Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = delta-radiomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 729 KiB  
Systematic Review
Can Radiomics Predict Pathologic Complete Response After Neoadjuvant Chemoradiotherapy for Rectal Cancer? A Systematic Review and Meta-Analysis of Diagnostic-Accuracy Studies
by Fotios Seretis, Antonia Panagaki, Stavroula Tzamouri, Tania Triantafyllou, Charikleia Triantopoulou and Dimitrios Theodorou
J. Pers. Med. 2025, 15(6), 244; https://doi.org/10.3390/jpm15060244 - 10 Jun 2025
Viewed by 522
Abstract
Background: The rectal cancer treatment paradigm is rapidly changing with the advent of total neoadjuvant therapy and non-operative management approaches in responders. A good clinical response to neoadjuvant treatment documented by magnetic resonance imaging, endoscopy and clinical examination corresponds, to a large extent, [...] Read more.
Background: The rectal cancer treatment paradigm is rapidly changing with the advent of total neoadjuvant therapy and non-operative management approaches in responders. A good clinical response to neoadjuvant treatment documented by magnetic resonance imaging, endoscopy and clinical examination corresponds, to a large extent, to a pathologic complete response, as assessed in surgical specimens. Methods: We undertook a systematic review and meta-analysis on the MRI-based omics approach to predicting pathologic complete responses. Results: A total of 29 studies with relevant data available reporting on a total of 4486 patients were eligible for meta-analysis. The calculated values for the area under the curve in receiver operator curves of diagnostic accuracy for radiomics-only and radiomics-combined-with-clinical-data models were 0.80 and 0.88, respectively, for studies incorporating baseline imaging data only. The value for studies using delta radiomic data was 0.86, and those for studies using data from the post-neoadjuvant setting were 0.75 and 0.83, respectively, for the radiomics-only and radiomics-combined-with-clinical-data models. Conclusions: Radiomics-based prediction models for pathologic complete response assessment might further enable individualized treatment decisions to be made in patients with rectal cancer. Full article
(This article belongs to the Special Issue Novel Biomarkers in the Diagnostics of Cancer)
Show Figures

Figure 1

14 pages, 2102 KiB  
Article
MRI Delta Radiomics to Track Early Changes in Tumor Following Radiation: Application in Glioblastoma Mouse Model
by Mohammed S. Alshuhri, Haitham F. Al-Mubarak, Abdulrahman Qaisi, Ahmad A. Alhulail, Abdullah G. M. AlMansour, Yahia Madkhali, Sahal Alotaibi, Manal Aljuhani, Othman I. Alomair, A. Almudayni and F. Alablani
Biomedicines 2025, 13(4), 815; https://doi.org/10.3390/biomedicines13040815 - 28 Mar 2025
Viewed by 974
Abstract
Background/Objectives: Glioblastoma (GBM) is an aggressive and lethal primary brain tumor with a poor prognosis, with a 5-year survival rate of approximately 5%. Despite advances in oncologic treatments, including surgery, radiotherapy, and chemotherapy, survival outcomes have remained stagnant, largely due to the [...] Read more.
Background/Objectives: Glioblastoma (GBM) is an aggressive and lethal primary brain tumor with a poor prognosis, with a 5-year survival rate of approximately 5%. Despite advances in oncologic treatments, including surgery, radiotherapy, and chemotherapy, survival outcomes have remained stagnant, largely due to the failure of conventional therapies to address the tumor’s inherent heterogeneity. Radiomics, a rapidly emerging field, provides an opportunity to extract features from MRI scans, offering new insights into tumor biology and treatment response. This study evaluates the potential of delta radiomics, the study of changes in radiomic features over time in response to treatment or disease progression, exploring the potential of delta radiomics to track temporal radiation changes in tumor morphology and microstructure. Methods: A cohort of 50 female CD1 nude mice was injected intracranially with G7 glioblastoma cells and divided into irradiated (IR) and non-irradiated (non-IR) groups. MRI scans were performed at baseline (week 11) and post-radiation (weeks 12 and 14), and radiomic features, including shape, histogram, and texture parameters, were extracted and analyzed to capture radiation-induced changes. The most robust features were those identified through intra-observer reproducibility assessment, ensuring reliability in feature selection. A machine learning model was developed to classify irradiated tumors based on delta radiomic features, and statistical analyses were conducted to evaluate feature feasibility, stability, and predictive performance. Results: Our findings demonstrate that delta radiomics effectively captured significant temporal variations in tumor characteristics. Delta radiomics features exhibited distinct patterns across different time points in the IR group, enabling machine learning models to achieve a high accuracy. Conclusions: Delta radiomics offers a robust, non-invasive method for monitoring the treatment of glioblastoma (GBM) following radiation therapy. Future research should prioritize the application of MRI delta radiomics to effectively capture short-term changes resulting from intratumoral radiation effects. This advancement has the potential to significantly enhance treatment monitoring and facilitate the development of personalized therapeutic strategies. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

