Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = dermo-protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4624 KiB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 424
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

27 pages, 734 KiB  
Review
Hypersensitivity to Lanolin: An Old–New Problem
by Kinga Lis
Life 2024, 14(12), 1553; https://doi.org/10.3390/life14121553 - 26 Nov 2024
Cited by 1 | Viewed by 2361
Abstract
Lanolin is a fatty substance derived from sheep’s fleece. The ancient Greeks used the moisturizing and skin-protective properties of this substance. The technique of industrial production of lanolin was developed in Germany in the 19th century. Since then, this natural wax has become [...] Read more.
Lanolin is a fatty substance derived from sheep’s fleece. The ancient Greeks used the moisturizing and skin-protective properties of this substance. The technique of industrial production of lanolin was developed in Germany in the 19th century. Since then, this natural wax has become an extremely popular base for many different cosmetic and pharmaceutical preparations intended for the treatment and care of the skin. In addition to its medicinal and cosmetic applications, lanolin is also widely used for industrial purposes. Hypersensitivity to lanolin has raised many questions and controversies for almost 100 years. Although lanolin has significant dermoprotective properties and when applied to intact skin without inflammatory changes, it lubricates it, improves its lipid barrier, and maintains proper moisture, it can also cause contact hypersensitivity when in contact with pathologically changed or damaged skin. It can, in the same person, both protect and damage the skin, depending on the condition of the skin to which the cosmetic or medicine containing lanolin is applied. The nature of the observed reactions and the circumstances of their occurrence, as well as the lack of a clear answer to the question of whether this wax causes allergies or not, make this phenomenon one of the so-called dermatological paradoxes. Although unusual reactions to lanolin have been the subject of research for many years, they still raise many questions to which there is still no clear answer. This is mainly due to the imperfection and incompleteness of the available publications. Although many different studies have been published on hypersensitivity to lanolin, most of them are retrospective analyses of the results of routinely performed epidermal patch tests or descriptions of clinical cases. Such reports and analyses, although undoubtedly very important, are a poor tool for assessing the sensitizing potential of lanolin and/or its derivatives. It is difficult to determine the causative factors, to define lanolin allergens, to investigate immunological mechanisms, or to assess the clinical significance of this phenomenon. There is a definite lack of standardized studies on the nature of lanolin hypersensitivity involving well-selected groups of patients and healthy volunteers, which would be conducted in a reproducible manner under laboratory and/or clinical conditions. As of today, lanolin hypersensitivity seems to be both an old and new problem that still remains unresolved. Full article
Show Figures

Figure 1

19 pages, 2887 KiB  
Article
Effects of Crocus sativus L. Floral Bio-Residues Related to Skin Protection
by Nuria Acero, Dolores Muñoz-Mingarro and Ana Gradillas
Antioxidants 2024, 13(3), 358; https://doi.org/10.3390/antiox13030358 - 17 Mar 2024
Cited by 5 | Viewed by 2376
Abstract
The cultivation of Crocus sativus L. to obtain the saffron spice generates a large amount of biowaste, constituted mainly by the flower’s tepals. The aim of this work was to evaluate the antioxidant and dermo-protective effect of a complex methanolic extract of C. [...] Read more.
The cultivation of Crocus sativus L. to obtain the saffron spice generates a large amount of biowaste, constituted mainly by the flower’s tepals. The aim of this work was to evaluate the antioxidant and dermo-protective effect of a complex methanolic extract of C. sativus tepals. The extract’s major phenolic content was analyzed using ultra-high performance liquid chromatography with electrospray ionization, coupled with quadrupole-time-of-flight-mass spectrometry (UHPLC-ESI-QTOF-MS). Then, the antioxidant in vitro activity of the extract was studied and related to their chemical composition. Likewise, the effect on intracellular ROS levels in HepG2 and Hs27 cell culture was determined in normal culture and under hydrogen-peroxide-induced oxidative stress. Finally, tyrosinase, hyaluronidase, collagenase, elastase, and xanthine oxidase assays were carried out to determine the dermo-protective capacity of the extract. The high polyphenol content, including flavonoids and anthocyanins, explains the antioxidant effect of the extract both in vitro and in culture assays. The extract has a significant and remarkable protective capacity against oxidative stress induced in culture of the two studied cell lines. It is also remarkable in its ability to inhibit hyaluronidase, tyrosinase, and xanthine oxidase. Results pointed out this biowaste extract as a promising ingredient in the composition of cosmetics. Full article
Show Figures

