Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = demosponges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1510 KiB  
Article
Two Demosponges as Promising Bioremediators of a Potential Pathogenic Vibrio
by Joseba Aguilo-Arce, Maria Scrascia, Roberta Trani, Carlo Pazzani, Pere Ferriol and Caterina Longo
Biology 2025, 14(2), 140; https://doi.org/10.3390/biology14020140 - 29 Jan 2025
Cited by 1 | Viewed by 1044
Abstract
With more than 9600 valid species worldwide [...] Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

17 pages, 5937 KiB  
Article
Growth, Filtration and Respiration Under Superfluous Feeding in Single-Osculum Halichondria panicea Sponges
by Lars Kumala and Hans Ulrik Riisgård
Oceans 2024, 5(4), 965-981; https://doi.org/10.3390/oceans5040055 - 9 Dec 2024
Viewed by 1776
Abstract
Filter-feeding sponges capture suspended food particles from ambient water, but little is known about the response of sponges to high food concentrations causing superfluous feeding. Here, through several experimental assays, we studied the relationship between algal concentration in the water column, filtration rate, [...] Read more.
Filter-feeding sponges capture suspended food particles from ambient water, but little is known about the response of sponges to high food concentrations causing superfluous feeding. Here, through several experimental assays, we studied the relationship between algal concentration in the water column, filtration rate, respiration rate, and specific growth rate in single-osculum Halichondria panicea demosponge explants. Laboratory experiments showed that sponge explants filter the ambient seawater at a maximum rate when exposed to naturally (low) algal concentrations, whereas high algal concentrations resulted in superfluous feeding and reduced filtration rates. Explants maintained at algal concentrations above the incipient overloading concentration level showed that growth rates were in fair agreement with the maximum possible weight-specific growth rate of about 4% d−1. Although the filtration rate became reduced due to overloading, the oxygen extraction efficiency increased, and therefore superfluous feeding did not cause reduced growth. This suggests that H. panicea and probably other sponges have adapted to low algal concentrations, displaying continuous maximum filtration rates. Osculum closure reflects a protection mechanism rather than a physiological regulatory response to high algal concentrations. Full article
Show Figures

Figure 1

21 pages, 3060 KiB  
Article
Shedding Light on the Italian Mesophotic Spongofauna
by Margherita Toma, Marzia Bo, Marco Bertolino, Martina Canessa, Michela Angiolillo, Alessandro Cau, Franco Andaloro, Simonepietro Canese, Silvestro Greco and Giorgio Bavestrello
J. Mar. Sci. Eng. 2024, 12(11), 2110; https://doi.org/10.3390/jmse12112110 - 20 Nov 2024
Cited by 1 | Viewed by 990
Abstract
An analysis of 483 remotely operated vehicle (ROV) dives carried out along the Italian coast on hard substrata at mesophotic depths (40–200 m) allowed an overview of the rich sponge diversity (53 taxa) of the deep continental platform to be obtained for the [...] Read more.
An analysis of 483 remotely operated vehicle (ROV) dives carried out along the Italian coast on hard substrata at mesophotic depths (40–200 m) allowed an overview of the rich sponge diversity (53 taxa) of the deep continental platform to be obtained for the first time. About 40% of the potential actual species diversity was recognisable using ROV, suggesting that this group is among the richest yet underestimated using this technology in contrast to other megabenthic taxa. Additionally, the study allowed us to gather data on the current basin-scale distribution and bathymetric limits of five common and easily identifiable demosponges with up to 55% occurrence in the explored sites: Aplysina cavernicola, the group Axinella damicornis/verrucosa, Chondrosia reniformis, Foraminospongia spp., and Hexadella racovitzai. Four of these latitudinal distributions were characterised by high occurrence in the Ligurian Sea and a progressive decrease towards the south Tyrrhenian Sea, with an occasional second minor peak of occurrence in the Sicily Channel. In contrast, Foraminospongia spp. showed a maximum occurrence on the offshore reliefs and a second one in the North–central Tyrrhenian Sea, while it was almost absent in the Ligurian Sea. Trophic and biogeographic reasons were discussed as possible causes of the double-peak distributions. The vertical distributions support a more consistent occurrence of all considered taxa in deeper waters than previously known. This suggests that they may more typically belong to the mesophotic realm than the shallow waters, owing to a more extensive sampling effort in the deeper depth range. The five target taxa are typical or associated species of seven reference habitats in the recently revised UNEP/SPA-RAC classification. However, they may create such dense aggregations that they should be listed as new facies in the abovementioned classification. Full article
Show Figures

