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Simple Summary: In our research, we analyzed the CT scans of 322 advanced lung cancer patients
over time to see how long they might remain disease-free after undergoing a specific treatment
called EGFR-TKI. By integrating the patterns from these scans with other medical data, such as gene
mutations and treatment strategies, we improved our ability to predict the course of the disease.
However, when we included data from multiple centers, the consistency of our findings reduced.
Simply put, our technique can offer doctors a glimpse into the future progression of lung cancer,
and aid in tailoring treatments. This approach could be groundbreaking in lung adenocarcinoma
treatment, but it needs further investigation.

Abstract: Our study aimed to harness the power of CT scans, observed over time, in predicting
how lung adenocarcinoma patients might respond to a treatment known as EGFR-TKI. Analyzing
scans from 322 advanced stage lung cancer patients, we identified distinct image-based patterns.
By integrating these patterns with comprehensive clinical information, such as gene mutations
and treatment regimens, our predictive capabilities were significantly enhanced. Interestingly, the
precision of these predictions, particularly related to radiomics features, diminished when data
from various centers were combined, suggesting that the approach requires standardization across
facilities. This novel method offers a potential pathway to anticipate disease progression in lung
adenocarcinoma patients treated with EGFR-TKI, laying the groundwork for more personalized
treatments. To further validate this approach, extensive studies involving a larger cohort are pivotal.

Keywords: time-variable radiomics; computer tomography (CT) scans; progression-free survival
(PFS); lung adenocarcinoma; epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI);
delta radiomics signatures; personalized treatment strategies

1. Introduction

The treatment landscape for non-small cell lung cancer (NSCLC) has experienced
significant advancements over the past decade, largely driven by the identification of
actionable molecular alterations and the subsequent development of targeted therapies,
including tyrosine kinase inhibitors (TKIs) [1,2]. Intriguingly, there have been revelations
indicating enhanced prognosis when conventional treatments are complemented with
traditional Chinese medicine [3,4]. Despite these advances, accurately assessing treatment
responses to TKIs remain critical challenges for the management of patients with NSCLC [5].
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Conventional imaging methods such as computed tomography (CT), magnetic resonance
imaging (MRI), and positron emission tomography (PET) have limitations in capturing the
complexities of tumor biology and its response to targeted therapies [6,7].

To overcome the limitations of traditional imaging methods, a novel approach called
“radiomics” has emerged. Radiomics involves the high-throughput extraction of quanti-
tative features from medical images, providing insights into tumor phenotypes and their
association with clinical outcomes such as treatment response, prognosis, and disease pro-
gression [8–10]. Radiomics has shown promise in various cancer types, including NSCLC,
by allowing the non-invasive evaluation of tumor heterogeneity, which is often an impor-
tant determinant of treatment response [11,12]. To ensure reproducibility and comparability
across different studies, software platforms, and imaging modalities, the Image Biomarker
Standardization Initiative (IBSI) was established. This collaborative effort aims to establish
standardized definitions, nomenclature, and reporting guidelines for radiomic features,
providing a comprehensive reference manual containing detailed descriptions of radiomic
features and their calculations, as well as recommendations for image pre-processing
and quality control [13]. Additionally, delta radiomics, which focuses on the temporal
changes in radiomic features, has demonstrated potential in improving the sensitivity and
specificity of treatment response assessment in cancer patients, as highlighted by several
studies [14,15].

EGFR-TKI therapy represents a paradigm shift in the treatment of non-small cell
lung cancer (NSCLC). The epidermal growth factor receptor (EGFR) is a transmembrane
protein that, when mutated, can promote rapid cell proliferation and tumor progression
in NSCLC. Specifically targeting these mutations, EGFR-TKIs (Tyrosine Kinase Inhibitors)
have shown significant efficacy in patients, offering improved progression-free survival
and overall response rates compared to traditional chemotherapies. The journey started
with first-generation TKIs like erlotinib and gefitinib, which demonstrated marked effec-
tiveness against tumors harboring EGFR exon 19 deletions or exon 21 (L858R) substitution
mutations [16]. However, resistance, often due to the emergence of the T790M mutation, led
to the development of second- and third-generation TKIs. Osimertinib, a third-generation
TKI, has shown substantial activity against T790M-positive NSCLC and boasts a better
side-effect profile [17]. With the evolving landscape of targeted therapies, EGFR-TKI ther-
apy underscores the importance of molecular profiling in NSCLC to tailor treatments to
individual patients.

Recent studies have applied delta radiomics to investigate treatment response in
NSCLC patients receiving TKIs or immunotherapy and reported promising
results [18–20]. However, the field of delta radiomics is still in its infancy, and several chal-
lenges need to be addressed to ensure the robustness and reproducibility of the findings,
such as standardization of image acquisition, pre-processing, and feature extraction [21,22].
In addition to addressing methodological challenges, the application of advanced machine
learning and artificial intelligence techniques can further enhance the predictive power
of delta radiomics by identifying complex patterns and interactions between radiomic
features and clinical variables [23,24].