13 pages, 1554 KiB  
Article
Predictive Potential of Contrast-Enhanced MRI-Based Delta-Radiomics for Chemoradiation Responsiveness in Muscle-Invasive Bladder Cancer
by Kohei Isemoto, Yuma Waseda, Motohiro Fujiwara, Koichiro Kimura, Daisuke Hirahara, Tatsunori Saho, Eichi Takaya, Yuki Arita, Thomas C. Kwee, Shohei Fukuda, Hajime Tanaka, Soichiro Yoshida and Yasuhisa Fujii
Diagnostics 2025, 15(7), 801; https://doi.org/10.3390/diagnostics15070801 - 21 Mar 2025
Cited by 1 | Viewed by 926
Abstract
Background/Objectives: Delta-radiomics involves analyzing feature variations at different acquisition time-points. This study aimed to assess the utility of delta-radiomics feature analysis applied to contrast-enhanced (CE) and non-contrast-enhanced (NE) T1-weighted images (WI) in predicting the therapeutic response to chemoradiotherapy (CRT) in patients diagnosed [...] Read more.
Background/Objectives: Delta-radiomics involves analyzing feature variations at different acquisition time-points. This study aimed to assess the utility of delta-radiomics feature analysis applied to contrast-enhanced (CE) and non-contrast-enhanced (NE) T1-weighted images (WI) in predicting the therapeutic response to chemoradiotherapy (CRT) in patients diagnosed with muscle-invasive bladder cancer (MIBC). Methods: Forty-three patients with non-metastatic MIBC (cT2–4N0M0) who underwent partial or radical cystectomy after induction CRT were, retrospectively, reviewed. Pathological complete response (pCR) to CRT was defined as the absence of residual viable tumor cells in the cystectomy specimen. Identical volumes of interest corresponding to the index bladder cancer lesions on CE- and NE-T1WI on pre-therapeutic 1.5-T MRI were collaboratively delineated by one radiologist and one urologist. Texture analysis was performed using “LIFEx” software. The subtraction of radiological features between CE- and NE-T1WI yielded 112 delta-radiomics features, which were utilized in multiple machine-learning algorithms to construct optimal predictive models for CRT responsiveness. Additionally, the predictive performance of the radiomics model constructed using CE-T1WI alone was assessed. Results: Twenty-one patients (49%) achieved pCR. The best-performing delta-radiomics model, employing the “Extreme Gradient Boosting” algorithm, yielded an area under the receiver operating characteristic curve (AUC) of 0.85 (95% confidence interval [CI]: 0.75–0.95), utilizing four signal intensity-based delta-radiomics features. This outperformed the best model derived from CE-T1WI alone (AUC: 0.63, 95% CI: 0.50–0.75), which incorporated two morphological features and one signal intensity-based radiomics feature. Conclusions: Delta-radiomics analysis applied to pre-therapeutic CE- and NE-MRI demonstrated promising predictive ability for CRT responsiveness prior to treatment initiation. Full article
(This article belongs to the Special Issue Diagnosis and Prognosis of Urological Diseases)
Show Figures