Figure 1

12 pages, 3029 KiB  
Article
The Chitinous Skeleton of Ianthella basta Marine Demosponge as a Renewable Scaffold-Based Carrier of Antiseptics
by Izabela Dziedzic, Kamil Dydek, Alona Voronkina, Valentin Kovalchuk, Teofil Jesionowski and Hermann Ehrlich
Polysaccharides 2024, 5(4), 540-551; https://doi.org/10.3390/polysaccharides5040034 - 1 Oct 2024
Cited by 1 | Viewed by 1349
Abstract
The chitinous skeleton of the marine demosponge Ianthella basta exhibits a unique network-like 3D architecture, excellent capillary properties, and chemical inertness, making it highly suitable for interdisciplinary research, especially in biomedical applications. This study investigates the potential of renewable I. basta chitinous scaffolds [...] Read more.
The chitinous skeleton of the marine demosponge Ianthella basta exhibits a unique network-like 3D architecture, excellent capillary properties, and chemical inertness, making it highly suitable for interdisciplinary research, especially in biomedical applications. This study investigates the potential of renewable I. basta chitinous scaffolds for drug delivery and wound dressing. The scaffolds, characterized by a microtubular structure, were impregnated with selected commercially available antiseptics, including solutions with hydrophilic and hydrophobic properties. Evaluations against selected clinical strains of bacteria, as well as fungi, demonstrated significant zones of growth inhibition with antiseptics such as brilliant green, gentian violet, decamethoxine, and polyhexanide. Notably, the antibacterial properties of these antiseptic-treated chitin matrices persisted for over 72 h, effectively inhibiting microbial growth in fresh cultures. These findings highlight the considerable potential of I. basta chitin scaffolds as sustainable, innovative biomaterials for controlled drug release and wound dressing applications. Full article
Show Figures

Figure 1

8 pages, 868 KiB  
Article
Oxygen Extraction Efficiency and Tolerance to Hypoxia in Sponges
by Hans Ulrik Riisgård
J. Mar. Sci. Eng. 2024, 12(1), 138; https://doi.org/10.3390/jmse12010138 - 10 Jan 2024
Cited by 2 | Viewed by 1978
Abstract
Sponges have always been filter feeders, in contrast to all the other filter-feeding invertebrate groups for which this feeding mode is a secondary adaptation. This study calls attention to this aspect, which explains why sponges are tolerant to hypoxia, but probably not more [...] Read more.
Sponges have always been filter feeders, in contrast to all the other filter-feeding invertebrate groups for which this feeding mode is a secondary adaptation. This study calls attention to this aspect, which explains why sponges are tolerant to hypoxia, but probably not more tolerant than the other filter-feeding invertebrates. The measurement of respiration rates at decreasing oxygen concentrations along with an estimation of the oxygen extraction efficiency in the marine demosponge Halichondria panicea have been used to understand why sponges are tolerant to low oxygen concentrations. It was found that the respiration rate was constant down to about 1.5 mL O2 L−1, which shows that the extraction efficiency increases with a decreasing oxygen concentration. It is argued that the relationship between the filtration rate and oxygen consumption in filter feeders is controlled by the resistance to the diffusion of oxygen across the boundary layer between the feeding current and the tissues of the body. A high tolerance to hypoxia is a consequence of the adaptation to filter feeding, and sponges do not have a special capacity to overcome hypoxic events. Full article
(This article belongs to the Special Issue Filter-Feeding in Marine Invertebrates, 2nd Edition)
Show Figures

Figure 1

21 pages, 7711 KiB  
Article
Creation of a 3D Goethite–Spongin Composite Using an Extreme Biomimetics Approach
by Anita Kubiak, Alona Voronkina, Martyna Pajewska-Szmyt, Martyna Kotula, Bartosz Leśniewski, Alexander Ereskovsky, Korbinian Heimler, Anika Rogoll, Carla Vogt, Parvaneh Rahimi, Sedigheh Falahi, Roberta Galli, Enrico Langer, Maik Förste, Alexandros Charitos, Yvonne Joseph, Hermann Ehrlich and Teofil Jesionowski
Biomimetics 2023, 8(7), 533; https://doi.org/10.3390/biomimetics8070533 - 9 Nov 2023
Cited by 5 | Viewed by 3332
Abstract
The structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which [...] Read more.
The structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which has already been successfully applied in biomedicine and bioinspired materials science. In the present study, spongin from the demosponge Hippospongia communis was used as a microporous template for the development of a new 3D composite containing goethite [α-FeO(OH)]. For this purpose, an extreme biomimetic technique using iron powder, crystalline iodine, and fibrous spongin was applied under laboratory conditions for the first time. The product was characterized using SEM and digital light microscopy, infrared and Raman spectroscopy, XRD, thermogravimetry (TG/DTG), and confocal micro X-ray fluorescence spectroscopy (CMXRF). A potential application of the obtained goethite–spongin composite in the electrochemical sensing of dopamine (DA) in human urine samples was investigated, with satisfactory recoveries (96% to 116%) being obtained. Full article
Show Figures