Our study aimed to investigate the potential of a time-variable radiomics signatures
derived from time-serial CT scans to accurately predict progression-free survival (PFS) and
stratify the risk of acquired resistance in lung adenocarcinoma patients undergoing EGFR-
TKI treatment. Another key aspect of this study was the comprehensive evaluation of
prognostic factors in NSCLC patients receiving EGFR-TKI therapy. We integrated extensive
clinical data, including EGFR gene mutation status, TKI usage, and patient clinical staging,
along with laboratory data, to enhance the predictive performance of PFS.

2. Materials and Methods
2.1. Patient Population and Selection Criteria

This study retrospectively included 226 NSCLC patients treated with targeted therapy
at Taipei Veterans General Hospital between 2018 and 2019. The patient dataset was col-



Cancers 2023, 15, 5125 3 of 15

lected in accordance with the following inclusion criteria: (1) having more than stage IIIB
NSCLC in accordance with the eighth edition of the American Joint Committee on Cancer
staging system [25], (2) having pathologically confirmed NSCLC based on molecular exam-
ination of surgical or tissue biopsy specimens, (3) receiving first- and second-generation
EGFR–TKIs in accordance with the NCCN treatment guidelines [26], (4) having high-quality
contrast computed tomography (CT) findings of the chest before dosing and 6 to 16 weeks
after dosing, and (5) having complete clinical information. This study was approved by the
Institutional Review Board, which waived the requirement for informed consent.

To ensure data consistency and quality, several exclusion criteria were applied in the
study. A detailed explanation of the exclusion criteria is provided in the Supplementary
Materials. Patients with mutations other than EGFR mutations, ALK fusion, KRAS muta-
tions, or BRAF mutations, as well as those who received third-generation EGFR-TKIs as
the first-line therapy, had no visible tumor lesions on images, or had insufficient follow-up
information were excluded. In total, 23 ALK-positive patients, one BRAF-positive patient,
and nine patients treated with Osimertinib were excluded, as were patients with missing
dosing time or clinical data, lost follow-ups, or who had no lesions. Additionally, patients
who experienced early death, early progression disease, or follow-up CT scans that were
not between 6–16 weeks were excluded. A second validation dataset of 96 NSCLC patients
treated with targeted therapy at Taichung Veterans General Hospital between 2018 and
2019 was obtained with the same inclusion and exclusion criteria.

The Institutional Review Board of Taipei Veterans General Hospital and Taichung
Veterans General Hospital approved the retrospective study (2021-09-009BCF) and waived
the need for informed patient consent. The study was conducted in accordance with the
declaration of Helsinki.

2.2. CT Data and Image Preprocessing

All those who were eligible underwent baseline chest CT scans within 2 months before
and 6 to 16 months after the EGFR-TKI therapy. The study used progression-free survival
(PFS) as the primary endpoint, defined as tumor growth, metastasis, adverse reactions
necessitating a change in treatment regimen, or patient death. Several preprocessing steps
were performed on acquired CT images before the subsequent radiomics analysis. First,
the resolution of the CT was adjusted to be the same with a pixel size of 1 × 1 × 1 mm3.
Secondly, the intensities of the CT were converted into normalized ranges (Z-core trans-
formation) on the basis of the mean and standard deviation of the image set. Finally,
low-pass (L)- and high-pass (H)-dimensional wavelet filters were applied to the three axes
of the CT to produce eight image sets: LLL, LLH, LHL, LHH, HHL, HLH, HLL, and HHH
wavelet-filtered images.

2.3. Radiomic Feature Extraction

A team of experienced radiologists and certified pulmonologists evaluated the quality
of the CT images and identified regions of interest (ROIs) for analysis. For the purpose of
this study, primary tumors were segmented separately from metastatic lesions, and only the
primary tumors were included in the ROI analysis. Soft-tissue and lung CT images were
used for ROI delineation, with soft-tissue settings used to identify tumors, lung collapse,
and fluid components, and lung settings used to identify tumor boundaries.

Radiomic features, including histograms and geometric and texture features (GLCM,
GLRLM, and LBP), were extracted from all image sets, including the eight wavelet decom-
position images and original CT images. GLCM and GLRLM values were aggregated by
averaging the three-dimensional orientation matrix for optimal rotation invariance during
feature extraction. LBP features were computed slice by slice, and a histogram analysis
of the LBP matrices of all CT and MRI slices was performed. A total of 593 radiological
features were generated for each primary tumor ROI [27,28]. All image preprocessing
procedures and subsequent radiomics analyses were performed using established plat-
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forms and adhered to the IBSI standards [13]. Table S1 lists the formulas used for the
radiomics analysis.

