Can Radiomics Predict Pathologic Complete Response After Neoadjuvant Chemoradiotherapy for Rectal Cancer? A Systematic Review and Meta-Analysis of Diagnostic-Accuracy Studies
Abstract
1. Introduction
2. Methods
3. Results
3.1. Meta-Analysis of Radiomics-Only and Radiomics-Combined-with-Clinical-Data Models for pCR Prediction
3.2. Risk-of-Bias Assessment—Quality of Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Verheij, F.S.; Omer, D.M.; Williams, H.; Lin, S.T.; Qin, L.-X.; Buckley, J.T.; Thompson, H.M.; Yuval, J.B.; Kim, J.K.; Dunne, R.F.; et al. Long-Term Results of Organ Preservation in Patients With Rectal Adenocarcinoma Treated With Total Neoadjuvant Therapy: The Randomized Phase II OPRA Trial. J. Clin. Oncol. 2023, 42, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Custers, P.A.M.; Beets, G.L.M.; Bach, S.P.M.; Blomqvist, L.K.M.; Figueiredo, N.M.; Gollub, M.J.; Martling, A.M.; Melenhorst, J.M.; Ortega, C.D.M.; Perez, R.O.M.; et al. An International Expert-Based Consensus on the Definition of a Clinical Near-Complete Response After Neoadjuvant (Chemo)radiotherapy for Rectal Cancer. Dis. Colon Rectum 2024, 67, 782–795. [Google Scholar] [CrossRef] [PubMed]
- Lord, A.C.; D’souza, N.; Shaw, A.; Rokan, Z.; Moran, B.; Abulafi, M.; Rasheed, S.; Chandramohan, A.; Corr, A.; Chau, I.; et al. MRI-Diagnosed Tumor Deposits and EMVI Status Have Superior Prognostic Accuracy to Current Clinical TNM Staging in Rectal Cancer. Ann. Surg. 2022, 276, 334–344. [Google Scholar] [CrossRef]
- Pooni, A.; Al-Sukhni, E.; Milot, L.; Fruitman, M.; Victor, J.C.; Schmocker, S.; Brown, G.; Kennedy, E. Selection of Patients With Rectal Cancer for Preoperative Chemoradiotherapy: Are T Category and Nodal Status All That Matters? Dis. Colon Rectum 2019, 62, 447–453. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Amintas, S.; Giraud, N.; Fernandez, B.; Dupin, C.; Denost, Q.; Garant, A.; Frulio, N.; Smith, D.; Rullier, A.; Rullier, E.; et al. The Crying Need for a Better Response Assessment in Rectal Cancer. Curr. Treat. Options Oncol. 2023, 24, 1507–1523. [Google Scholar] [CrossRef]
- Kohrman, N.M.; Wlodarczyk, J.R.; Ding, L.; McAndrew, N.P.; Algaze, S.D.; Cologne, K.G.; Lee, S.W.; Koller, S.E. Rectal Cancer Survival for Residual Carcinoma In Situ Versus Pathologic Complete Response After Neoadjuvant Therapy. Dis. Colon Rectum 2024, 67, 920–928. [Google Scholar] [CrossRef]
- Bhoday, J.; Smith, F.; Siddiqui, M.R.; Balyasnikova, S.; Swift, R.I.; Perez, R.; Habr-Gama, A.; Brown, G. Magnetic Resonance Tumor Regression Grade and Residual Mucosal Abnormality as Predictors for Pathological Complete Response in Rectal Cancer Postneoadjuvant Chemoradiotherapy. Dis. Colon. Rectum 2016, 59, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Awiwi, M.O.; Kaur, H.; Ernst, R.; Rauch, G.M.; Morani, A.C.; Stanietzky, N.; Palmquist, S.M.; Salem, U.I. Restaging MRI of Rectal Adenocarcinoma after Neoadjuvant Chemoradiotherapy: Imaging Findings and Potential Pitfalls. RadioGraphics 2023, 43, e220135. [Google Scholar] [CrossRef]
- Deidda, S.; Spolverato, G.; Capelli, G.; Bao, R.Q.; Bettoni, L.; Crimì, F.; Zorcolo, L.; Pucciarelli, S.; Restivo, A. Limits of Clinical Restaging in Detecting Responders after Neoadjuvant Therapies for Rectal Cancer. Dis. Colon Rectum 2023, 66, 957–964. [Google Scholar] [CrossRef]