Graphical abstract

17 pages, 6832 KiB  
Article
On the Mechanical Properties of Microfibre-Based 3D Chitinous Scaffolds from Selected Verongiida Sponges
by Tomas Duminis, Marcin Heljak, Wojciech Święszkowski, Alexander Ereskovsky, Izabela Dziedzic, Marek Nowicki, Martyna Pajewska-Szmyt, Alona Voronkina, Stefan R. Bornstein and Hermann Ehrlich
Mar. Drugs 2023, 21(9), 463; https://doi.org/10.3390/md21090463 - 24 Aug 2023
Cited by 11 | Viewed by 1927
Abstract
Skeletal constructs of diverse marine sponges remain to be a sustainable source of biocompatible porous biopolymer-based 3D scaffolds for tissue engineering and technology, especially structures isolated from cultivated demosponges, which belong to the Verongiida order, due to the renewability of their chitinous, fibre-containing [...] Read more.
Skeletal constructs of diverse marine sponges remain to be a sustainable source of biocompatible porous biopolymer-based 3D scaffolds for tissue engineering and technology, especially structures isolated from cultivated demosponges, which belong to the Verongiida order, due to the renewability of their chitinous, fibre-containing architecture focused attention. These chitinous scaffolds have already shown excellent and promising results in biomimetics and tissue engineering with respect to their broad diversity of cells. However, the mechanical features of these constructs have been poorly studied before. For the first time, the elastic moduli characterising the chitinous samples have been determined. Moreover, nanoindentation of the selected bromotyrosine-containing as well as pigment-free chitinous scaffolds isolated from selected verongiids was used in the study for comparative purposes. It was shown that the removal of bromotyrosines from chitin scaffolds results in a reduced elastic modulus; however, their hardness was relatively unaffected. Full article
Show Figures

Figure 1

17 pages, 3932 KiB  
Article
2D Collagen Membranes from Marine Demosponge Chondrosia reniformis (Nardo, 1847) for Skin-Regenerative Medicine Applications: An In Vitro Evaluation
by Eleonora Tassara, Caterina Oliveri, Luigi Vezzulli, Carlo Cerrano, Lian Xiao, Marco Giovine and Marina Pozzolini
Mar. Drugs 2023, 21(8), 428; https://doi.org/10.3390/md21080428 - 28 Jul 2023
Cited by 8 | Viewed by 2000
Abstract
Research in tissue engineering and regenerative medicine has an ever-increasing need for innovative biomaterials suitable for the production of wound-dressing devices and artificial skin-like substitutes. Marine collagen is one of the most promising biomaterials for the production of such devices. In this study, [...] Read more.
Research in tissue engineering and regenerative medicine has an ever-increasing need for innovative biomaterials suitable for the production of wound-dressing devices and artificial skin-like substitutes. Marine collagen is one of the most promising biomaterials for the production of such devices. In this study, for the first time, 2D collagen membranes (2D-CMs) created from the extracellular matrix extract of the marine demosponge Chondrosia reniformis have been evaluated in vitro as possible tools for wound healing. Fibrillar collagen was extracted from a pool of fresh animals and used for the creation of 2D-CMs, in which permeability to water, proteins, and bacteria, and cellular response in the L929 fibroblast cell line were evaluated. The biodegradability of the 2D-CMs was also assessed by following their degradation in PBS and collagenase solutions for up to 21 days. Results showed that C. reniformis-derived membranes avoided liquid and protein loss in the regeneration region and also functioned as a strong barrier against bacteria infiltration into a wound. Gene expression analyses on fibroblasts stated that their interaction with 2D-CMs is able to improve fibronectin production without interfering with the regular extracellular matrix remodeling processes. These findings, combined with the high extraction yield of fibrillar collagen obtained from C. reniformis with a solvent-free approach, underline how important further studies on the aquaculture of this sponge could be for the sustainable production and biotechnological exploitation of this potentially promising and peculiar biopolymer of marine origin. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Graphical abstract