To ensure the reliability and reproducibility of the radiomic features, two team mem-
bers conducted a test–retest analysis by performing segmentations on 30 randomly selected
patients. An interclass correlation coefficient (ICC) greater than 0.80 was deemed to indicate
excellent reliability and was used to exclude features with low intra-observer agreement.
Finally, the remaining features were used to calculate delta radiomic features based on
following formula.

Delta radiomics =

(
Radiomics follow − Radiomics pretreat

Radiomics pretreat

)
(1)

Delta radiomics =
1

Time difference
×

(
Radiomics follow − Radiomics pretreat

Radiomics pretreat

)
(2)

Delta radiomics =
1

Time difference
× (log (Radiomics follow)− log (Radiomics pretreat)) (3)

2.4. Feature Selection and Predictive Modeling

The TVGH dataset was partitioned using the hold-out method, allocating 70% of the
patients to the training set and the remaining 30% to the test set. To investigate the dataset’s
applicability in another center, an experiment was conducted by combining the TVGH and
TCGH datasets. This combined set was then divided using the same 70–30% ratio. Missing
values in laboratory data are imputed using the missing forest method [29]. To identify
essential clinical features while minimizing redundancy for progression-free survival (PFS)
prediction, a two-stage feature selection strategy was executed on the training dataset. The
initial statistical analyses incorporated dummy encoding to transform categorical variables,
which were subsequently combined with continuous variables and subjected to univariate
Cox proportional hazard regression. A significance level of p < 0.1 served as the selection
criterion during the first stage. In the second stage, the selected features were input into a
multivariate Cox proportional hazard regression model, retaining variables with p < 0.1 for
further analysis.

For radiomic variables, a three-stage feature selection strategy was applied to the training
dataset. The first stage involved comparing pretreatment radiomics, follow-up radiomics,
and delta radiomics utilizing Equations (1)–(3). The preliminary statistical tests employed a
significance threshold of p < 0.05 in the Cox proportional hazard regression model. In the
second stage, features with a variance inflation factor greater than five were eliminated. In
the third stage, the selected features were input into a multivariate Cox proportional hazard
regression model, and the top five features with the largest coefficients were chosen to train a
CoxPH model. The results were evaluated by comparing the area under the curve (AUC) at
the median PFS (383 days) using 5-fold cross-validation, repeated 10 times.

To ascertain the optimal feature selection and machine learning model, a two-stage
feature selection strategy was implemented on the training dataset. The preliminary
statistical tests employed a significance threshold of p < 0.05 in the Cox proportional hazard
regression model. Subsequently, an evaluation comprising four feature selection algorithms
(Kbest, Lasso, Ridge, Elastic net) was conducted in tandem with five machine learning
models (CoxPH, Survival tree, Random survival forest, Fast SVM, Gradient boosting tree)
to identify the optimal performance model containing five radiomic features. The final
selected radiomics features were again selected with p < 0.1 in multivariate CoxPH model.
A correlation matrix using Pearson correlation coefficients was plotted to analyze the
associations between clinical and radiomic features.

The utilization of the Youden index in this context is pivotal for stratifying patients
based on their likelihood of disease progression, especially in a scenario where timely
intervention can influence outcomes. By leveraging the ROC curve generated from the
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training set, the Youden index provided a classification threshold for predicting outcomes.
Applying this threshold, both the training and validation data were categorized into high-
risk and low-risk groups. Kaplan–Meier curves, renowned for their efficacy in survival
analysis, were then crafted using the event time data, underscoring the differences between
these two risk groups. Specifically, those in the “high-risk” group demonstrated a shorter
progression-free survival (PFS), indicating a more rapid disease progression. In contrast,
the “low-risk” group showcased a longer PFS, suggesting a prolonged period without
disease progression, thereby implying a more favorable response to the given treatment.
The overall workflow of the study is shown in Figure 1.
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2.5. Statistical Analysis

The chi-squared test was used to assess the statistical differences of categorical vari-
ables between the training and testing sets. The log-rank test was employed to assess
the statistical differences between the high-risk and low-risk groups based on the optimal
threshold ascertained from the training set of included patients. The statistical power
of the log-rank test was calculated considering an α of 0.05, the estimated hazard ratio,
and the sample size. Time-dependent receiver operating characteristic (ROC) curves, the
area under the ROC curve (AUC), and the concordance index (C-index) were estimated to
evaluate the predictive performance of survival status at various time points, namely 6, 9,
12, and 15 months. A bootstrap resampling technique, in conjunction with the paired t-test,
was utilized to perform statistical comparisons of the predictive efficacy among the five
radiomic aggregation methods. Both the log-rank tests and paired t-tests were two-sided,
with statistical significance established at a p-value of 0.05 or lower. The log-rank test with
a significance level of 0.05 was used to determine the differences between survival curves.
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3. Results
3.1. Demographic and Clinical Characteristics of the Patient Cohort

