Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = desiccant dust

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 17646 KiB  
Article
Dust Events over the Urmia Lake Basin, NW Iran, in 2009–2022 and Their Potential Sources
by Abbas Ranjbar Saadat Abadi, Karim Abdukhakimovich Shukurov, Nasim Hossein Hamzeh, Dimitris G. Kaskaoutis, Christian Opp, Lyudmila Mihailovna Shukurova and Zahra Ghasabi
Remote Sens. 2024, 16(13), 2384; https://doi.org/10.3390/rs16132384 - 28 Jun 2024
Cited by 5 | Viewed by 1899
Abstract
Nowadays, dried lake beds constitute the largest source of saline dust storms, with serious environmental and health issues in the surrounding areas. In this study, we examined the spatial–temporal distribution of monthly and annual dust events of varying intensity (dust in suspension, blowing [...] Read more.
Nowadays, dried lake beds constitute the largest source of saline dust storms, with serious environmental and health issues in the surrounding areas. In this study, we examined the spatial–temporal distribution of monthly and annual dust events of varying intensity (dust in suspension, blowing dust, dust storms) in the vicinity of the desiccated Urmia Lake in northwestern (NW) Iran, based on horizontal visibility data during 2009–2022. Dust in suspension, blowing dust and dust storm events exhibited different monthly patterns, with higher frequencies between March and October, especially in the southern and eastern parts of the Urmia Basin. Furthermore, the intra-annual variations in aerosol optical depth at 500 nm (AOD550) and Ångström exponent at 412/470 nm (AE) were investigated using Terra/Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) data over the Urmia Lake Basin (36–39°N, 44–47°E). Monthly distributions of potential coarse aerosol (AE < 1) sources affecting the lower troposphere over the Urmia Basin were reconstructed, synergizing Terra/Aqua MODIS AOD550 for AE < 1 values and HYSPLIT_4 backward trajectories. The reconstructed monthly patterns of the potential sources were compared with the monthly spatial distribution of Terra MODIS AOD550 in the Middle East and Central Asia (20–70°E, 20–50°N). The results showed that deserts in the Middle East and the Aral–Caspian arid region (ACAR) mostly contribute to dust aerosol load over the Urmia Lake region, exhibiting higher frequency in spring and early summer. Local dust sources from dried lake beds further contribute to the dust AOD, especially in the western part of the Urmia Basin during March and April. The modeling (DREAM8-NMME-MACC) results revealed high concentrations of near-surface dust concentrations, which may have health effects on the local population, while distant sources from the Middle East are the main controlling factors to aerosol loading over the Urmia Basin. Full article
Show Figures

Figure 1

21 pages, 27022 KiB  
Article
Microorganisms Isolated from Saharan Dust Intrusions in the Canary Islands and Processes of Mineral Atmospherogenesis
by Azahara Navarro, Ana del Moral, Irene de Pablos, Rafael Delgado, Jesús Párraga, Juan M. Martín-García and Fernando Martínez-Checa
Appl. Sci. 2024, 14(5), 1862; https://doi.org/10.3390/app14051862 - 24 Feb 2024
Cited by 1 | Viewed by 2696
Abstract
Global warming due to climate change has increased the frequency of sand and dust storms that affect air quality and ecosystems in general, contributing to air pollution. The Sahara Desert is the most potent emitter of atmospheric dust. The atmosphere is an extreme [...] Read more.
Global warming due to climate change has increased the frequency of sand and dust storms that affect air quality and ecosystems in general, contributing to air pollution. The Sahara Desert is the most potent emitter of atmospheric dust. The atmosphere is an extreme environment and microorganisms living in the troposphere are exposed to greater ultraviolet radiation, desiccation, low temperatures and nutrient deprivation than in other habitats. The Iberian Peninsula, and specifically the Canary Islands—due to its strategic location—is one of the regions that receive more Saharan dust particles annually, increasing year after year, although culturable microorganisms had previously never been described. In the present work, dust samples were collected from three calima events in the Canary Islands between 2021 and 2022. The sizes, mineralogical compositions and chemical compositions of dust particles were determined by laser diffraction, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Particle morphology and biological features were also studied by scanning electron microscopy (SEM-EDX) and confocal laser scanning microscopy (CLSM). The mineral–bacteria interactions were described from microscopic observations, which revealed the presence of iberulites and small neoformed kaolinite crystals in association with bacteria. This article defines the term “mineral atmospherogenesis” and its variant, “mineral bioatmospherogenesis”, through microbial interaction. This is the first described case of kaolinite produced through mineral bioatmospherogenesis. The bacterial growth in atmospheric dust was illustrated in SEM images, constituting a novel finding. Twenty-three culturable microorganisms were isolated and identified by 16S rRNA sequencing. Members of the phyla Pseudomonadota, Bacillota and Actinomycetota have been found. Some of these microorganisms, such as Peribacillus frigoritolerans, have Plant Growth-Promoting Rhizobacteria (PGPR) properties. Potential human pathogenic bacteria such as Acinetobacter lwoffii were also found. The presence of desert dust and iberulites in the Canary Islands, together with transported biological components such as bacteria, could have a significant impact on the ecosystem and human health. Full article
(This article belongs to the Special Issue Geomicrobiology: Latest Advances and Prospects)
Show Figures