Figure 1

16 pages, 22210 KiB  
Article
Local Glucocorticoid Administration Impairs Embryonic Wound Healing
by Martin Bablok, Morris Gellisch, Beate Brand-Saberi and Gabriela Morosan-Puopolo
Biomedicines 2022, 10(12), 3125; https://doi.org/10.3390/biomedicines10123125 - 3 Dec 2022
Cited by 3 | Viewed by 2589
Abstract
Understanding the complex processes of fetal wound healing and skin regeneration can help to improve fetal surgery. As part of the integumentary system, the skin protects the newborn organism against environmental factors and serves various functions. Glucocorticoids can enter the fetal circulatory system [...] Read more.
Understanding the complex processes of fetal wound healing and skin regeneration can help to improve fetal surgery. As part of the integumentary system, the skin protects the newborn organism against environmental factors and serves various functions. Glucocorticoids can enter the fetal circulatory system by either elevated maternal stress perception or through therapeutic administration and are known to affect adult skin composition and wound regeneration. In the present study, we aimed at investigating the effects of local glucocorticoid administration on the process of embryonic wound healing. We performed in-ovo bead implantation of dexamethasone beads into skin incisional wounds of avian embryos and observed the local effects of the glucocorticoid on the process of skin regeneration through histology, immunohistochemistry and in-situ hybridization, using vimentin, fibronectin, E-cadherin, Dermo-1 and phospho-Histone H3 as investigational markers. Local glucocorticoid administration decelerated the healing of the skin incisional wounds by impairing mesenchymal contraction and re-epithelialization resulting in morphological changes, such as increased epithelialization and disorganized matrix formation. The results contribute to a better understanding of scarless embryonic wound healing and how glucocorticoids might interfere with the underlying molecular processes, possibly indicating that glucocorticoid therapies in prenatal clinical practice should be carefully evaluated. Full article
(This article belongs to the Special Issue Fibrosis vs Regeneration of Skin)
Show Figures

Figure 1

30 pages, 1152 KiB  
Review
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees
by Kyu Hwan Shim, Niti Sharma and Seong Soo A. An
Nutrients 2022, 14(22), 4731; https://doi.org/10.3390/nu14224731 - 9 Nov 2022
Cited by 8 | Viewed by 4343
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of [...] Read more.
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs. Full article
Show Figures

Figure 1

15 pages, 6050 KiB  
Article
Galangin Reverses H2O2-Induced Dermal Fibroblast Senescence via SIRT1-PGC-1α/Nrf2 Signaling
by Jian-Jr Lee, Shang-Chuan Ng, Jia-Yun Hsu, Hsun Liu, Chih-Jung Chen, Chih-Yang Huang and Wei-Wen Kuo
Int. J. Mol. Sci. 2022, 23(3), 1387; https://doi.org/10.3390/ijms23031387 - 26 Jan 2022
Cited by 81 | Viewed by 10415
Abstract
UV radiation and H2O2 are the primary factors that cause skin aging. Both trigger oxidative stress and cellular aging. It has been reported that deacetylase silent information regulator 1 (SIRT1), a longevity gene, enhances activation of NF-E2-related factor-2 (Nrf2), [...] Read more.
UV radiation and H2O2 are the primary factors that cause skin aging. Both trigger oxidative stress and cellular aging. It has been reported that deacetylase silent information regulator 1 (SIRT1), a longevity gene, enhances activation of NF-E2-related factor-2 (Nrf2), as well as its downstream key antioxidant gene hemeoxygenase-1 (HO-1), to protect cells against oxidative damage by deacetylating the transcription coactivator PPARγ coactivator-1α (PGC-1α). Galangin, a flavonoid, possesses anti-oxidative and anti-inflammatory potential. In the present study, we applied Ultraviolet B/H2O2-induced human dermal fibroblast damage as an in vitro model and UVB-induced photoaging of C57BL/6J nude mice as an in vivo model to investigate the underlying dermo-protective mechanisms of galangin. Our results indicated that galangin treatment attenuates H2O2/UVB-induced cell viability reduction, dermal aging, and SIRT1/PGC-1α/Nrf2 signaling activation. Furthermore, galangin treatment enhanced Nrf2 activation and nuclear accumulation, in addition to inhibiting Nrf2 degradation. Interestingly, upregulation of antioxidant response element luciferase activity following galangin treatment indicated the transcriptional activation of Nrf2. However, knockdown of SIRT1, PGC-1α, or Nrf2 by siRNA reversed the antioxidant and anti-aging effects of galangin. In vivo evidence further showed that galangin treatment, at doses of 12 and 24 mg/kg on the dorsal skin cells of nude mice resulted in considerably reduced UVB-induced epidermal hyperplasia and skin senescence, and promoted SIRT1/PGC-1α/Nrf2 signaling. Furthermore, enhanced nuclear localization of Nrf2 was observed in galangin-treated mice following UVB irradiation. In conclusion, our data indicated that galangin exerts anti-photoaging and antioxidant effects by promoting SIRT1/PGC-1α/Nrf2 signaling. Therefore, galangin is a potentially promising agent for cosmetic skin care products against UV-induced skin aging. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