Out of a total of 322 patients, 158 were categorized into the training group, 68 into the
test group, and 96 into the external validation group (Table 1). Demographic and clinical
characteristics varied across these groups. Females constituted 62.7% of the training group, a
notable difference from the 51.5% in the test group and 59.4% in the external group. As for
smoking status, 22.2% of the training group were smokers, while the test and external groups
reported 23.8% and 21.9% smokers, respectively. In the context of the ECOG PS scores, the
training group demonstrated a distribution where 31.0% had a score of 0, 57.6% a score of 1,
7.0% a score of 2, and a minority of 4.4% surpassed a score of 2. In comparison, in the test
group, 51.5% scored a 0, 41.2% a 1, 5.9% a 2, and 1.5% had scores exceeding 2. Meanwhile, the
external group had 4.2% of patients with a score of 0, a majority of 67.7% with a score of 1,
10.4% with a 2, and a significant 17.6% with scores above 2. Histologically, adenocarcinoma
was the predominant form of NSCLC in all groups: 98.1% in the training group, 95.6% in the
test group, and 92.7% in the external group. Squamous cell carcinoma was minimal with only
1.3% in the training group, 2.9% in the test group, and absent in the external group.

Table 1. Characteristics of the 322 recruited NSCLC patients.

Characteristics Training (n = 158) Test (n = 68) TCGH (n = 96)

Age
<60, N (%) 70 (44.3) 22 (32.4) 29 (30.2)
>60, N (%) 88 (55.7) 46 (67.6) 67 (69.8)

Gender
Female, N (%) 99 (62.7) 35 (51.5) 57 (59.4)

Smoking status
Smoker, N (%) 35 (22.2) 23 (33.8) 21(21.9)

ECOG PS
0, N (%) 49 (31.0) 35 (51.5) 4 (4.2)
1, N (%) 91 (57.6) 28 (41.2) 65 (67.7)
2, N (%) 11 (7.0) 4 (5.9) 10 (10.4)
>2, N (%) 7 (4.4) 1 (1.5) 17 (17.6)

Histology of NSCLC
Adenocarcinoma, N (%) 155 (98.1) 65 (95.6) 89 (92.7)
Squamous cell carcinoma, N (%) 1 (1.3) 2 (2.9) 0 (0)
Other 2 (0.6) 1 (1.5) 7 (7.3)

Clinical T stage
1, N (%) 19 (12.0) 10 (14.7) 10 (10.4)
2, N (%) 41 (25.9) 24 (35.3) 23 (24)
3, N (%) 27 (17.1) 9 (13.2) 6 (6.2)
4, N (%) 67 (42.4) 23 (33.8) 57 (59.4)
None 4 (2.5) 2 (2.9) 0 (0)

Clinical N stage
0, N (%) 45 (28.5) 14 (20.6) 25 (26.0)
1, N (%) 13 (8.2) 6 (8.8) 2 (2.1)
2, N (%) 40 (25.3) 22 (32.4) 36 (37.5)
3, N (%) 59 (37.3) 25 (36.8) 33 (34.4)
None 1 (0.6) 1 (1.5) 0 (0)

Clinical M stage
0, N (%) 6 (3.8) 2 (2.9) 8 (7.9)
1a, N (%) 47 (15.2) 24 (35.3) 35 (36.5)
1b, N (%) 24 (27.4) 8 (11.8) 53 (55.2)1c, N (%) 81 (51.2) 34 (50.0)

Clinical stage
Stage IIIB, N (%) 14 (8.9) 5(7.4) 8 (8.3)
Stage IVA, N (%) 62 (39.2) 30 (44.1) 88 (91.7)Stage IVB, N (%) 82 (51.9) 33 (48.5)

EGFR mutation status
Exon 19 deletion, N (%) 70 (44.3) 31 (45.6) 29 (30.2)
Exon 21 L858R substitution, N (%) 77 (48.7) 34 (50.0) 46 (47.9)
Others, N (%) 1 (7.0) 3 (4.4) 1(1)
None, N (%) 0 (0) 0 (0) 24 (25)

TKI
Gefitinib, N (%) 29 (18.4) 9 (13.2) NA
Erlotinib, N (%) 45 (28.5) 24 (35.3) NA
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Table 1. Cont.