Figure 1

21 pages, 5722 KiB  
Article
Identifying Seasonal and Diurnal Variations and the Most Frequently Impacted Zone of Aerosols in the Aral Sea Region
by Yongxiao Ge, Na Wu, Jilili Abuduwaili, Rashid Kulmatov, Gulnura Issanova and Galymzhan Saparov
Int. J. Environ. Res. Public Health 2022, 19(21), 14144; https://doi.org/10.3390/ijerph192114144 - 29 Oct 2022
Cited by 7 | Viewed by 2757
Abstract
With the desiccation of the Aral Sea, salt–alkali dust storms have increased in frequency and the surrounding environment has deteriorated. In order to increase our understanding of the characteristics and potential impact zone of atmospheric aerosols in the Aral Sea region, we evaluated [...] Read more.
With the desiccation of the Aral Sea, salt–alkali dust storms have increased in frequency and the surrounding environment has deteriorated. In order to increase our understanding of the characteristics and potential impact zone of atmospheric aerosols in the Aral Sea region, we evaluated seasonal and diurnal variation of aerosols and identified the zone most frequently impacted by aerosols from the Aral Sea region using CALIPSO data and the HYSPLIT model. The results showed that polluted dust and dust were the two most commonly observed aerosol subtypes in the Aral Sea region with the two accounting for over 75% of observed aerosols. Occurrence frequencies of polluted dust, clean continental, polluted continental/smoke, and elevated smoke showed obvious seasonal and diurnal variations, while occurrence frequency of dust only showed obvious seasonal variation. Vertically, the occurrence frequencies of all aerosol subtypes except dust showed significant diurnal variation at all levels. The thickness of polluted dust layers and dust layers exhibited same seasonal and diurnal variations with a value of more than 1.0 km year-round, and the layer thickness of clean continental and polluted continental/smoke shared the same seasonal and diurnal variation features. The zone most severely impacted by aerosols from the Aral Sea region, covering an area of approximately 2 million km2, was mainly distributed in the vicinity of the Aral Sea region, including western Kazakhstan, and most of Uzbekistan and Turkmenistan. The results provide direct support for positioning monitoring of aeolian dust deposition and human health protection in the Aral Sea region. Full article
(This article belongs to the Section Environmental Earth Science and Medical Geology)
Show Figures