Figure 1

18 pages, 3505 KiB  
Article
Delta Radiomics and Tumor Size: A New Predictive Radiomics Model for Chemotherapy Response in Liver Metastases from Breast and Colorectal Cancer
by Nicolò Gennaro, Moataz Soliman, Amir A. Borhani, Linda Kelahan, Hatice Savas, Ryan Avery, Kamal Subedi, Tugce A. Trabzonlu, Chase Krumpelman, Vahid Yaghmai, Young Chae, Jochen Lorch, Devalingam Mahalingam, Mary Mulcahy, Al Benson, Ulas Bagci and Yuri S. Velichko
Tomography 2025, 11(3), 20; https://doi.org/10.3390/tomography11030020 - 20 Feb 2025
Cited by 1 | Viewed by 1626
Abstract
Background/Objectives: Radiomic features exhibit a correlation with tumor size on pretreatment images. However, on post-treatment images, this association is influenced by treatment efficacy and varies between responders and non-responders. This study introduces a novel model, called baseline-referenced Delta radiomics, which integrates the [...] Read more.
Background/Objectives: Radiomic features exhibit a correlation with tumor size on pretreatment images. However, on post-treatment images, this association is influenced by treatment efficacy and varies between responders and non-responders. This study introduces a novel model, called baseline-referenced Delta radiomics, which integrates the association between radiomic features and tumor size into Delta radiomics to predict chemotherapy response in liver metastases from breast cancer (BC) and colorectal cancer (CRC). Materials and Methods: A retrospective study analyzed contrast-enhanced computed tomography (CT) scans of 83 BC patients and 84 CRC patients. Among these, 57 BC patients with 106 liver lesions and 37 CRC patients with 109 lesions underwent post-treatment imaging after systemic chemotherapy. Radiomic features were extracted from up to three lesions per patient following manual segmentation. Tumor response was assessed by measuring the longest diameter and classified according to RECIST 1.1 criteria as progressive disease (PD), partial response (PR), or stable disease (SD). Classification models were developed to predict chemotherapy response using pretreatment data only, Delta radiomics, and baseline-referenced Delta radiomics. Model performance was evaluated using confusion matrix metrics. Results: Baseline-referenced Delta radiomics performed comparably or better than established radiomics models in predicting tumor response in chemotherapy-treated patients with liver metastases. The sensitivity, specificity, and balanced accuracy in predicting response ranged from 0.66 to 0.97, 0.81 to 0.97, and 80% to 90%, respectively. Conclusions: By integrating the relationship between radiomic features and tumor size into Delta radiomics, baseline-referenced Delta radiomics offers a promising approach for predicting chemotherapy response in liver metastases from breast and colorectal cancer. Full article
(This article belongs to the Special Issue Imaging in Cancer Diagnosis)
Show Figures

Figure 1

18 pages, 3633 KiB  
Article
Radiomics-Based Prediction of Treatment Response to TRuC-T Cell Therapy in Patients with Mesothelioma: A Pilot Study
by Hubert Beaumont, Antoine Iannessi, Alexandre Thinnes, Sebastien Jacques and Alfonso Quintás-Cardama
Cancers 2025, 17(3), 463; https://doi.org/10.3390/cancers17030463 - 29 Jan 2025
Viewed by 1156
Abstract
Background/Objectives: T cell receptor fusion constructs (TRuCs), a next generation engineered T cell therapy, hold great promise. To accelerate the clinical development of these therapies, improving patient selection is a crucial pathway forward. Methods: We retrospectively analyzed 23 mesothelioma patients (85 target tumors) [...] Read more.
Background/Objectives: T cell receptor fusion constructs (TRuCs), a next generation engineered T cell therapy, hold great promise. To accelerate the clinical development of these therapies, improving patient selection is a crucial pathway forward. Methods: We retrospectively analyzed 23 mesothelioma patients (85 target tumors) treated in a phase 1/2 single arm clinical trial (NCT03907852). Five imaging sites were involved, the settings for the evaluations were Blinded Independent Central Reviews (BICRs) with double reads. The reproducibility of 3416 radiomics and delta-radiomics (Δradiomics) was assessed. The univariate analysis evaluated correlations at the target tumor level with (1) tumor diameter response; (2) tumor volume response, according to the Quantitative Imaging Biomarker Alliance; and (3) the mean standard uptake value (SUV) response, as defined by the positron emission tomography response criteria in solid tumors (PERCISTs). A random forest model predicted the response of the target pleural tumors. Results: Tumor anatomical distribution was 55.3%, 17.6%, 14.1%, and 10.6% in the pleura, lymph nodes, peritoneum, and soft tissues, respectively. Radiomics/Δradiomics reproducibility differed across tumor localizations. Radiomics were more reproducible than Δradiomics. In the univariate analysis, none of the radiomics/Δradiomics correlated with any response criteria. With an accuracy ranging from 0.75 to 0.9, three radiomics/Δradiomics were able to predict the response of target pleural tumors. Pivotal studies will require a sample size of 250 to 400 tumors. Conclusions: The prediction of responding target pleural tumors can be achieved using a machine learning-based radiomics/Δradiomics analysis. Tumor-specific reproducibility and the average values indicated that using tumor models to create an effective patient model would require combining several target tumor models. Full article
(This article belongs to the Special Issue Biomarkers and Targeted Therapy in Malignant Pleural Mesothelioma)
Show Figures