- Miranda, J.; Horvat, N.; Araujo-Filho, J.A.B.; Albuquerque, K.S.; Charbel, C.; Trindade, B.M.C.; Cardoso, D.L.; Farias, L.d.P.G.d.; Chakraborty, J.; Nomura, C.H. The Role of Radiomics in Rectal Cancer. Cancer 2023, 54, 1158–1180. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Andrieu, P.C.; Nincevic, J.; Farias, L.d.P.G.d.; Khasawneh, H.; Arita, Y.; Stanietzky, N.; Fernandes, M.C.; De Castria, T.B.; Horvat, N. Advances in MRI-Based Assessment of Rectal Cancer Post-Neoadjuvant Therapy: A Comprehensive Review. J. Clin. Med. 2023, 13, 172. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.M.; Omer, D.M.; Lin, S.; Kim, J.K.; Yuval, J.B.; Verheij, F.S.; Qin, L.X.; Gollub, M.J.; Wu, A.J.C.; Lee, M.; et al. Organ Preservation and Survival by Clinical Response Grade in Patients With Rectal Cancer Treated With Total Neoadjuvant Therapy A Secondary Analysis of the OPRA Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2350903. [Google Scholar] [CrossRef]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.A.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, Z.; Tang, Y.; Chen, W.; Zhong, L.; Mao, L.; Hu, S.; Wu, Y.; Deng, K.; Yang, W.; et al. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: A two-centre, multi-vendor study. Eur. Radiol. 2023, 33, 1906–1917. [Google Scholar] [CrossRef]
- Peng, J.; Wang, W.; Jin, H.; Qin, X.; Hou, J.; Yang, Z.; Shu, Z. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: An artificial intelligence model study based on machine learning. BMC Cancer 2023, 23, 365. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xiao, J.; Li, Y.; Wu, F.; Peng, Q.; Li, C.; Tang, B.; Orlandini, L.C. Feasibility of delta radiomics–based pCR prediction for rectal cancer patients treated with magnetic resonance–guided adaptive radiotherapy. Front. Oncol. 2023, 13, 1230519. [Google Scholar] [CrossRef]
- Yardimci, A.H.; Kocak, B.; Sel, I.; Bulut, H.; Bektas, C.T.; Cin, M.; Dursun, N.; Bektas, H.; Mermut, O.; Yardimci, V.H.; et al. Radiomics of locally advanced rectal cancer: Machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Jpn. J. Radiol. 2023, 41, 71–82. [Google Scholar] [CrossRef]
- Defeudis, A.; Mazzetti, S.; Panic, J.; Micilotta, M.; Vassallo, L.; Giannetto, G.; Gatti, M.; Faletti, R.; Cirillo, S.; Regge, D.; et al. MRI-based radiomics to predict response in locally advanced rectal cancer: Comparison of manual and automatic segmentation on external validation in a multicentre study. Eur. Radiol. Exp. 2022, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.D.; Kim, H.-G.; Seo, M.; Moon, S.K.; Park, S.J.; You, M.-W. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: Radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images. Int. J. Color. Dis. 2024, 39, 78. [Google Scholar] [CrossRef]
- Antunes, J.T.; Ofshteyn, A.; Bera, K.; Wang, E.Y.; Brady, J.T.; Willis, J.E.; Friedman, K.A.; Marderstein, E.L.; Kalady, M.F.; Stein, S.L.; et al. Radiomic Features of Primary Rectal Cancers on Baseline T2-Weighted MRI Are Associated With Pathologic Complete Response to Neoadjuvant Chemoradiation: A Multisite Study. J. Magn. Reson. Imaging 2020, 52, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, A.; Di Chiara, A.; Esposito, A.; Rancoita, P.; Fiorino, C.; Passoni, P.; Albarello, L.; Rosati, R.; Del Maschio, A.; De Cobelli, F. MRI prediction of pathological response in locally advanced rectal cancer: When apparent diffusion coefficient radiomics meets conventional volumetry. Clin. Radiol. 2020, 75, 798.e1–798.e11. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shi, L.; Nguyen, K.N.B.; Monjazeb, A.M.; Matsukuma, K.E.; Loehfelm, T.W.; Huang, H.; Qiu, J.; Rong, Y. MRI Radiomics for Prediction of Tumor Response and Downstaging in Rectal Cancer Patients after Preoperative Chemoradiation. Adv. Radiat. Oncol. 2020, 5, 1286–1295. [Google Scholar] [CrossRef]
- Wan, L.; Peng, W.; Zou, S.; Ye, F.; Geng, Y.; Ouyang, H.; Zhao, X.; Zhang, H. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Acad. Radiol. 2021, 28, S95–S104. [Google Scholar] [CrossRef]