14 pages, 734 KiB  
Review
The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview
by Barbara Bellei, Silvia Caputo, Anna Carbone, Vitaliano Silipo, Federica Papaccio, Mauro Picardo and Laura Eibenschutz
Int. J. Mol. Sci. 2020, 21(3), 720; https://doi.org/10.3390/ijms21030720 - 22 Jan 2020
Cited by 7 | Viewed by 4162
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also named Gorlin syndrome, is a rare multisystem genetic disorder characterized by marked predisposition to basal cell carcinomas (BCCs), childhood medulloblastomas, maxillary keratocysts, celebral calcifications, in addition to various skeletal and soft tissue developmental abnormalities. Mutations in [...] Read more.
Nevoid basal cell carcinoma syndrome (NBCCS), also named Gorlin syndrome, is a rare multisystem genetic disorder characterized by marked predisposition to basal cell carcinomas (BCCs), childhood medulloblastomas, maxillary keratocysts, celebral calcifications, in addition to various skeletal and soft tissue developmental abnormalities. Mutations in the tumor suppressor gene PATCHED1 (PTCH1) have been found to be associated in the majority of NBCCS cases. PATCH1 somatic mutations and loss of heterozygosity are also very frequent in sporadic BCCs. Unlike non-syndromic patients, NBCCS patients develop multiple BCCs in sun-protected skin area starting from early adulthood. Recent studies suggest that dermo/epidermal interaction could be implicated in BCC predisposition. According to this idea, NBCCS fibroblasts, sharing with keratinocytes the same PTCH1 germline mutation and consequent constitutive activation of the Hh pathway, display features of carcinoma-associated fibroblasts (CAF). This phenotypic traits include the overexpression of growth factors, specific microRNAs profile, modification of extracellular matrix and basement membrane composition, increased cytokines and pro-angiogenic factors secretion, and a complex alteration of the Wnt/β-catenin pathway. Here, we review studies about the involvement of dermal fibroblasts in BCC predisposition of Gorlin syndrome patients. Further, we matched the emerged NBCCS fibroblast profile to those of CAF to compare the impact of cell autonomous “pre-activated state” due to PTCH1 mutations to those of skin tumor stroma. Full article
(This article belongs to the Special Issue Skin Cancer: From Pathophysiology to Novel Therapeutic Approaches)
Show Figures

Figure 1

28 pages, 3763 KiB  
Review
Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories
by Bryan Fuller
Cosmetics 2019, 6(1), 6; https://doi.org/10.3390/cosmetics6010006 - 21 Jan 2019
Cited by 55 | Viewed by 19444
Abstract
Human skin aging is due to two types of aging processes, “intrinsic” (chronological) aging and “extrinsic” (external factor mediated) aging. While inflammatory events, triggered mainly by sun exposure, but also by pollutants, smoking and stress, are the principle cause of rapid extrinsic aging, [...] Read more.
Human skin aging is due to two types of aging processes, “intrinsic” (chronological) aging and “extrinsic” (external factor mediated) aging. While inflammatory events, triggered mainly by sun exposure, but also by pollutants, smoking and stress, are the principle cause of rapid extrinsic aging, inflammation also plays a key role in intrinsic aging. Inflammatory events in the skin lead to a reduction in collagen gene activity but an increase in activity of the genes for matrix metalloproteinases. Inflammation also alters proliferation rates of cells in all skin layers, causes thinning of the epidermis, a flattening of the dermo-epidermal junction, an increase in irregular pigment production, and, finally, an increased incidence of skin cancer. While a large number of inflammatory mediators, including IL-1, TNF-alpha and PGE-2, are responsible for many of these damaging effects, this review will focus primarily on the role of PGE-2 in aging. Levels of this hormone-like mediator increase quickly when skin is exposed to ultraviolet radiation (UVR), causing changes in genes needed for normal skin structure and function. Further, PGE-2 levels in the skin gradually increase with age, regardless of whether or not the skin is protected from UVR, and this smoldering inflammation causes continuous damage to the dermal matrix. Finally, and perhaps most importantly, PGE-2 is strongly linked to skin cancer. This review will focus on: (1) the role of inflammation, and particularly the role of PGE-2, in accelerating skin aging, and (2) current research on natural compounds that inhibit PGE-2 production and how these can be developed into topical products to retard or even reverse the aging process, and to prevent skin cancer. Full article
(This article belongs to the Special Issue The Role of Inflammation in Skin Aging)
Show Figures