Figure 1

1 pages, 156 KiB  
Correction
Correction: Peisen et al. Can Delta Radiomics Improve the Prediction of Best Overall Response, Progression-Free Survival, and Overall Survival of Melanoma Patients Treated with Immune Checkpoint Inhibitors? Cancers 2024, 16, 2669
by Felix Peisen, Annika Gerken, Alessa Hering, Isabel Dahm, Konstantin Nikolaou, Sergios Gatidis, Thomas K. Eigentler, Teresa Amaral, Jan H. Moltz and Ahmed E. Othman
Cancers 2025, 17(1), 1; https://doi.org/10.3390/cancers17010001 - 24 Dec 2024
Viewed by 754
Abstract
There was an error in the original publication [...] Full article
15 pages, 7455 KiB  
Article
Multiomics-Based Outcome Prediction in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR)
by Haozhao Zhang, Michael Dohopolski, Strahinja Stojadinovic, Luiza Giuliani Schmitt, Soummitra Anand, Heejung Kim, Arnold Pompos, Andrew Godley, Steve Jiang, Tu Dan, Zabi Wardak, Robert Timmerman and Hao Peng
Cancers 2024, 16(19), 3425; https://doi.org/10.3390/cancers16193425 - 9 Oct 2024
Cited by 3 | Viewed by 1714
Abstract
Objectives: This retrospective study aims to develop a multiomics approach that integrates radiomics, dosiomics, and delta features to predict treatment responses in brain metastasis (BM) patients undergoing PULSAR. Methods: A retrospective study encompassing 39 BM patients with 69 lesions treated with [...] Read more.
Objectives: This retrospective study aims to develop a multiomics approach that integrates radiomics, dosiomics, and delta features to predict treatment responses in brain metastasis (BM) patients undergoing PULSAR. Methods: A retrospective study encompassing 39 BM patients with 69 lesions treated with PULSAR was undertaken. Radiomics, dosiomics, and delta features were extracted from both pre-treatment and intra-treatment MRI scans alongside dose distributions. Six individual models, alongside an ensemble feature selection (EFS) model, were evaluated. The classification task focused on distinguishing between two lesion groups based on whether they exhibited a volume reduction of more than 20% at follow-up. Performance metrics, including sensitivity, specificity, accuracy, precision, F1 score, and the area under the receiver operating characteristic (ROC) curve (AUC), were assessed. Results: The EFS model integrated the features from pre-treatment radiomics, pre-treatment dosiomics, intra-treatment radiomics, and delta radiomics. It outperformed six individual models, achieving an AUC of 0.979, accuracy of 0.917, and F1 score of 0.821. Among the top nine features of the EFS model, six features came from post-wavelet transformation and three from original images. Conclusions: The study demonstrated the feasibility of employing a data-driven multiomics approach to predict treatment outcomes in BM patients receiving PULSAR treatment. Integrating multiomics with intra-treatment decision support in PULSAR shows promise for optimizing patient management and reducing the risks of under- or over-treatment. Full article
(This article belongs to the Special Issue Personalized Radiotherapy in Cancer Care)
Show Figures

Figure 1

12 pages, 1529 KiB  
Article
Can Delta Radiomics Improve the Prediction of Best Overall Response, Progression-Free Survival, and Overall Survival of Melanoma Patients Treated with Immune Checkpoint Inhibitors?
by Felix Peisen, Annika Gerken, Alessa Hering, Isabel Dahm, Konstantin Nikolaou, Sergios Gatidis, Thomas K. Eigentler, Teresa Amaral, Jan H. Moltz and Ahmed E. Othman
Cancers 2024, 16(15), 2669; https://doi.org/10.3390/cancers16152669 - 26 Jul 2024
Cited by 2 | Viewed by 1475 | Correction
Abstract
Background: The prevalence of metastatic melanoma is increasing, necessitating the identification of patients who do not benefit from immunotherapy. This study aimed to develop a radiomic biomarker based on the segmentation of all metastases at baseline and the first follow-up CT for the [...] Read more.
Background: The prevalence of metastatic melanoma is increasing, necessitating the identification of patients who do not benefit from immunotherapy. This study aimed to develop a radiomic biomarker based on the segmentation of all metastases at baseline and the first follow-up CT for the endpoints best overall response (BOR), progression-free survival (PFS), and overall survival (OS), encompassing various immunotherapies. Additionally, this study investigated whether reducing the number of segmented metastases per patient affects predictive capacity. Methods: The total tumour load, excluding cerebral metastases, from 146 baseline and 146 first follow-up CTs of melanoma patients treated with first-line immunotherapy was volumetrically segmented. Twenty-one random forest models were trained and compared for the endpoints BOR; PFS at 6, 9, and 12 months; and OS at 6, 9, and 12 months, using as input either only clinical parameters, whole-tumour-load delta radiomics plus clinical parameters, or delta radiomics from the largest ten metastases plus clinical parameters. Results: The whole-tumour-load delta radiomics model performed best for BOR (AUC 0.81); PFS at 6, 9, and 12 months (AUC 0.82, 0.80, and 0.77); and OS at 6 months (AUC 0.74). The model using delta radiomics from the largest ten metastases performed best for OS at 9 and 12 months (AUC 0.71 and 0.75). Although the radiomic models were numerically superior to the clinical model, statistical significance was not reached. Conclusions: The findings indicate that delta radiomics may offer additional value for predicting BOR, PFS, and OS in metastatic melanoma patients undergoing first-line immunotherapy. Despite its complexity, volumetric whole-tumour-load segmentation could be advantageous. Full article
(This article belongs to the Special Issue Cancer Biomarkers—Detection and Evaluation of Response to Therapy)
Show Figures