Characteristics Training (n = 158) Test (n = 68) TCGH (n = 96)

Afatinib, N (%) 84 (53.2) 35 (51.5) NA
Adverse drug reaction to EGFR-TKI

Yes, N (%) 73 (46.2) 32 (47.1) NA
Progress free survival,

median(months) 12.4 (6.1–18.4) 13.9 (6.2–18.4) 10.5 (5.9–15.9)
Platelet

median (IQR) 269,000 (230,250, 307,500) 269,000 (226,750–306,000) 277,000 (237,000–340,500)
Not available, N (%) 13 (8.2) 5 (7.4) 10 (10.4)

Aspartate aminotransferase
median (IQR) 23 (18–27) 23 (18–27) 23 (19–28)
Not available, N (%) 60 (38) 24 (35.3) 19 (10.8)

Total protein
median (IQR) 7.125 (6.8, 7.4) 7.075 (6.8, 7.4) 7.1 (6.8, 7.4)
Not available, N (%) 112 (70.9) 56 (82.4) 71 (74.0)

3.2. Comparison of Different Radiomics Methods

Table 2 presents the performance evaluation of various radiomic approaches, each
utilizing five radiomic features in conjunction with the CoxPH model. The findings indicate
that the delta radiomics method outperformed both the pretreatment and follow-up radiomics
methods in terms of C-index and AUC. Specifically, among the delta radiomics approaches,
the formula derived from the percentage change of radiomic features demonstrated superior
results, yielding a validation C-index of 0.58 and a time-dependent AUC of 0.60.

Table 2. Comparison of radiomics methods based on validation set.

PFS
Pretreatment Radiomics Follow Up Radiomics Delta Radiomics Delta Time Radiomics Delta log Time Radiomics

Train Valid Train Valid Train Valid Train Valid Train Valid

C-index
(95%CI)

0.55
(0.55–0.56)

0.55
(0.53–0.56)

0.58
(0.58–0.59)

0.56
(0.55–0.58)

0.63
(0.62–0.63)

0.57
(0.55–0.58)

0.63
(0.63–0.64)

0.58
(0.56–0.59)

0.58
(0.57–0.5)

0.57
(0.56–0.59)

t-AUC
(95%CI)

0.56
(0.55–0.56)

0.55
(0.52–0.57)

0.59
(0.58–0.59)

0.56
(0.54–0.59)

0.65
(0.64, 0.65)

0.57
(0.54–0.59)

0.66
(0.66–0.67)

0.60
(0.58–0.62)

0.57
(0.56–0.57)

0.56
(0.54–0.58)

3.3. Final Selected Features Included in the Model

For clinical features, the selected variables included N staging, M staging, platelet
count, aspartate aminotransferase (AST), and total protein. For delta radiomics features,
LHL_Run_Length_Nonuniformity, LHH_Long_Run_Emphasis, and HLL_Variance were
chosen. These variables exhibited significant correlations with progression-free survival
in both univariate and multivariate analyses, as shown in Table 3. Additionally, Figure 2
demonstrates that the selected delta radiomics features did not exhibit high correlations
with the clinical features. In the context of the CoxPH model, the low correlation between
delta radiomics and clinical features implies that the model’s predictive performance is not
unduly influenced by multicollinearity, thus ensuring the independence and reliability of
the selected variables in predicting progression-free survival.

Table 3. Univariate and multivariate analysis of the final selected features.

Variable
Univariate Multivariate

p-Value HR (95%CI) p-Value HR (95%CI)

N1 vs. N0 0.02 2.43 (1.17–5.07) <0.005 2.71 (1.48–4.95)
N2 vs. N0 0.24 1.38 (0.8–2.37) 0.12 1.42 (0.05–0.58)
N3 vs. N0 <0.005 2.24 (1.40–3.59) <0.005 1.92 (1.28–2.87)
N None vs. N0 <0.54 1.57 (0.37–6.67) 0.28 2.21 (0.53–9.31)
M 0.01 1.29 (1.06–1.57) <0.005 1.32 (1.12–1.56)
Platelet <0.005 1.37 (1.11–1.70) <0.005 1.36 (1.13–1.64)
Aspartate aminotransferase <0.005 1.22 (1.07–1.38) <0.005 1.31 (1.16–1.49)
Total protein 0.08 0.84 (0.7–1.02) <0.005 1.32 (1.12–1.56)
LHL_Run_Length_Nonuniformity 0.03 4.46 (1.52–4960) 0.02 198 (1.73–22,709)
LHH_Long_Run_Emphasis <0.005 14.39 (6817–4.63 × 108) <0.005 1.4 × 107 (3.8 × 104–5.1 × 109)
HLL_Variance <0.005 12.57 (2.19–72.13) <0.005 14.19 (3.48–57.89)
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3.4. Performance of Predictive Models for the Prediction of Progression Free Survival

The performance of predictions was assessed at four predetermined intervals: 6, 9, 12,
and 15 months using a test dataset. In order to deepen the comparison between models,
bootstrap random sampling was undertaken 100 times to facilitate statistical analysis.
Table 4 outlines the C-index and AUC values across five distinct radiomics methods.
Remarkably, the proportion delta radiomics method, adjusted for time, emerged as the
superior performer, registering a C-index of 0.58 and a 12-month AUC of 0.65. These
scores were notably higher than those achieved by other radiomics techniques. Meanwhile,
Table 4 displays the C-index and AUC values for the clinical, radiomics, and ensemble
methods when tested on the TVGH set. The evolution of time-dependent AUC values can
be visualized in Figure 3. Notably, a combined strategy that harnessed both clinical data
and delta-time radiomics attributes displayed a markedly enhanced performance relative
to other methods. It achieved a C-index of 0.70. Furthermore, AUC values at intervals of 6,
9, 12, and 15 months were 0.74, 0.77, 0.78, and 0.78, respectively. Lastly, Table 4 provides
the C-index and AUC values for the clinical, radiomics, and ensemble approaches on the
combined test set. While the clinical features demonstrated consistent performance, there
was a decrease in the C-index for the delta-time radiomics method by about 0.05. Similarly,
the combined method also experienced a comparable decline.Cancers 2023, 15, x FOR PEER REVIEW 10 of 18 
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Table 4. Statistical comparisons of different method on test dataset.