Figure 1

22 pages, 6544 KiB  
Review
Contrasting Management and Fates of Two Sister Lakes: Great Salt Lake (USA) and Lake Urmia (Iran)
by Wayne A. Wurtsbaugh and Somayeh Sima
Water 2022, 14(19), 3005; https://doi.org/10.3390/w14193005 - 24 Sep 2022
Cited by 34 | Viewed by 10950
Abstract
Many saline lakes throughout the world are shrinking due to overexploitation of water in their drainage basins. Among them are two of the world’s largest saline lakes, the U.S.A.’s Great Salt Lake, and Iran’s Lake Urmia. Here we provide a comparative analysis of [...] Read more.
Many saline lakes throughout the world are shrinking due to overexploitation of water in their drainage basins. Among them are two of the world’s largest saline lakes, the U.S.A.’s Great Salt Lake, and Iran’s Lake Urmia. Here we provide a comparative analysis of the desiccation of these two lakes that provides insights on management decisions that may help save them and that are relevant to saline lake management worldwide. Great Salt Lake and Lake Urmia were once remarkably similar in size, depth, salinity, and geographic setting. High rates of population growth in both basins have fueled a demand for irrigated agriculture and other uses. In the Great Salt Lake basin, this development began in the late 1800’s and is continuing. The lake’s volume has decreased by 67%, with 75% of the loss driven by water development and 25% by a millennial drought which may portend the start of global climate change impacts. This has greatly increased salinities to 180 g·L−1 stressing the invertebrates in the lake on which birds depend. Only 1% of people in the basin are employed in agriculture; thus, reducing the demand for irrigation development. Population densities in the Urmia basin are double those of the Great Salt Lake basin, and 28% of people are employed in agriculture. These demographics have led to a rapid increase in reservoir construction since 2000 and the subsequent loss of 87% of Lake Urmia’s volume. The water development of Lake Urmia was later, but much faster than that of Great Salt Lake, causing Urmia’s salinity to increase from 190 to over 350 g·L−1 in just 20 years, with subsequent severe ecological decline. Dust storms from the exposed lakebeds of both systems threaten the health of the surrounding populations. To save these lakes and others will require: (1) transparent and collaborative involvement with local interest groups; (2) shifts away from an agricultural-based economy to one based on manufacturing and services; (3) consideration of the diverse ecosystem services of the lakes including mineral extraction, recreation, bird habitats in surrounding wetlands, and dust control. Full article
(This article belongs to the Special Issue Ecosystems of Inland Saline Waters)
Show Figures

Graphical abstract

43 pages, 731 KiB  
Review
Integrative Alternative Tactics for Ixodid Control
by Allan T. Showler and Perot Saelao
Insects 2022, 13(3), 302; https://doi.org/10.3390/insects13030302 - 18 Mar 2022
Cited by 19 | Viewed by 5303
Abstract
Ixodids (hard ticks), ectoparasitic arthropods that vector the causal agents of many serious diseases of humans, domestic animals, and wildlife, have become increasingly difficult to control because of the development of resistance against commonly applied synthetic chemical-based acaricides. Resistance has prompted searches for [...] Read more.
Ixodids (hard ticks), ectoparasitic arthropods that vector the causal agents of many serious diseases of humans, domestic animals, and wildlife, have become increasingly difficult to control because of the development of resistance against commonly applied synthetic chemical-based acaricides. Resistance has prompted searches for alternative, nonconventional control tactics that can be used as part of integrated ixodid management strategies and for mitigating resistance to conventional acaricides. The quest for alternative control tactics has involved research on various techniques, each influenced by many factors, that have achieved different degrees of success. Alternative approaches include cultural practices, ingested and injected medications, biological control, animal- and plant-based substances, growth regulators, and inert desiccant dusts. Research on biological control of ixodids has mainly focused on predators, parasitoid wasps, infective nematodes, and pathogenic bacteria and fungi. Studies on animal-based substances have been relatively limited, but research on botanicals has been extensive, including whole plant, extract, and essential oil effects on ixodid mortality, behavior, and reproduction. The inert dusts kaolin, silica gel, perlite, and diatomaceous earth are lethal to ixodids, and they are impervious to environmental degradation, unlike chemical-based toxins, remaining effective until physically removed. Full article
(This article belongs to the Special Issue Integrated Management of Public Health Pests)
21 pages, 4489 KiB  
Review
Health Impact of Drying Aral Sea: One Health and Socio-Economical Approach
by Anchita, Aibek Zhupankhan, Zhaniya Khaibullina, Yerlan Kabiyev, Kenneth M. Persson and Kamshat Tussupova
Water 2021, 13(22), 3196; https://doi.org/10.3390/w13223196 - 12 Nov 2021
Cited by 39 | Viewed by 24299
Abstract
Once one of the largest saline lakes, the Aral Sea, was recognized as a significant environmental disaster as the water level decreased dramatically. Water level decrease increases water salinity, affecting biodiversity. Exposed lake beds become the source for fine dust picked up by [...] Read more.
Once one of the largest saline lakes, the Aral Sea, was recognized as a significant environmental disaster as the water level decreased dramatically. Water level decrease increases water salinity, affecting biodiversity. Exposed lake beds become the source for fine dust picked up by the dust storms and spread across a long distance, affecting people’s health in surrounding areas. This review paper attempts to evaluate the potential links between the Aral Sea shrinking and the existing health issues in the case of Kazakhstan. The literature-based research revealed that the population of the Aral Sea basin region has been suffering from exposure to various pollutant residues for a long time. There is an apparent increase in morbidity and mortality rates in the region, especially in people suffering from chronic illness. Furthermore, the catastrophic desiccation of the Aral Sea has led to the sharp deterioration in living conditions and negative trends in the socio-economic situation of the region’s population. While the dust storms spread the polluted salts from the exposed bottom across the Aral Sea region, specific contaminants define the relevance and importance of public health problems linked to the basin rather than the Aral Sea drying process. There is, however, no clear evidence that associated dust storms are the only primary source of the deterioration of people’s health. Moreover, One Health approach seems to play a crucial role in achieving better outcomes in the health of people and the health of the environment. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Figure 1