Figure 1

14 pages, 2930 KiB  
Article
Utility of CT Radiomics and Delta Radiomics for Survival Evaluation in Locally Advanced Nasopharyngeal Carcinoma with Concurrent Chemoradiotherapy
by Yen-Cho Huang, Shih-Ming Huang, Jih-Hsiang Yeh, Tung-Chieh Chang, Din-Li Tsan, Chien-Yu Lin and Shu-Ju Tu
Diagnostics 2024, 14(9), 941; https://doi.org/10.3390/diagnostics14090941 - 30 Apr 2024
Cited by 2 | Viewed by 1650
Abstract
Background: A high incidence rate of nasopharyngeal carcinoma (NPC) has been observed in Southeast Asia compared to other parts of the world. Radiomics is a computational tool to predict outcomes and may be used as a prognostic biomarker for advanced NPC treated with [...] Read more.
Background: A high incidence rate of nasopharyngeal carcinoma (NPC) has been observed in Southeast Asia compared to other parts of the world. Radiomics is a computational tool to predict outcomes and may be used as a prognostic biomarker for advanced NPC treated with concurrent chemoradiotherapy. Recently, radiomic analysis of the peripheral tumor microenvironment (TME), which is the region surrounding the gross tumor volume (GTV), has shown prognostic usefulness. In this study, not only was gross tumor volume (GTVt) analyzed but also tumor peripheral regions (GTVp) were explored in terms of the TME concept. Both radiomic features and delta radiomic features were analyzed using CT images acquired in a routine radiotherapy process. Methods: A total of 50 patients with NPC stages III, IVA, and IVB were enrolled between September 2004 and February 2014. Survival models were built using Cox regression with clinical factors (i.e., gender, age, overall stage, T stage, N stage, and treatment dose) and radiomic features. Radiomic features were extracted from GTVt and GTVp. GTVp was created surrounding GTVt for TME consideration. Furthermore, delta radiomics, which is the longitudinal change in quantitative radiomic features, was utilized for analysis. Finally, C-index values were computed using leave-one-out cross-validation (LOOCV) to evaluate the performances of all prognosis models. Results: Models were built for three different clinical outcomes, including overall survival (OS), local recurrence-free survival (LRFS), and progression-free survival (PFS). The range of the C-index in clinical factor models was (0.622, 0.729). All radiomics models, including delta radiomics models, were in the range of (0.718, 0.872). Among delta radiomics models, GTVt and GTVp were in the range of (0.833, 0.872) and (0.799, 0.834), respectively. Conclusions: Radiomic analysis on the proximal region surrounding the gross tumor volume of advanced NPC patients for survival outcome evaluation was investigated, and preliminary positive results were obtained. Radiomic models and delta radiomic models demonstrated performance that was either superior to or comparable with that of conventional clinical models. Full article
Show Figures