(a): Statistical comparisons between developed prediction models with radiomics features based on test dataset

Test set (n = 100) Model performance Pre Rad
(c-index = 0.53)

Follow Rad
(c-index = 0.55)

Delta Rad
(c-index = 0.56)

tDelta Rad
(c-index = 0.58)

tDelta log Rad
(c-index = 0.54)

6 month
Original AUC 0.57 0.53 0.53 0.61 0.51

AUC 0.52
(0.51, 0.54)

0.54
(0.52, 0.56)

0.56
(0.54, 0.57)

0.62
(0.60, 0.62)

0.56
(0.54, 0.57)

9 month
Original AUC 0.46 0.53 0.57 0.63 0.51

AUC 0.5
(0.49, 0.52)

0.53
(0.51, 0.55)

0.55
(0.53, 0.56)

0.62
(0.62, 0.65)

0.58
(0.57, 0.59)

12 month
Original AUC 0.53 0.50 0.56 0.65 0.53

AUC 0.53
(0.51, 0.54)

0.50
(0.48, 0.51)

0.59
(0.58, 0.61)

0.65
(0.64, 0.67)

0.54
(0.53, 0.55)

15 month
Original AUC 0.58 0.58 0.55 0.67 0.55

AUC 0.59
(0.58, 0.61)

0.58
(0.56, 0.59)

0.58
(0.56, 0.59)

0.67
(0.65, 0.68)

0.55
(0.54, 0.57)

p-values

Pre rad vs.
tDelta rad

Follow rad vs.
tDelta rad

Delta rad vs.
tDelta rad

tdelta log rad vs.
tDelta rad

6 month <0.001 * <0.001 * <0.001 * <0.001 *

9 month <0.001 * <0.001 * <0.001 * <0.001 *

12 month <0.001 * <0.001 * <0.001 * <0.001 *

15 month <0.001 * <0.001 * <0.001 * <0.001 *

(b): Statistical comparisons between developed prediction models with the addition of clinical features based on test dataset

Test set (n = 100) Model performance Clinical
(c-index = 0.66)

tDelta Rad
(c-index = 0.58)

Clinical +
tDelta Rad

(c-index = 0.70)

p-values

Clinical vs
Clinical + delta rad

delta rad vs
clinical + delta rad

6 month
Original AUC 0.67 0.61 0.74 <0.001 * <0.001 *

AUC 0.68
(0.67~0.70)

0.62
(0.60, 0.62)

0.74
(0.73, 0.76)

9 month
Original AUC 0.73 0.63 0.77 <0.001 * <0.001 *

AUC 0.74
(0.73~0.75)

0.62
(0.62, 0.65)

0.78
(0.77, 0.79)

12 month
Original AUC 0.71 0.65 0.77 <0.001 * <0.001 *

AUC 0.72
(0.71~0.73)

0.65
(0.64, 0.67)

0.78
(0.77, 0.79)

15 month
Original AUC 0.75 0.67 0.78 <0.001 * <0.001 *

AUC 0.76
(0.75~0.77)

0.67
(0.65, 0.68)

0.79
(0.78, 0.81)

(c): Statistical comparisons between developed prediction models with the addition of clinical features based on combined test dataset

Test set (n = 100) Model performance Clinical
(c-index = 0.66)

tDelta Rad
(c-index = 0.53)

Clinical +
tDelta Rad

(c-index = 0.64)

p-values

Clinical vs
Clinical + delta rad

delta rad vs
clinical + delta rad

6 month
Original AUC 0.73 0.53 0.68 <0.001 * <0.001 *

AUC 0.72
(0.71~0.73)

0.53
(0.52, 055)

0.68
(0.67, 0.70)

9 month
Original AUC 0.72 0.59 0.73 0.003 * <0.001 *

AUC 0.67
(0.65~0.68)

0.59
(0.58, 0.60)

0.67
(0.66, 0.69)

12 month
Original AUC 0.73 0.54 0.72 <0.001 * <0.001 *

AUC 0.71
(0.70~0.72)

0.53
(0.52, 0.54)

0.66
(0.65, 0.68)

15 month
Original AUC 0.76 0.53 0.71 <0.001 * <0.001 *

AUC 0.73
(0.72~0.74)

0.54
(0.53, 0.55)

0.68
(0.66, 0.69)

*: Statistically significant based on pair t test.