15 pages, 2948 KiB  
Article
Marine Coastline Polygonal Ridges and Surface Roughness Development on a Salt-Crusted Playa: Recognition by Structure-from-Motion Photogrammetry
by Yuyang Geng, Yun Shao, Huaze Gong, Brian Brisco, Yang Zhi, Meng Li and Qingbo Liu
J. Mar. Sci. Eng. 2019, 7(3), 76; https://doi.org/10.3390/jmse7030076 - 20 Mar 2019
Cited by 2 | Viewed by 3442
Abstract
Salt crust is a normal landform in drying-out salt lake basins or marine regression coastlines, but the surface evolution processes over a decadal or even centenary period are not well understood due to poor data records. Microrelief characteristics control erodibility and erosivity, which [...] Read more.
Salt crust is a normal landform in drying-out salt lake basins or marine regression coastlines, but the surface evolution processes over a decadal or even centenary period are not well understood due to poor data records. Microrelief characteristics control erodibility and erosivity, which will significantly influence wind erosion and dust emission. It is essential to classify the microrelief pattern of salt crust for mapping its spatial distribution and evaluating the environmental process. A desiccated inland tail-end lake would be an example of the coastline surface evolution after regression and represent a good case study of salt crust because of the fewer exogenic process interruptions. For this paper, field work was performed in the Lop Nur playa in China, about 90° E, 40° N, which used to be a salt lake half a century ago. Ground-based photos of the salt crust were acquired and imported into structure-from-motion (SfM) software to produce a fine centimeter-scale digital elevation model (DEM). Two indexes were introduced and extracted from the digital elevation model to classify various types of salt crust: roughness was calculated to evaluate the magnitude and the gray-level co-occurrence matrix (GLCM) score was derived to describe the structure pattern of the salt crust. Moreover, in this paper, sedimentary features during different parts of a playa evaporation cycle are reviewed and peculiar kinds of salt crust found on Lop Nur are further discussed. Full article
(This article belongs to the Special Issue Coastal Zone Management)
Show Figures

Figure 1

18 pages, 4443 KiB  
Article
Trading Natural Riparian Forests for Urban Shelterbelt Plantations—A Sustainability Assessment of the Kökyar Protection Forest in NW China
by Siegmund Missall, Abdulla Abliz, Ümüt Halik, Niels Thevs and Martin Welp
Water 2018, 10(3), 343; https://doi.org/10.3390/w10030343 - 20 Mar 2018
Cited by 9 | Viewed by 7707
Abstract
Cities at the fringe of the Taklimakan desert in NW China are prone to dust and sand storms with serious consequences for human well-being. The Kökyar Protection Forest was established in the 1980s as an ecological engineering project with the intent of protecting [...] Read more.
Cities at the fringe of the Taklimakan desert in NW China are prone to dust and sand storms with serious consequences for human well-being. The Kökyar Protection Forest was established in the 1980s as an ecological engineering project with the intent of protecting the city of Aksu, NW China, from these impacts. It is designed as a combination of poplar shelterbelts and orchards, irrigated by river water from the Aksu River, the main tributary of the Tarim River. Prevalent literature describes it as an afforestation project for combatting desertification with manifold positive effects for the economic, social, and environmental dimension of sustainable development. This paper sets out to challenge these claims by a sustainability assessment in which the plantation is examined from a broader perspective, embedding it to the wider context of social and environmental problems in South Xinjiang. Methods comprise evapotranspiration calculations, interviews, a socioeconomic household survey, stakeholder dialogues, and literature research. Results affirm its economic sustainability, but see a mixed record for the social sphere. From the nature conservation point of view, it has to be classified as unsustainable because its high irrigation water consumption results in the downstream desiccation and desertification of natural riparian forests along the Tarim River, causing a forest loss in the downstream area twice the size of the forest gain in the upstream area. There is a trade-off between artificial shelterbelt plantations for urban ecosystem services on the one hand side, and natural riparian forests and their biodiversity on the other hand side. The paper recommends restricting agricultural extension, and using locally adapted less water consuming agroforestry schemes to protect urban dwellers from dust stress. Full article
(This article belongs to the Special Issue The Future of Water Management in Central Asia)
Show Figures