Figure 1

16 pages, 750 KiB  
Article
Evaluating Outcome Prediction via Baseline, End-of-Treatment, and Delta Radiomics on PET-CT Images of Primary Mediastinal Large B-Cell Lymphoma
by Fereshteh Yousefirizi, Claire Gowdy, Ivan S. Klyuzhin, Maziar Sabouri, Petter Tonseth, Anna R. Hayden, Donald Wilson, Laurie H. Sehn, David W. Scott, Christian Steidl, Kerry J. Savage, Carlos F. Uribe and Arman Rahmim
Cancers 2024, 16(6), 1090; https://doi.org/10.3390/cancers16061090 - 8 Mar 2024
Cited by 12 | Viewed by 2964
Abstract
Objectives: Accurate outcome prediction is important for making informed clinical decisions in cancer treatment. In this study, we assessed the feasibility of using changes in radiomic features over time (Delta radiomics: absolute and relative) following chemotherapy, to predict relapse/progression and time to progression [...] Read more.
Objectives: Accurate outcome prediction is important for making informed clinical decisions in cancer treatment. In this study, we assessed the feasibility of using changes in radiomic features over time (Delta radiomics: absolute and relative) following chemotherapy, to predict relapse/progression and time to progression (TTP) of primary mediastinal large B-cell lymphoma (PMBCL) patients. Material and Methods: Given the lack of standard staging PET scans until 2011, only 31 out of 103 PMBCL patients in our retrospective study had both pre-treatment and end-of-treatment (EoT) scans. Consequently, our radiomics analysis focused on these 31 patients who underwent [18F]FDG PET-CT scans before and after R-CHOP chemotherapy. Expert manual lesion segmentation was conducted on their scans for delta radiomics analysis, along with an additional 19 EoT scans, totaling 50 segmented scans for single time point analysis. Radiomics features (on PET and CT), along with maximum and mean standardized uptake values (SUVmax and SUVmean), total metabolic tumor volume (TMTV), tumor dissemination (Dmax), total lesion glycolysis (TLG), and the area under the curve of cumulative standardized uptake value-volume histogram (AUC-CSH) were calculated. We additionally applied longitudinal analysis using radial mean intensity (RIM) changes. For prediction of relapse/progression, we utilized the individual coefficient approximation for risk estimation (ICARE) and machine learning (ML) techniques (K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Random Forest (RF)) including sequential feature selection (SFS) following correlation analysis for feature selection. For TTP, ICARE and CoxNet approaches were utilized. In all models, we used nested cross-validation (CV) (with 10 outer folds and 5 repetitions, along with 5 inner folds and 20 repetitions) after balancing the dataset using Synthetic Minority Oversampling TEchnique (SMOTE). Results: To predict relapse/progression using Delta radiomics between the baseline (staging) and EoT scans, the best performances in terms of accuracy and F1 score (F1 score is the harmonic mean of precision and recall, where precision is the ratio of true positives to the sum of true positives and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives) were achieved with ICARE (accuracy = 0.81 ± 0.15, F1 = 0.77 ± 0.18), RF (accuracy = 0.89 ± 0.04, F1 = 0.87 ± 0.04), and LDA (accuracy = 0.89 ± 0.03, F1 = 0.89 ± 0.03), that are higher compared to the predictive power achieved by using only EoT radiomics features. For the second category of our analysis, TTP prediction, the best performer was CoxNet (LASSO feature selection) with c-index = 0.67 ± 0.06 when using baseline + Delta features (inclusion of both baseline and Delta features). The TTP results via Delta radiomics were comparable to the use of radiomics features extracted from EoT scans for TTP analysis (c-index = 0.68 ± 0.09) using CoxNet (with SFS). The performance of Deauville Score (DS) for TTP was c-index = 0.66 ± 0.09 for n = 50 and 0.67 ± 03 for n = 31 cases when using EoT scans with no significant differences compared to the radiomics signature from either EoT scans or baseline + Delta features (p-value> 0.05). Conclusion: This work demonstrates the potential of Delta radiomics and the importance of using EoT scans to predict progression and TTP from PMBCL [18F]FDG PET-CT scans. Full article
(This article belongs to the Special Issue PET/CT in Cancers Outcomes Prediction)
Show Figures

Figure 1

15 pages, 1816 KiB  
Systematic Review
Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis
by Hwa-Yen Chiu, Ting-Wei Wang, Ming-Sheng Hsu, Heng-Shen Chao, Chien-Yi Liao, Chia-Feng Lu, Yu-Te Wu and Yuh-Ming Chen
Cancers 2024, 16(3), 615; https://doi.org/10.3390/cancers16030615 - 31 Jan 2024
Cited by 2 | Viewed by 2202
Abstract
Immunotherapy, particularly with checkpoint inhibitors, has revolutionized non-small cell lung cancer treatment. Enhancing the selection of potential responders is crucial, and researchers are exploring predictive biomarkers. Delta radiomics, a derivative of radiomics, holds promise in this regard. For this study, a meta-analysis was [...] Read more.
Immunotherapy, particularly with checkpoint inhibitors, has revolutionized non-small cell lung cancer treatment. Enhancing the selection of potential responders is crucial, and researchers are exploring predictive biomarkers. Delta radiomics, a derivative of radiomics, holds promise in this regard. For this study, a meta-analysis was conducted that adhered to PRISMA guidelines, searching PubMed, Embase, Web of Science, and the Cochrane Library for studies on the use of delta radiomics in stratifying lung cancer patients receiving immunotherapy. Out of 223 initially collected studies, 10 were included for qualitative synthesis. Stratifying patients using radiomic models, the pooled analysis reveals a predictive power with an area under the curve of 0.81 (95% CI 0.76–0.86, p < 0.001) for 6-month response, a pooled hazard ratio of 4.77 (95% CI 2.70–8.43, p < 0.001) for progression-free survival, and 2.15 (95% CI 1.73–2.66, p < 0.001) for overall survival at 6 months. Radiomics emerges as a potential prognostic predictor for lung cancer, but further research is needed to compare traditional radiomics and deep-learning radiomics. Full article
Show Figures

Figure 1

15 pages, 1862 KiB  
Article
Evaluating the Potential of Delta Radiomics for Assessing Tyrosine Kinase Inhibitor Treatment Response in Non-Small Cell Lung Cancer Patients
by Ting-Wei Wang, Heng-Sheng Chao, Hwa-Yen Chiu, Yi-Hui Lin, Hung-Chun Chen, Chia-Feng Lu, Chien-Yi Liao, Yen Lee, Tsu-Hui Shiao, Yuh-Min Chen, Jing-Wen Huang and Yu-Te Wu
Cancers 2023, 15(21), 5125; https://doi.org/10.3390/cancers15215125 - 24 Oct 2023
Cited by 8 | Viewed by 2245
Abstract
Our study aimed to harness the power of CT scans, observed over time, in predicting how lung adenocarcinoma patients might respond to a treatment known as EGFR-TKI. Analyzing scans from 322 advanced stage lung cancer patients, we identified distinct image-based patterns. By integrating [...] Read more.
Our study aimed to harness the power of CT scans, observed over time, in predicting how lung adenocarcinoma patients might respond to a treatment known as EGFR-TKI. Analyzing scans from 322 advanced stage lung cancer patients, we identified distinct image-based patterns. By integrating these patterns with comprehensive clinical information, such as gene mutations and treatment regimens, our predictive capabilities were significantly enhanced. Interestingly, the precision of these predictions, particularly related to radiomics features, diminished when data from various centers were combined, suggesting that the approach requires standardization across facilities. This novel method offers a potential pathway to anticipate disease progression in lung adenocarcinoma patients treated with EGFR-TKI, laying the groundwork for more personalized treatments. To further validate this approach, extensive studies involving a larger cohort are pivotal. Full article
Show Figures

Figure 1

14 pages, 2259 KiB  
Article
Development of a Model Based on Delta-Radiomic Features for the Optimization of Head and Neck Squamous Cell Carcinoma Patient Treatment
by Severina Šedienė, Ilona Kulakienė, Benas Gabrielis Urbonavičius, Erika Korobeinikova, Viktoras Rudžianskas, Paulius Algirdas Povilonis, Evelina Jaselskė, Diana Adlienė and Elona Juozaitytė
Medicina 2023, 59(6), 1173; https://doi.org/10.3390/medicina59061173 - 19 Jun 2023
Cited by 3 | Viewed by 1972
Abstract
Background and Objectives: To our knowledge, this is the first study that investigated the prognostic value of radiomics features extracted from not only staging 18F-fluorodeoxyglucose positron emission tomography (FDG PET/CT) images, but also post-induction chemotherapy (ICT) PET/CT images. This study aimed to [...] Read more.
Background and Objectives: To our knowledge, this is the first study that investigated the prognostic value of radiomics features extracted from not only staging 18F-fluorodeoxyglucose positron emission tomography (FDG PET/CT) images, but also post-induction chemotherapy (ICT) PET/CT images. This study aimed to construct a training model based on radiomics features obtained from PET/CT in a cohort of patients with locally advanced head and neck squamous cell carcinoma treated with ICT, to predict locoregional recurrence, development of distant metastases, and the overall survival, and to extract the most significant radiomics features, which were included in the final model. Materials and Methods: This retrospective study analyzed data of 55 patients. All patients underwent PET/CT at the initial staging and after ICT. Along the classical set of 13 parameters, the original 52 parameters were extracted from each PET/CT study and an additional 52 parameters were generated as a difference between radiomics parameters before and after the ICT. Five machine learning algorithms were tested. Results: The Random Forest algorithm demonstrated the best performance (R2 0.963–0.998) in the majority of datasets. The strongest correlation in the classical dataset was between the time to disease progression and time to death (r = 0.89). Another strong correlation (r ≥ 0.8) was between higher-order texture indices GLRLM_GLNU, GLRLM_SZLGE, and GLRLM_ZLNU and standard PET parameters MTV, TLG, and SUVmax. Patients with a higher numerical expression of GLCM_ContrastVariance, extracted from the delta dataset, had a longer survival and longer time until progression (p = 0.001). Good correlations were observed between Discretized_SUVstd or Discretized_SUVSkewness and time until progression (p = 0.007). Conclusions: Radiomics features extracted from the delta dataset produced the most robust data. Most of the parameters had a positive impact on the prediction of the overall survival and the time until progression. The strongest single parameter was GLCM_ContrastVariance. Discretized_SUVstd or Discretized_SUVSkewness demonstrated a strong correlation with the time until progression. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

