GCW-GS) to manufacture ultra-high performance, steel-fiber reinforced concrete (UHPFRC). These machines cut granite blocks by abrasion using a steel blade and slurry containing fine steel grit. The waste generated by gang saws (GCW-GS) contains up to 15% Fe2O3 and up to 5% CaO. This is the main difference from the waste produced by diamond saws (GCW-D). Although this waste is available in large quantities, there are very few studies focused on recycling it to manufacture any kind of concrete. In this study, the replaced material was the micronized quartz powder of natural origin used in the manufacture of UHPRFC. The properties tested include workability, density, compressive strength, elasticity modulus, flexural strength, and tensile strength. The final conclusion is that this waste can be used to manufacture UHPFRC with a better performance than that from diamond saws given that there is an improvement of their mechanical properties up to a replacement of 35%. Even for higher percentages, the mechanical properties are within values close to those of control concrete with small decreases. Full article
(This article belongs to the Special Issue Recycling Applications of Construction Materials)
Show Figures

Figure 1

12 pages, 3370 KiB  
Article
Removal Characteristics of Sapphire Lapping using Composite Plates with Consciously Patterned Resinoid-Bonded Semifixed Diamond Grits
by Wenshan Wang, Yiqing Yu, Zhongwei Hu, Congfu Fang, Jing Lu and Xipeng Xu
Crystals 2020, 10(4), 293; https://doi.org/10.3390/cryst10040293 - 11 Apr 2020
Cited by 6 | Viewed by 3309
Abstract
Sapphire lapping is of key importance for the successful planarization of wafers that are widely present in electronic devices. However, the high hardness of sapphire makes it extremely challenging to improve its material removal rate during the lapping process without compromising surface quality [...] Read more.
Sapphire lapping is of key importance for the successful planarization of wafers that are widely present in electronic devices. However, the high hardness of sapphire makes it extremely challenging to improve its material removal rate during the lapping process without compromising surface quality and dimensional accuracy. In this work, a novel composite lapping plate consisting of a rigid resin frame and flexible sol–gel balls was fabricated with consciously designed patterns. Through lapping experiment, it was revealed that the diamond grits imbedded in the sol–gel balls can effectively lap the sapphire at a promising material removal rate (MRR), without the formation of undesirable scratches and loss of surface integrity. Moreover, by designing the arrangement patterns of sol–gel balls, the total thickness variation (TTV) can also be ensured for lapped sapphire substrates. The implications of experimental results were also discussed based on the trajectory analysis and contact mechanics of lapping grits in order to demonstrate the potential of the newly developed composite abrasive tools for sapphire-lapping applications. Full article
(This article belongs to the Special Issue Sustainable Approach in Synthetic Ceramic Materials)
Show Figures

Figure 1

15 pages, 4651 KiB  
Article
Variable Smear Layer and Adhesive Application: The Pursuit of Clinical Relevance in Bond Strength Testing
by Abu Faem Mohammad Almas Chowdhury, Rafiqul Islam, Arefin Alam, Mariko Matsumoto, Monica Yamauti, Ricardo Marins Carvalho and Hidehiko Sano
Int. J. Mol. Sci. 2019, 20(21), 5381; https://doi.org/10.3390/ijms20215381 - 29 Oct 2019
Cited by 25 | Viewed by 5736
Abstract
The removal or modification of smear layers that cover the dentin is critical to allow the penetration of adhesive molecules and to ensure a strong bond between resin and dentin. Aiming to establish a model for clinically-relevant dentin-bond testing, we evaluated the effects [...] Read more.
The removal or modification of smear layers that cover the dentin is critical to allow the penetration of adhesive molecules and to ensure a strong bond between resin and dentin. Aiming to establish a model for clinically-relevant dentin-bond testing, we evaluated the effects of smear layers created by abrasives having similar coarseness (180-grit SiC paper; fine-grit diamond bur) and application modes (single application; double application) on the microtensile bond strengths (µTBS) of two currently available universal adhesives (G-Premio Bond; Scotchbond Universal Adhesive) and a two-step self-etch adhesive (Clearfil Megabond 2). Sixty extracted human third molars were used for the μTBS test. Data were analyzed by three-way ANOVA and Tukey’s test (α = 0.05). Fracture modes were determined using stereomicroscopy. An additional 24 third molars were prepared for observation of the resin–dentin interface by TEM and adhesive-smear layer interaction by SEM. μTBS was significantly affected by the adhesives and their application modes (p < 0.001), implying that the double application of universal adhesives should be recommended to improve their performance. The effect of smear layers was not significant (p > 0.05), indicating that 180-grit SiC papers could be used to prepare dentin as a substitute for fine-grit diamond burs for dentin-bond testing in laboratory settings. Full article
(This article belongs to the Special Issue Wet Adhesion: New Chemistries, Models and Translation to Materials)
Show Figures

Figure 1

17 pages, 8005 KiB  
Article
Investigation on an Innovative Method for High-Speed Low-Damage Micro-Cutting of CFRP Composites with Diamond Dicing Blades
by Zewei Yuan, Jintao Hu, Quan Wen, Kai Cheng and Peng Zheng
Materials 2018, 11(10), 1974; https://doi.org/10.3390/ma11101974 - 13 Oct 2018
Cited by 21 | Viewed by 6657
Abstract
This paper presents an innovative method for high-speed micro-cutting of carbon fiber reinforced plastics (CFRP). It employs a diamond dicing blade for micromachining applications, with a thickness of about 200 μm and rotational speeds up to 30,000 rpm so as to meet the [...] Read more.
This paper presents an innovative method for high-speed micro-cutting of carbon fiber reinforced plastics (CFRP). It employs a diamond dicing blade for micromachining applications, with a thickness of about 200 μm and rotational speeds up to 30,000 rpm so as to meet the low-damage surface integrity requirements. The process parameters, cutting damage, surface roughness, and the spindle vibration were thoroughly investigated to evaluate and validate the method. The results indicate that a high cutting speed up to 76 m/s not only remarkably increases the rigidity of an ultra-thin dicing blade, but also decreases the cutting depth per diamond grit to below 10 nm, both of which are very conducive to obtaining a very fine machined surface of about Ra 0.025 μm, with no obvious damage, such as delamination, burrs, and fiber pull out. The serious spindle vibration limits the rotational speed to increase further, and the rotational speed of 25,000 rpm achieves the best fine machined surface. Furthermore, unlike most research results of the drilling and milling method, the proposed micro-cutting method obtains the maximum cutting current and surface roughness when cutting at 0° fiber orientation, while obtaining a minimum cutting current and surface roughness when cutting at 90° fiber orientation. The metal-bonded dicing blade achieves smaller surface roughness than the resin-bonded dicing blade. This paper also discusses the cutting mechanism by investigating the morphology of the machined surface and concludes that the micro breakage and plastic-flow in local regions of fibers and resin are the main material removal mechanisms for dicing CFRP composites with a diamond abrasive blade. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop