Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = detection of CWA simulants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1686 KB  
Article
Trace Detection of Di-Isopropyl Methyl Phosphonate DIMP, a By-Product, Precursor, and Simulant of Sarin, Using Either Ion Mobility Spectrometry or GC-MS
by Victor Bocoș-Bințințan, Paul-Flaviu Bocoș-Bințințan, Tomáš Rozsypal and Mihail Simion Beldean-Galea
Toxics 2025, 13(2), 102; https://doi.org/10.3390/toxics13020102 - 28 Jan 2025
Cited by 1 | Viewed by 1187
Abstract
Di-isopropyl methyl phosphonate (DIMP) has no major commercial uses but is a by-product or a precursor in the synthesis of the nerve agent sarin (GB). Also, DIMP is utilized as a simulant compound for the chemical warfare agents sarin and soman in order [...] Read more.
Di-isopropyl methyl phosphonate (DIMP) has no major commercial uses but is a by-product or a precursor in the synthesis of the nerve agent sarin (GB). Also, DIMP is utilized as a simulant compound for the chemical warfare agents sarin and soman in order to test and calibrate sensitive IMS instrumentation that warns against the deadly chemical weapons. DIMP was measured from 2 ppbv (15 μg m−3) to 500 ppbv in the air using a pocket-held ToF ion mobility spectrometer, model LCD-3.2E, with a non-radioactive ionization source and ammonia doping in positive ion mode. Excellent sensitivity (LoD of 0.24 ppbv and LoQ of 0.80 ppbv) was noticed; the linear response was up to 10 ppbv, while saturation occurred at >500 ppbv. DIMP identification by IMS relies on the formation of two distinct peaks: the monomer M·NH4+, with a reduced ion mobility K0 = 1.41 cm2 V−1 s−1, and the dimer M2·NH4+, with K0 = 1.04 cm2 V−1 s−1 (where M is the DIMP molecule); positive reactant ions (Pos RIP) have K0 = 2.31 cm2 V−1 s−1. Quantification of DIMP at trace levels was also achieved by GC-MS over the concentration range of 1.5 to 150 μg mL−1; using a capillary column (30 m × 0.25 mm × 0.25 μm) with a TG-5 SilMS stationary phase and temperature programming from 60 to 110 °C, DIMP retention time (RT) was ca. 8.5 min. The lowest amount of DIMP measured by GC-MS was 1.5 ng, with an LoD of 0.21 μg mL−1 and an LoQ of 0.62 μg mL−1 DIMP. Our results demonstrate that these methods provide robust tools for both on-site and off-site detection and quantification of DIMP at trace levels, a finding which has significant implications for forensic investigations of chemical agent use and for environmental monitoring of contamination by organophosphorus compounds. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

9 pages, 2073 KB  
Article
A Liquid Metal Balloon for the Exfoliation of an Ultrathin and Uniform Gallium Oxide Layer
by Anar Zhexembekova, Seongyeop Lim, Cheongha Lee, Yun-Tae Kim and Chang Young Lee
Molecules 2024, 29(24), 5894; https://doi.org/10.3390/molecules29245894 - 13 Dec 2024
Cited by 2 | Viewed by 1546
Abstract
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium–indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) [...] Read more.
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium–indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on Ga2O3 provides a versatile platform for device fabrication. As an example application, we fabricated a chemiresistive gas sensor for detecting simulants of chemical warfare agents (CWAs), including diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), and triethyl phosphate (TEP). The sensor exhibited reversible responses, high sensitivity, and low limits of detection (13 ppb for DIMP, 28 ppb for DMMP, and 53 ppb for TEP). These findings highlight the potential of Ga2O3 films derived from liquid metal balloons for integrating CNTs into functional electronic devices. Full article
(This article belongs to the Special Issue Synthesis and Application of Multifunctional Nanocomposites)
Show Figures

Figure 1

26 pages, 6242 KB  
Article
Wireless Sensor Node for Chemical Agent Detection
by Zabdiel Brito-Brito, Jesús Salvador Velázquez-González, Fermín Mira, Antonio Román-Villarroel, Xavier Artiga, Satyendra Kumar Mishra, Francisco Vázquez-Gallego, Jung-Mu Kim, Eduardo Fontana, Marcos Tavares de Melo and Ignacio Llamas-Garro
Chemosensors 2024, 12(9), 185; https://doi.org/10.3390/chemosensors12090185 - 11 Sep 2024
Viewed by 1949
Abstract
In this manuscript, we present in detail the design and implementation of the hardware and software to produce a standalone wireless sensor node, called SensorQ system, for the detection of a toxic chemical agent. The proposed wireless sensor node prototype is composed of [...] Read more.
In this manuscript, we present in detail the design and implementation of the hardware and software to produce a standalone wireless sensor node, called SensorQ system, for the detection of a toxic chemical agent. The proposed wireless sensor node prototype is composed of a micro-controller unit (MCU), a radio frequency (RF) transceiver, a dual-band antenna, a rechargeable battery, a voltage regulator, and four integrated sensing devices, all of them integrated in a package with final dimensions and weight of 200 × 80 × 60 mm and 0.422 kg, respectively. The proposed SensorQ prototype operates using the Long-Range (LoRa) wireless communication protocol at 2.4 GHz, with a sensor head implemented on a hetero-core fiber optic structure supporting the surface plasmon resonance (SPR) phenomenon with a sensing section (L = 10 mm) coated with titanium/gold/titanium and a chemically sensitive material (zinc oxide) for the detection of Di-Methyl Methyl Phosphonate (DMMP) vapor in the air, a simulant of the toxic nerve agent Sarin. The transmitted spectra with respect to different concentrations of DMMP vapor in the air were recorded, and then the transmitted power for these concentrations was calculated at a wavelength of 750 nm. The experimental results indicate the feasibility of detecting DMMP vapor in air using the proposed optical sensor head, with DMMP concentrations in the air of 10, 150, and 150 ppm in this proof of concept. We expect that the sensor and wireless sensor node presented herein are promising candidates for integration into a wireless sensor network (WSN) for chemical warfare agent (CWA) detection and contaminated site monitoring without exposure of armed forces. Full article
Show Figures

Figure 1

12 pages, 3216 KB  
Article
Toward Remote Detection of Chemical Warfare Simulants Using a Miniature Potentiostat
by Amer Dawoud, Rashid Mia, Jesy Alka Motchaalangaram, Wujian Miao and Karl Wallace
Micro 2024, 4(1), 49-60; https://doi.org/10.3390/micro4010004 - 22 Jan 2024
Cited by 1 | Viewed by 2424
Abstract
A miniaturized electrochemical sensor was developed for the remote detection of chemical warfare agent (CWA) simulants. To facilitate drone-based remote sensing, this present study focuses on advancing the miniaturized and compact electrochemical sensor for monitoring two CWA simulants, diisopropyl fluorophosphate (DFP) and O,S-diethylmethylphosphonothioate [...] Read more.
A miniaturized electrochemical sensor was developed for the remote detection of chemical warfare agent (CWA) simulants. To facilitate drone-based remote sensing, this present study focuses on advancing the miniaturized and compact electrochemical sensor for monitoring two CWA simulants, diisopropyl fluorophosphate (DFP) and O,S-diethylmethylphosphonothioate (O,S-DEMPT). The differential pulse voltammetry (DPV) signal was processed, and the DPV signature features were extracted on the basis of the redox properties associated with the absence and the presence of DFP and O,S-DEMPT. Upon the addition of 0.10 equivalence of DFP or O,S-DEMPT, a shift in potential (E) of ~0.13 V was recorded. The limit of detection (LOD) was calculated to be 0.25 µM (0.046 ppm) and 0.10 µM (0.017 ppm) for DFP and O,S-DEMPT, respectively. These results were validated using a portable Palmsens Emstat HR potentiostat, which corroborated the results obtained using a lab benchtop potentiostat. Additionally, Boolean logic (“AND” operation) was implemented for future drone technology deployment. This advancement enables the fabrication of a networked device capable of autonomously executing tasks without constant oversight. Full article
Show Figures

Figure 1

11 pages, 3322 KB  
Article
High Performance and Reusable SAW Sensor Coated with Thiourea-Decorated POSS with Different Functional Groups for DMMP Detection
by Bong-Gyu Bae, Hee-Chan Jang, Hyeong-Seon Choi, Young-Jun Lee and Joo-Hyung Kim
Coatings 2023, 13(2), 348; https://doi.org/10.3390/coatings13020348 - 2 Feb 2023
Cited by 4 | Viewed by 2042
Abstract
A colorless, odorless G nerve agent, a type of chemical transfer agent (CWA) that causes significant loss of life, is being studied for quick and accurate detection. In this study, detection materials with different functional groups were synthesized based on thiourea (TU)-decorated polyhedral [...] Read more.
A colorless, odorless G nerve agent, a type of chemical transfer agent (CWA) that causes significant loss of life, is being studied for quick and accurate detection. In this study, detection materials with different functional groups were synthesized based on thiourea (TU)-decorated polyhedral oligomeric silsesquioxane (POSS) to study the most suitable material for the detection of dimethyl methylphosphonate (DMMP), a simulant of neural agents. The sensing material was coated on a SAW sensor with a resonance frequency of 250 MHz based on ST-quartz, the DMMP exposure experiment was conducted, and the performance of the sensing material was compared through frequency shift before and after exposure. Coating materials with excellent reactivity with DMMP and appropriate coating concentration for each material were identified at a concentration of 10 ppm. Among them, POSS-TU with 3,5-bis(trifluoromethyl)phenyl as a functional group showed the largest frequency shift characteristics, and it was used in low concentration (1, 5, and 10 ppm) DMMP detection experiments to confirm linear frequency shift characteristics according to low concentration. Finally, through a selectivity experiment with other gases, it was confirmed that the amount of frequency shift in other gases except DMMP was small, making it an excellent DMMP sensing material. Full article
(This article belongs to the Special Issue Coatings and Interfaces II)
Show Figures