Figure 1

16 pages, 1959 KiB  
Article
New Biological Activities of Lythrum salicaria L.: Effects on Keratinocytes, Reconstructed Epidermis and Reconstructed Skins, Applications in Dermo-Cosmetic Sciences
by Glorianne Jouravel, Samuel Guénin, François-Xavier Bernard, Claire Elfakir, Philippe Bernard and Franck Himbert
Cosmetics 2017, 4(4), 52; https://doi.org/10.3390/cosmetics4040052 - 25 Nov 2017
Cited by 5 | Viewed by 12353
Abstract
The perennial and widespread herb Lythrum salicaria L., also called purple loosestrife, is a plant that is traditionally used in European medicine. Purple loosestrife is known for its ability to treat internal disorders, such as gastrointestinal issues or hemorrhages. Our objective was to [...] Read more.
The perennial and widespread herb Lythrum salicaria L., also called purple loosestrife, is a plant that is traditionally used in European medicine. Purple loosestrife is known for its ability to treat internal disorders, such as gastrointestinal issues or hemorrhages. Our objective was to take another look on this natural source of ellagitannins in terms of biological activities. Exploration of the phytochemical content of an extract of aerial parts of Lythrum salicaria L. was completed before initiating research on its biological effects towards keratinocytes, reconstructed epidermis, and skins. The potential of the natural compounds were evaluated by topical treatment of reconstructed tissues. The extract and one of its major compounds were able to act as pro-differentiating and protecting agents towards skin cells by stimulating the expressions of markers taking part in the structure of epidermis and dermis. Also, the extract showed beneficial effects on the global morphology of the skin. Thus, Lythrum salicaria L. constitutes a new natural source for the development of active ingredients for the dermo-cosmetic field. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Graphical abstract

22 pages, 3377 KiB  
Article
Protective Effects of a New Phloretin Derivative against UVB-Induced Damage in Skin Cell Model and Human Volunteers
by Seoungwoo Shin, Hyunwoo Kum, Dehun Ryu, Minkyung Kim, Eunsun Jung and Deokhoon Park
Int. J. Mol. Sci. 2014, 15(10), 18919-18940; https://doi.org/10.3390/ijms151018919 - 20 Oct 2014
Cited by 40 | Viewed by 9962
Abstract
The phenolic compound phloretin is a prominent member of the chemical class of dihydrochalcones. Phloretin is specifically found in apple and apple juice and known for its biological properties. We were particularly interested in its potential dermo-cosmetic applications. However, practical limitations of phloretin [...] Read more.
The phenolic compound phloretin is a prominent member of the chemical class of dihydrochalcones. Phloretin is specifically found in apple and apple juice and known for its biological properties. We were particularly interested in its potential dermo-cosmetic applications. However, practical limitations of phloretin do exist due to its poor water-solubility. Phloretin was sulfonated with sulfuric acid (98%, wt) and mixed with saturated salt water to produce phloretin 3',3-disulfonate in order to increase its water-solubility. Here we reported the photoprotective effect of phloretin 3',3-disulfonate (PS), a new semi-synthetic derivative of phloretin. Results showed that PS attenuated cyclobutane pyrimidine dimer (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by ultraviolet B (UVB). The photoprotective effect of PS is tightly correlated to the enhancement of nucleotide excision repair (NER) gene expression. Furthemore, PS had inhibitory effects on UVB-induced release of the inflammatory mediators, such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of PS on human skin. Overall, the results demonstrated significant benefits of PS on the protection of keratinocytes against UVB-induced injuries and suggested its potential use in skin photoprotection. Full article
(This article belongs to the Collection Radiation Toxicity in Cells)
Show Figures

Figure 1

Back to TopTop