20 pages, 13921 KiB  
Article
The Loss of Structural Integrity of 3D Chitin Scaffolds from Aplysina aerophoba Marine Demosponge after Treatment with LiOH
by Izabela Dziedzic, Alona Voronkina, Martyna Pajewska-Szmyt, Martyna Kotula, Anita Kubiak, Heike Meissner, Tomas Duminis and Hermann Ehrlich
Mar. Drugs 2023, 21(6), 334; https://doi.org/10.3390/md21060334 - 30 May 2023
Cited by 6 | Viewed by 2103
Abstract
Aminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded [...] Read more.
Aminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded with biominerals, lipids, proteins, and bromotyrosines. Treatment with alkalis remains one of the classical approaches to isolate pure chitin from the sponge skeleton. For the first time, we carried out extraction of multilayered, tube-like chitin from skeletons of cultivated Aplysina aerophoba demosponge using 1% LiOH solution at 65 °C following sonication. Surprisingly, this approach leads not only to the isolation of chitinous scaffolds but also to their dissolution and the formation of amorphous-like matter. Simultaneously, isofistularin-containing extracts have been obtained. Due to the absence of any changes between the chitin standard derived from arthropods and the sponge-derived chitin treated with LiOH under the same experimental conditions, we suggest that bromotyrosines in A. aerophoba sponge represent the target for lithium ion activity with respect to the formation of LiBr. This compound, however, is a well-recognized solubilizing reagent of diverse biopolymers including cellulose and chitosan. We propose a possible dissolution mechanism of this very special kind of sponge chitin. Full article
Show Figures

Graphical abstract

19 pages, 3744 KiB  
Article
Seasonal Molecular Difference in Fibrillar Collagen Extracts Derived from the Marine Sponge Chondrosia reniformis (Nardo, 1847) and Their Impact on Its Derived Biomaterials
by Eleonora Tassara, Boaz Orel, Micha Ilan, Dario Cavallo, Andrea Dodero, Maila Castellano, Silvia Vicini, Marco Giovine and Marina Pozzolini
Mar. Drugs 2023, 21(4), 210; https://doi.org/10.3390/md21040210 - 28 Mar 2023
Cited by 11 | Viewed by 2209
Abstract
Chondrosia reniformis (Nardo, 1847) is a marine sponge of high biotechnological interest both for its natural compound content and for its peculiar collagen, which is suitable for the production of innovative biomaterials in the form, for instance, of 2D membranes and hydrogels, exploitable [...] Read more.
Chondrosia reniformis (Nardo, 1847) is a marine sponge of high biotechnological interest both for its natural compound content and for its peculiar collagen, which is suitable for the production of innovative biomaterials in the form, for instance, of 2D membranes and hydrogels, exploitable in the fields of tissue engineering and regenerative medicine. In this study, the molecular and chemical-physical properties of fibrillar collagen extracted from specimens collected in different seasons are studied to evaluate the possible impact of sea temperature on them. Collagen fibrils were extracted from sponges harvested by the Sdot Yam coast (Israel) during winter (sea temperature: 17 °C) and during summer (sea temperature: 27 °C). The total AA composition of the two different collagens was evaluated, together with their thermal stability and glycosylation level. The results showed a lower lysyl-hydroxylation level, lower thermal stability, and lower protein glycosylation level in fibrils extracted from 17 °C animals compared to those from 27 °C animals, while no differences were noticed in the GAGs content. Membranes obtained with fibrils deriving from 17 °C samples showed a higher stiffness if compared to the 27 °C ones. The lower mechanical properties shown by 27 °C fibrils are suggestive of some unknown molecular changes in collagen fibrils, perhaps related to the creeping behavior of C. reniformis during summer. Overall, the differences in collagen properties gain relevance as they can guide the intended use of the biomaterial. Full article
Show Figures