Figure 1

19 pages, 8530 KB  
Article
Synthesis and Characterization of MnO2@Cellulose and Polypyrrole-Decorated MnO2@Cellulose for the Detection of Chemical Warfare Agent Simulant
by Sanjeeb Lama, Sumita Subedi, Sivalingam Ramesh, Kyeongho Shin, Young-Jun Lee and Joo-Hyung Kim
Materials 2022, 15(20), 7313; https://doi.org/10.3390/ma15207313 - 19 Oct 2022
Cited by 5 | Viewed by 2643
Abstract
Chemical warfare agents (CWAs) have been threatening human civilization and its existence because of their rapid response, toxic, and irreversible nature. The hybrid nanostructured composites were synthesized by the hydrothermal process to detect the dimethyl methyl phosphonate (DMMP), a simulant of G-series nerve [...] Read more.
Chemical warfare agents (CWAs) have been threatening human civilization and its existence because of their rapid response, toxic, and irreversible nature. The hybrid nanostructured composites were synthesized by the hydrothermal process to detect the dimethyl methyl phosphonate (DMMP), a simulant of G-series nerve agents, especially sarin. Cellulose (CE), manganese oxide cellulose (MnO2@CE), and MnO2@CE/polypyrrole (PPy) exhibited a frequency shift of 0.4, 4.8, and 8.9 Hz, respectively, for a DMMP concentration of 25 ppm in the quartz crystal microbalance (QCM). In surface acoustic wave (SAW) sensor, they exhibited 187 Hz, 276 Hz, and 78 Hz, respectively. A comparison between CE, MnO2@CE, and MnO2@CE/PPy demonstrated that MnO2@CE/PPy possesses excellent linearity with a coefficient of determination (COD or R2) of 0.992 and 0.9547 in the QCM and SAW sensor. The hybrid composite materials showed a reversible adsorption and desorption phenomenon in the reproducibility test. The response and recovery times indicated that MnO2@CE/PPy showed the shortest response (~23 s) and recovery times (~42 s) in the case of the QCM sensor. Hence, the pristine CE and its nanostructured composites were compared to analyze the sensing performance based on sensitivity, selectivity, linearity, reproducibility, and response and recovery times to detect the simulant of nerve agents. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

22 pages, 3802 KB  
Review
Acoustic Wave Sensors for Detection of Blister Chemical Warfare Agents and Their Simulants
by Michał Grabka, Zygfryd Witkiewicz, Krzysztof Jasek and Krzysztof Piwowarski
Sensors 2022, 22(15), 5607; https://doi.org/10.3390/s22155607 - 27 Jul 2022
Cited by 20 | Viewed by 3722
Abstract
On-site detection and initial identification of chemical warfare agents (CWAs) remain difficult despite the many available devices designed for this type of analysis. Devices using well-established analytical techniques such as ion mobility spectrometry, gas chromatography coupled with mass spectrometry, or flame photometry, in [...] Read more.
On-site detection and initial identification of chemical warfare agents (CWAs) remain difficult despite the many available devices designed for this type of analysis. Devices using well-established analytical techniques such as ion mobility spectrometry, gas chromatography coupled with mass spectrometry, or flame photometry, in addition to unquestionable advantages, also have some limitations (complexity, high unit cost, lack of selectivity). One of the emerging techniques of CWA detection is based on acoustic wave sensors, among which surface acoustic wave (SAW) devices and quartz crystal microbalances (QCM) are of particular importance. These devices allow for the construction of undemanding and affordable gas sensors whose selectivity, sensitivity, and other metrological parameters can be tailored by application of particular coating material. This review article presents the current state of knowledge and achievements in the field of SAW and QCM-based gas sensors used for the detection of blister agents as well as simulants of these substances. The scope of the review covers the detection of blister agents and their simulants only, as in the available literature no similar paper was found, in contrast to the detection of nerve agents. The article includes description of the principles of operation of acoustic wave sensors, a critical review of individual studies and solutions, and discusses development prospects of this analytical technique in the field of blister agent detection. Full article
Show Figures