11 pages, 262 KiB  
Review
Image Guided Radiotherapy (IGRT) and Delta (Δ) Radiomics—An Urgent Alliance for the Front Line of the War against Head and Neck Cancers
by Camil Ciprian Mireștean, Roxana Irina Iancu and Dragoș Petru Teodor Iancu
Diagnostics 2023, 13(12), 2045; https://doi.org/10.3390/diagnostics13122045 - 13 Jun 2023
Cited by 8 | Viewed by 2704
Abstract
The identification of a biomarker that is response predictive could offer a solution for the stratification of the treatment of head and neck cancers (HNC) in the context of high recurrence rates, especially those associated with loco-regional failure. Delta (Δ) radiomics, a concept [...] Read more.
The identification of a biomarker that is response predictive could offer a solution for the stratification of the treatment of head and neck cancers (HNC) in the context of high recurrence rates, especially those associated with loco-regional failure. Delta (Δ) radiomics, a concept based on the variation of parameters extracted from medical imaging using artificial intelligence (AI) algorithms, demonstrates its potential as a predictive biomarker of treatment response in HNC. The concept of image-guided radiotherapy (IGRT), including computer tomography simulation (CT) and position control imaging with cone-beam-computed tomography (CBCT), now offers new perspectives for radiomics applied in radiotherapy. The use of Δ features of texture, shape, and size, both from the primary tumor and from the tumor-involved lymph nodes, demonstrates the best predictive accuracy. If, in the case of treatment response, promising Δ radiomics results could be obtained, even after 24 h from the start of treatment, for radiation-induced xerostomia, the evaluation of Δ radiomics in the middle of treatment could be recommended. The fused models (clinical and Δ radiomics) seem to offer benefits, both in comparison to the clinical model and to the radiomic model. The selection of patients who benefit from induction chemotherapy is underestimated in Δ radiomic studies and may be an unexplored territory with major potential. The advantage offered by “in house” simulation CT and CBCT favors the rapid implementation of Δ radiomics studies in radiotherapy departments. Positron emission tomography (PET)-CT Δ radiomics could guide the new concepts of dose escalation on radio-resistant sub-volumes based on radiobiological criteria, but also guide the “next level” of HNC adaptive radiotherapy (ART). Full article
(This article belongs to the Special Issue Radiomics in Oncology 3rd Edition)
12 pages, 1141 KiB  
Article
Delta Radiomic Analysis of Mesorectum to Predict Treatment Response and Prognosis in Locally Advanced Rectal Cancer
by Giuditta Chiloiro, Davide Cusumano, Angela Romano, Luca Boldrini, Giuseppe Nicolì, Claudio Votta, Huong Elena Tran, Brunella Barbaro, Davide Carano, Vincenzo Valentini and Maria Antonietta Gambacorta
Cancers 2023, 15(12), 3082; https://doi.org/10.3390/cancers15123082 - 7 Jun 2023
Cited by 12 | Viewed by 2182
Abstract
Background: The aim of this study is to evaluate the delta radiomics approach based on mesorectal radiomic features to develop a model for predicting pathological complete response (pCR) and 2-year disease-free survival (2yDFS) in locally advanced rectal cancer (LARC) patients undergoing neoadjuvant chemoradiotherapy [...] Read more.
Background: The aim of this study is to evaluate the delta radiomics approach based on mesorectal radiomic features to develop a model for predicting pathological complete response (pCR) and 2-year disease-free survival (2yDFS) in locally advanced rectal cancer (LARC) patients undergoing neoadjuvant chemoradiotherapy (nCRT). Methods: Pre- and post-nCRT MRIs of LARC patients treated at a single institution from May 2008 to November 2016 were retrospectively collected. Radiomic features were extracted from the GTV and mesorectum. The Wilcoxon–Mann–Whitney test and area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the features in predicting pCR and 2yDFS. Results: Out of 203 LARC patients, a total of 565 variables were evaluated. The best performing pCR prediction model was based on two GTV features with an AUC of 0.80 in the training set and 0.69 in the validation set. The best performing 2yDFS prediction model was based on one GTV and two mesorectal features with an AUC of 0.79 in the training set and 0.70 in the validation set. Conclusions: The results of this study suggest a possible role for delta radiomics based on mesorectal features in the prediction of 2yDFS in patients with LARC. Full article
(This article belongs to the Special Issue Advances in Radiotherapy and Prognosis of Rectal Cancer)
Show Figures

Figure 1

Back to TopTop