Figure 1

28 pages, 8646 KiB  
Article
Acanthopharynx Marine Nematodes (Nematoda, Chromadoria, Desmodoridae) Dwelling in Tropical Demosponges: Integrative Taxonomy with Description of a New Species
by Alexei Tchesunov, Patricia Rodríguez García, Ulyana Simakova and Vadim Mokievsky
Diversity 2023, 15(1), 48; https://doi.org/10.3390/d15010048 - 1 Jan 2023
Cited by 4 | Viewed by 2569
Abstract
In the exploration of the meiofauna associated with sponges and corals in the shallows of Cuba, we investigated nine species of sponges (Demospongia), wherein 26 nematode species were revealed. Most nematode specimens (50–95% of all individuals) in all sponge samples belonged to the [...] Read more.
In the exploration of the meiofauna associated with sponges and corals in the shallows of Cuba, we investigated nine species of sponges (Demospongia), wherein 26 nematode species were revealed. Most nematode specimens (50–95% of all individuals) in all sponge samples belonged to the family Desmodoridae (order Desmodorida), followed by the family Chromadoridae (order Chromadorida). A major part of Desmodoridae is constituted by the genus Acanthopharynx. A statistical morphometric analysis (principal component analysis and multidimensional scaling with testing via analysis of similarities) revealed two close cohorts that differed in size and pharynx shape. Molecular genetic analyses (COI, 18S, and 28S) also distinguished two groups of specimens that corresponded to morphometric cohorts. Based on the morphometry and molecular genetics, the larger-sized group was defined as Acanthopharynx micans (Eberth, 1873), while the smaller-sized group was considered A. parva sp. n. In light of the taxonomic review of the Acanthopharynx, emended generic diagnosis, and the annotated list of ten valid species, A. parva sp. n. differed from other Acanthopharynx species by its peculiar shape of the pharynx (gradually widened to cardia), smaller body size, and pattern of precloacal organs. Full article
(This article belongs to the Special Issue Meiofauna: Biodiversity, Ecology and Role in Ecosystems)
Show Figures

Figure 1

20 pages, 4340 KiB  
Article
Electrolysis as a Universal Approach for Isolation of Diverse Chitin Scaffolds from Selected Marine Demosponges
by Krzysztof Nowacki, Maciej Galiński, Andriy Fursov, Alona Voronkina, Heike Meissner, Iaroslav Petrenko, Allison L. Stelling and Hermann Ehrlich
Mar. Drugs 2022, 20(11), 665; https://doi.org/10.3390/md20110665 - 25 Oct 2022
Cited by 10 | Viewed by 3817
Abstract
Three-dimensional chitinous scaffolds often used in regenerative medicine, tissue engineering, biomimetics and technology are mostly isolated from marine organisms, such as marine sponges (Porifera). In this work, we report the results of the electrochemical isolation of the ready to use chitinous matrices from [...] Read more.
Three-dimensional chitinous scaffolds often used in regenerative medicine, tissue engineering, biomimetics and technology are mostly isolated from marine organisms, such as marine sponges (Porifera). In this work, we report the results of the electrochemical isolation of the ready to use chitinous matrices from three species of verongiid demosponges (Aplysina archeri, Ianthella basta and Suberea clavata) as a perfect example of possible morphological and chemical dimorphism in the case of the marine chitin sources. The electrolysis of concentrated Na2SO4 aqueous solution showed its superiority over the chemical chitin isolation method in terms of the treatment time reduction: only 5.5 h for A. archeri, 16.5 h for I. basta and 20 h for the S. clavata sample. Further investigation of the isolated scaffolds by digital microscopy and SEM showed that the electrolysis-supported isolation process obtains chitinous scaffolds with well-preserved spatial structure and it can be competitive to other alternative chitin isolation techniques that use external accelerating factors such as microwave irradiation or atmospheric plasma. Moreover, the infrared spectroscopy (ATR-FTIR) proved that with the applied electrochemical conditions, the transformation into chitosan does not take place. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Graphical abstract

15 pages, 3453 KiB  
Review
A Review on Genus Halichondria (Demospongiae, Porifera)
by Josephine Goldstein and Peter Funch
J. Mar. Sci. Eng. 2022, 10(9), 1312; https://doi.org/10.3390/jmse10091312 - 16 Sep 2022
Cited by 8 | Viewed by 4757
Abstract
Demosponges of the genus Halichondria Fleming (1828) are common in coastal marine ecosystems worldwide and have been well-studied over the last decades. As ecologically important filter feeders, Halichondria species represent potentially suitable model organisms to link and fill in existing knowledge gaps in [...] Read more.
Demosponges of the genus Halichondria Fleming (1828) are common in coastal marine ecosystems worldwide and have been well-studied over the last decades. As ecologically important filter feeders, Halichondria species represent potentially suitable model organisms to link and fill in existing knowledge gaps in sponge biology, providing important novel insights into the physiology and evolution of the sponge holobiont. Here we review studies on the morphology, taxonomy, geographic distribution, associated fauna, life history, hydrodynamic characteristics, and coordinated behavior of Halichondria species. Full article
(This article belongs to the Special Issue Filter-Feeding in Marine Invertebrates)
Show Figures