Ultimately, the optimal threshold was determined by utilizing the Youden index de-
rived from the training set, subsequently stratifying the test data (Figure 4a) and combined
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test set (Figure 4b) into high-risk and low-risk groups. The log-rank test was employed to
assess the differences between the survival curves, yielding a p-value of 0.00015, which
indicated a statistically significant disparity between the two survival groups.
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4. Discussion

Our results demonstrated that delta time radiomics, when calculated using the per-
centage change method with time adjustment, showed superior performance compared to
both simple percentage change of delta radiomics and log delta time radiomics approaches.
This finding may be attributed to the fact that the percentage change method with time ad-
justment better captures the relative changes in tumor characteristics over time, accounting
for both the baseline values, their changes during treatment, as well as the duration. The
simple percentage delta radiomics method calculates the percentage difference between
pre-treatment and follow-up radiomic features, whereas log-delta time radiomics uses a
logarithmic transformation of the absolute differences. Although these methods provide
some insight into the changes in tumor characteristics, they may not fully reflect the relative
changes within the tumor, which could be of greater significance in predicting treatment
response and patient prognosis. By contrast, the percentage change method with time
adjustment considers the initial values of radiomic features and calculates the change as a
proportion of the baseline values with time adjustment. This approach allows for the better
normalization and scaling of features, making the results more comparable across different
patients and tumors. In addition, the percentage change method with time adjustment
may be more sensitive to subtle variations in tumor behavior, providing a more accurate
representation of tumor dynamics and heterogeneity over time.

In the discussion of significant delta radiomic features, the selected features included
LHL_Run_Length_Nonuniformity, LHH_Long_Run_Emphasis, and HLL_Variance. These
features have been found to be important in capturing the underlying tumor charac-
teristics, potentially aiding the prediction of treatment response and patient survival.
LHL_Run_Length_Nonuniformity, for instance, is associated with the nonuniformity of
run lengths in low gray-level regions, which may reflect the heterogeneity of tumor tex-
ture patterns [9]. This heterogeneity can be indicative of variations in cellularity, necrosis,
and vascularization, all of which are crucial factors in determining tumor behavior and
prognosis [8]. LHH_Long_Run_Emphasis, on the other hand, measures the distribution
of long runs of high gray-level values, potentially indicating the presence of larger, more
aggressive tumor regions [30]. This feature could be particularly relevant in understanding
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the spatial organization of tumor cells and the degree of invasiveness, ultimately impact-
ing the choice of therapeutic strategies and patient management. Lastly, HLL_Variance
reflects the variance in co-occurrence patterns of high and low gray-level values, providing
insights into the spatial distribution of the tumor [31]. This feature may help reveal the
underlying tumor microenvironment, including variations in stromal composition and
immune cell infiltration, which are known to play a significant role in tumor progression
and response to therapy [10]. Together, these significant delta radiomic features contribute
to a comprehensive understanding of the tumor’s characteristics, enhancing the accuracy
of prognostic models and informing more personalized therapeutic approaches.

The inclusion of clinical factors in our model, along with delta radiomics features, led to
a significant improvement in prediction performance. This finding supports the notion that
combining both clinical and imaging data can provide a more comprehensive and accurate
representation of the tumor and its response to treatment [32]. In our study, we observed
that the delta radiomics features did not exhibit a high correlation with the selected clinical
factors. The low correlation between the delta radiomics and clinical features indicates
that they provide complementary information about the tumor characteristics, which
can enhance the predictive accuracy of the model when used together [14,33–36]. The
delta radiomics features primarily capture changes in the tumor’s texture and spatial
heterogeneity, while the clinical factors reflect the tumor’s biological and physiological
properties [14].

The early detection of acquired resistance to EGFR-TKI therapy is fundamental in
enhancing patient outcomes. This proactive detection, made possible through initial follow-
up images after starting EGFR-TKI treatment, offers insights into the tumor’s response, be
it regression, stabilization, or progression. These early radiographic signs enable clinicians
to gauge the potential trajectory of a patient’s progression-free survival (PFS). Armed with
this knowledge, they can then decide whether to maintain the current therapy, modify
dosages, or switch to alternative treatments, ensuring the most effective approach for the
patient. Furthermore, when delta radiomics is combined with clinical parameters such as
AST, TP, PLT, N, and M staging, the resulting prognostic models are unparalleled in their
predictive accuracy. This integrative methodology ensures that treatments are not only
attuned to the patient’s cancer profile but also to their broader health context. In the realm
of EGFR-TKI therapies, early awareness of acquired resistance is transformative. It goes
beyond mere diagnosis, directly influencing the trajectory of patient care. Recognizing
the initial signs, evident in follow-up images, equips clinicians with a unique perspective
on the tumor’s behavior under treatment. This insight allows for data-driven, informed
decisions, which not only elevate the quality of patient care but also prevent prolonged
exposure to ineffective treatments, laying the groundwork for optimal clinical results.