Figure 1

11 pages, 5369 KB  
Letter
SAW Chemical Array Device Coated with Polymeric Sensing Materials for the Detection of Nerve Agents
by Jinuk Kim, Hyewon Park, Jihyun Kim, Byung-Il Seo and Joo-Hyung Kim
Sensors 2020, 20(24), 7028; https://doi.org/10.3390/s20247028 - 8 Dec 2020
Cited by 20 | Viewed by 3451
Abstract
G nerve agents are colorless, odorless, and lethal chemical warfare agents (CWAs). The threat of CWAs, which cause critical damage to humans, continues to exist, e.g., in warfare or terrorist attacks. Therefore, it is important to be able to detect these agents rapidly [...] Read more.
G nerve agents are colorless, odorless, and lethal chemical warfare agents (CWAs). The threat of CWAs, which cause critical damage to humans, continues to exist, e.g., in warfare or terrorist attacks. Therefore, it is important to be able to detect these agents rapidly and with a high degree of sensitivity. In this study, a surface acoustic wave (SAW) array device with three SAW sensors coated with different sensing materials and one uncoated sensor was tested to determine the most suitable material for the detection of nerve agents and related simulants. The three materials used were polyhedral oligomeric silsesquioxane (POSS), 1-benzyl-3-phenylthiourea (TU-1), and 1-ethyl-3-(4-fluorobenzyl) thiourea (TU-2). The SAW sensor coated with the POSS-based polymer showed the highest sensitivity and the fastest response time at concentrations below the median lethal concentration (LCt50) for tabun (GA) and sarin (GB). Also, it maintained good performance over the 180 days of exposure tests for dimethyl methylphosphonate (DMMP). A comparison of the sensitivities of analyte vapors also confirmed that the sensitivity for DMMP was similar to that for GB. Considering that DMMP is a simulant which physically and chemically resembles GB, the sensitivity to a real agent of the sensor coated with POSS could be predicted. Therefore, POSS, which has strong hydrogen bond acid properties and which showed similar reaction characteristics between the simulant and the nerve agent, can be considered a suitable material for nerve agent detection. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

13 pages, 6093 KB  
Article
Detection of Organophosphorous Chemical Agents with CuO-Nanorod-Modified Microcantilevers
by Laurent Schlur, Pierre Agostini, Guillaume Thomas, Geoffrey Gerer, Jacques Grau and Denis Spitzer
Sensors 2020, 20(4), 1061; https://doi.org/10.3390/s20041061 - 15 Feb 2020
Cited by 11 | Viewed by 3198
Abstract
Microcantilevers are really promising sensitive sensors despite their small surface. In order to increase this surface and consequently their sensitivity, we nanostructured them with copper oxide (CuO) nanorods. The synthesis of the nanostructure consists of the oxidation of a copper layer deposited beforehand [...] Read more.
Microcantilevers are really promising sensitive sensors despite their small surface. In order to increase this surface and consequently their sensitivity, we nanostructured them with copper oxide (CuO) nanorods. The synthesis of the nanostructure consists of the oxidation of a copper layer deposited beforehand on the surface of the sample. The oxidation is performed in an alkaline solution containing a mixture of Na(OH) and (NH4)2S2O8. The synthesis procedure was first optimized on a silicon wafer, then transferred to optical cantilever-based sensors. This transfer requires specific synthesis modifications in order to cover all the cantilever with nanorods. A masking procedure was specially developed and the copper layer deposition was also optimized. These nanostructured cantilevers were engineered in order to detect vapors of organophosphorous chemical warfare agents (CWA). The nanostructured microcantilevers were exposed to various concentration of dimethyl methylphosphonate (DMMP) which is a well-known simulant of sarin (GB). The detection measurements showed that copper oxide is able to detect DMMP via hydrogen interactions. The results showed also that the increase of the microcantilever surface with the nanostructures improves the sensors efficiency. The evolution of the detection performances of the CuO nanostructured cantilevers with the DMMP concentration was also evaluated. Full article
(This article belongs to the Special Issue Metal Oxide Based Sensors)
Show Figures

Figure 1

16 pages, 661 KB  
Article
A Monolithically-Integrated μGC Chemical Sensor System
by Ronald P. Manginell, Joseph M. Bauer, Matthew W. Moorman, Lawrence J. Sanchez, John M. Anderson, Joshua J. Whiting, Daniel A. Porter, Davor Copic and Komandoor E. Achyuthan
Sensors 2011, 11(7), 6517-6532; https://doi.org/10.3390/s110706517 - 24 Jun 2011
Cited by 51 | Viewed by 11549
Abstract
Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A [...] Read more.
Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC) system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%. Full article
(This article belongs to the Special Issue Ultra-Small Sensor Systems and Components)
Show Figures

Graphical abstract

Back to TopTop