Figure A1

15 pages, 53927 KiB  
Article
Identification and Current Palaeobiological Understanding of “Keratosa”-Type Nonspicular Demosponge Fossils in Carbonates: With a New Example from the Lowermost Triassic, Armenia
by Cui Luo, Yu Pei, Sylvain Richoz, Qijian Li and Joachim Reitner
Life 2022, 12(9), 1348; https://doi.org/10.3390/life12091348 - 30 Aug 2022
Cited by 12 | Viewed by 2462
Abstract
Structures similar to fossilized nonspicular demosponges have been reported in carbonates throughout the Phanerozoic and recently in rocks dating back to 890 Ma ago. Interpretation of these records is increasingly influential to our understanding of metazoans in multiple aspects, including their early evolution, [...] Read more.
Structures similar to fossilized nonspicular demosponges have been reported in carbonates throughout the Phanerozoic and recently in rocks dating back to 890 Ma ago. Interpretation of these records is increasingly influential to our understanding of metazoans in multiple aspects, including their early evolution, the ecology in fossil reefs, and recovery after mass extinction events. Here, we propose six identification criteria of “Keratosa”-type nonspicular demosponge fossils based on the well-established taphonomical models and their biological characteristics. Besides, sponge fossils of this kind from the lowermost Triassic of Chanakhchi (Armenia) are described with a 3-D reconstruction to exemplify the application of these criteria in recognition of such organisms. Subsequently, the state-of-the-art understanding of the taxonomy and evolution of these fossil sponges, a previously poorly addressed topic, is summarized. The morphology of the Triassic Chanakhchi fossils indicates an affinity with verongimorphs, a group that may have evolved by Cambrian Age 3. Other than that, further efforts are encouraged to forge quantitative criteria based on the here proposed descriptive version and to explore the taxonomic diversity and evolutionary details of these fossil nonspicular demosponges. Full article
(This article belongs to the Section Paleobiology)
Show Figures

Figure 1

10 pages, 3490 KiB  
Article
Spatial Ecology of the Association between Demosponges and Nemalecium lighti at Bonaire, Dutch Caribbean
by Jacopo Gobbato, Andrea Magrini, Jaaziel E. García-Hernández, Francesca Virdis, Paolo Galli, Davide Seveso and Simone Montano
Diversity 2022, 14(8), 607; https://doi.org/10.3390/d14080607 - 28 Jul 2022
Cited by 1 | Viewed by 2606
Abstract
Coral reefs are known to be among the most biodiverse marine ecosystems and one of the richest in terms of associations and species interactions, especially those involving invertebrates such as corals and sponges. Despite that, our knowledge about cryptic fauna and their ecological [...] Read more.
Coral reefs are known to be among the most biodiverse marine ecosystems and one of the richest in terms of associations and species interactions, especially those involving invertebrates such as corals and sponges. Despite that, our knowledge about cryptic fauna and their ecological role remains remarkably scarce. This study aimed to address this gap by defining for the first time the spatial ecology of the association between the epibiont hydrozoan Nemalecium lighti and the Porifera community of shallow coral reef systems at Bonaire. In particular, the host range, prevalence, and distribution of the association were examined in relation to different sites, depths, and dimensions of the sponge hosts. We report Nemalecium lighti to be in association with 9 out of 16 genera of sponges encountered and 15 out of 16 of the dive sites examined. The prevalence of the hydroid–sponge association in Bonaire reef was 6.55%, with a maximum value of over 30%. This hydrozoan has been found to be a generalist symbiont, displaying a strong preference for sponges of the genus Aplysina, with no significant preference in relation to depth. On the contrary, the size of the host appeared to influence the prevalence of association, with large tubular sponges found to be the preferred host. Although further studies are needed to better understand the biological and ecological reason for these results, this study improved our knowledge of Bonaire’s coral reef cryptofauna diversity and its interspecific associations. Full article
(This article belongs to the Special Issue Diversity of Coral-Associated Fauna II)
Show Figures

Figure 1

Back to TopTop