Figure 1

11 pages, 834 KiB  
Article
Behavioral Responses of the Common Bed Bug, Cimex lectularius, to Insecticide Dusts
by John L. Agnew and Alvaro Romero
Insects 2017, 8(3), 83; https://doi.org/10.3390/insects8030083 - 8 Aug 2017
Cited by 21 | Viewed by 8339
Abstract
Bed bugs have reemerged recently as a serious and growing problem not only in North America but in many parts of the world. These insects have become the most challenging pest to control in urban environments. Residual insecticides are the most common methods [...] Read more.
Bed bugs have reemerged recently as a serious and growing problem not only in North America but in many parts of the world. These insects have become the most challenging pest to control in urban environments. Residual insecticides are the most common methods used for bed bug control; however, insecticide resistance limits the efficacy of treatments. Desiccant dusts have emerged as a good option to provide a better residual effect for bed bug control. Several studies have focused on determining the efficacy of dust-based insecticides against bed bugs. However, behavioral responses of bed bugs to insecticide dusts could influence their efficacy. The behavioral responses of bed bugs to six insecticide dusts commonly used in the United States were evaluated with an advanced video tracking technique (Ethovision). Bed bugs took longer to make first contact with areas treated with the diatomaceous earth (DE)-based products MotherEarth D and Alpine than pyrethroid, pyrethrins or silica gel based products, DeltaDust, Tempo 1% Dust and CimeXa, respectively. Lower visitation rates of bed bugs were recorded for areas treated with MotherEarth D, Alpine and CimeXa than that of DeltaDust, Tempo 1% Dust, and Tri-Die Silica + Pyrethrum Dust. Bed bugs spent less time in areas treated with Tri-Die Dust, CimeXa, Alpine, and MotherEarth D than DeltaDust and Tempo 1% Dust, and they exhibited a reduction in locomotor parameters when crawling on areas treated with CimeXa and Alpine. The implications of these responses to bed bug control are discussed. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

12 pages, 949 KiB  
Article
Evidence of Tolerance to Silica-Based Desiccant Dusts in a Pyrethroid-Resistant Strain of Cimex lectularius (Hemiptera: Cimicidae)
by David G. Lilly, Cameron E. Webb and Stephen L. Doggett
Insects 2016, 7(4), 74; https://doi.org/10.3390/insects7040074 - 9 Dec 2016
Cited by 30 | Viewed by 6521
Abstract
Insecticide resistance in bed bugs (Cimex lectularius and Cimex hemipterus) has become widespread, which has necessitated the development of new IPM (Integrated Pest Management) strategies and products for the eradication of infestations. Two promising options are the diatomaceous earth and silica [...] Read more.
Insecticide resistance in bed bugs (Cimex lectularius and Cimex hemipterus) has become widespread, which has necessitated the development of new IPM (Integrated Pest Management) strategies and products for the eradication of infestations. Two promising options are the diatomaceous earth and silica gel-based desiccant dusts, both of which induce dehydration and eventual death upon bed bugs exposed to these products. However, the impact of underlying mechanisms that confer resistance to insecticides, such as cuticle thickening, on the performance of these dusts has yet to be determined. In the present study, two desiccant dusts, CimeXa Insecticide Dust (silica gel) and Bed Bug Killer Powder (diatomaceous earth) were evaluated against two strains of C. lectularius; one highly pyrethroid-resistant and one insecticide-susceptible. Label-rate doses of both products produced 100% mortality in both strains, albeit over dissimilar time-frames (3–4 days with CimeXa vs. 14 days with Bed Bug Killer). Sub-label rate exposure to CimeXa indicated that the pyrethroid-resistant strain possessed a degree of tolerance to this product, surviving 50% longer than the susceptible strain. This is the first study to suggest that mechanisms conferring resistance to pyrethroids, such as cuticular thickening, may have potential secondary impacts on non-synthetic insecticides, including desiccant dusts, which target the bed bug’s cuticle. Full article
Show Figures

Figure 1

Back to TopTop