In comparison to the study by Zhang X et al. [18], our research involved a larger cohort
of 322 patients, which could contribute to more robust results. We also included contrast CT
in our study, while the study by Zhang X et al. only included non-contrast CT. Additionally,
we provided a detailed description of the selected radiomics features, furthering our
understanding of their importance in predicting PFS in LUAD patients undergoing EGFR-
TKI therapy. In our study, we also experimented with different formulas for calculating
delta radiomics signatures. This allowed us to identify the optimal approach that yielded
the best prognostic performance. In particular, we found that delta radiomics, especially the
percentage change of radiomics with time adjustment, exhibited superior results compared
to other methods. Moreover, our study demonstrated comparable prognostic performance
to the aforementioned paper. Our results showed a c-index of 0.7 and a 12-month AUC of
0.78 in the testing set, which are in line with the reported c-index of 0.72 and 12-month AUC
of 0.8 in the above paper. These findings further validate the potential of time-serial CT-
based radiomics signatures as reliable biomarkers for predicting progression-free survival
in lung adenocarcinoma patients undergoing EGFR-TKI therapy. By achieving comparable
performance metrics, our study contributes to the growing body of evidence supporting
the clinical applicability of delta radiomics in the management of these patients.
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However, a moderate decline in delta radiomics and its combined approach with
clinical methods was observed in the consolidated dataset. In contrast, the accuracy of
clinical features remained consistent without any noticeable decline. This trend echoes
findings from a previous study by Zhang X et al. [18]. Potential reasons for this de-
cline in performance could include differences in CT hardware, such as manufacturers
and models, between the initial and follow-up images, and even across different centers
(Tables S2 and S3). Variations in imaging protocols, slice thickness, and in-plane resolu-
tion might also introduce heterogeneity. Although we incorporated isotropic resampling
and normalization during preprocessing to mitigate these issues, further harmonization
techniques could be essential. The differences due to hardware and protocols might have
nonlinear relationships, and simplistic linear adjustments may not capture all heterogeneity
nuances. Several studies have indicated that hardware and protocol variations can intro-
duce inconsistencies in radiomic analyses [37–43]. Another potential factor could be that
the inclusion of contrast-enhanced CT scans in the study might influence the extraction of
radiomics, leading to potential inconsistencies in the data [37,38].

Despite its potential, the application of delta radiomics in clinical scenarios is not
without challenges. One significant hurdle is the inconsistency in image acquisition proto-
cols and scanner configurations. Such variability can manipulate the extracted radiomic
features, thereby questioning the reproducibility and broad applicability of the results.
It is evident that a standardized approach to imaging and a universal harmonization of
radiomic features is the need of the hour for consistent clinical outcomes. Furthermore, the
intricate nature of radiomics data often demands specialized computational methodologies
and profound expertise, potentially restricting its broad-based clinical adoption, especially
in settings with limited resources. The clinical pertinence of delta radiomics also mandates
further validation through expansive, multi-institutional research to discern its tangible
impact on patient prognoses [12].

Our research, while providing significant insights, is not devoid of its limitations. The
retrospective design might impede the wider applicability of our conclusions. Addressing
this limitation would require prospective studies spanning multiple centers, encompass-
ing a larger and more heterogeneous patient demographic. This would permit a holistic
evaluation of the clinical relevance and reliability of delta radiomics in evaluating NSCLC
treatment responses. It is worth noting that in our research, a cohesive team of radiologists
and certified pulmonologists undertook tumor segmentation on CT images. Incorporat-
ing automated segmentation methods could economize time and expenses linked with
treatment strategizing and bolster the consistency in radiomic feature extraction.

5. Conclusions

In conclusion, our study demonstrates the potential of delta radiomics as a valuable
tool for predicting treatment response and assessing the progression-free survival of pa-
tients with NSCLC undergoing EGFR-TKI therapy. The addition of the time variable to
calculate delta radiomics provided more robust radiomics signatures. The incorporation of
clinical factors alongside delta radiomics features improved the predictive performance of
our model, indicating the importance of considering both imaging and clinical information
for a comprehensive assessment. This comprehensive imaging signature has shown sig-
nificant potential in predicting disease progression and enabling risk stratification. Once
validated in larger cohorts, it can contribute to guiding clinical decision-making, such as the
development of personalized follow-up strategies for patients with NSCLC. By harnessing
the power of delta radiomics, clinicians can potentially enhance treatment planning and
patient management, ultimately improving overall patient outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15215125/s1, Table S1: Formulae for the calculation of primary
radiomic features; Table S2: CT Manufacturer and Model of TVGH dataset; Table S3: CT Manufacturer
and Model of TCGH dataset. References [44–49] are cited in the supplementary materials.
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