- Chiloiro, G.; Cusumano, D.; Romano, A.; Boldrini, L.; Nicolì, G.; Votta, C.; Tran, H.E.; Barbaro, B.; Carano, D.; Valentini, V.; et al. Delta Radiomic Analysis of Mesorectum to Predict Treatment Response and Prognosis in Locally Advanced Rectal Cancer. Cancers 2023, 15, 3082. [Google Scholar] [CrossRef]
- Wen, L.; Liu, J.; Hu, P.; Bi, F.; Liu, S.; Jian, L.; Zhu, S.; Nie, S.; Cao, F.; Lu, Q.; et al. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Acad. Radiol. 2023, 30, S176–S184. [Google Scholar] [CrossRef]
- Jiang, H.; Guo, W.; Yu, Z.; Lin, X.; Zhang, M.; Jiang, H.; Zhang, H.; Sun, Z.; Li, J.; Yu, Y.; et al. A Comprehensive Prediction Model Based on MRI Radiomics and Clinical Factors to Predict Tumor Response After Neoadjuvant Chemoradiotherapy in Rectal Cancer. Acad. Radiol. 2023, 30, S185–S198. [Google Scholar] [CrossRef]
- Peng, W.; Wan, L.; Wang, S.; Zou, S.; Zhao, X.; Zhang, H. A multiple-time-scale comparative study for the added value of magnetic resonance imaging-based radiomics in predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front. Oncol. 2023, 13, 1234619. [Google Scholar] [CrossRef]
- Tang, B.; Lenkowicz, J.; Peng, Q.; Boldrini, L.; Hou, Q.; Dinapoli, N.; Valentini, V.; Diao, P.; Yin, G.; Orlandini, L.C. Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. BMC Med. Imaging 2022, 22, 44. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Seo, N.; Baek, S.-E.; Son, N.-H.; Lim, J.S.; Kim, N.K.; Koom, W.S.; Kim, S. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Radiology 2022, 303, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Luo, Y.; Hu, Y.; Zhang, Z.; Wang, X.; Yu, Q.; Liu, G.; Cui, E.; Yu, T.; Jiang, X. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Abdom. Imaging 2021, 46, 5072–5085. [Google Scholar] [CrossRef] [PubMed]
- El Homsi, M.; Bane, O.; Fauveau, V.; Hectors, S.; Violi, N.V.; Sylla, P.; Ko, H.-B.; Cuevas, J.; Carbonell, G.; Nehlsen, A.; et al. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. Abdom. Imaging 2024, 49, 791–800. [Google Scholar] [CrossRef]
- Cusumano, D.; Dinapoli, N.; Boldrini, L.; Chiloiro, G.; Gatta, R.; Masciocchi, C.; Lenkowicz, J.; Casà, C.; Damiani, A.; Azario, L.; et al. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol. Med. 2018, 123, 286–295. [Google Scholar] [CrossRef]
- Shaish, H.; Aukerman, A.; Vanguri, R.; Spinelli, A.; Armenta, P.; Jambawalikar, S.; Makkar, J.; Bentley-Hibbert, S.; Del Portillo, A.; Kiran, R.; et al. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: An international multicenter study. Eur. Radiol. 2020, 30, 6263–6273. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, X.; Shi, Z.; Yang, Z.; Du, X.; Zhao, Z.; Cheng, X. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur. Radiol. 2019, 29, 1211–1220. [Google Scholar] [CrossRef]
- Petkovska, I.; Tixier, F.; Ortiz, E.J.; Pernicka, J.S.G.; Paroder, V.; Bates, D.D.; Horvat, N.; Fuqua, J.; Schilsky, J.; Gollub, M.J.; et al. Clinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapy. Abdom. Radiol. 2020, 45, 3608–3617. [Google Scholar] [CrossRef]
- Boldrini, L.; Lenkowicz, J.; Orlandini, L.C.; Yin, G.; Cusumano, D.; Chiloiro, G.; Dinapoli, N.; Peng, Q.; Casà, C.; Gambacorta, M.A.; et al. Applicability of a pathological complete response magnetic resonance-based radiomics model for locally advanced rectal cancer in intercontinental cohort. Radiation Oncology. Radiat. Oncol. 2022, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, G.; Cusumano, D.; de Franco, P.; Lenkowicz, J.; Boldrini, L.; Carano, D.; Barbaro, B.; Corvari, B.; Dinapoli, N.; Giraffa, M.; et al. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development. Radiol. Med. 2022, 127, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Cusumano, D.; Meijer, G.; Lenkowicz, J.; Chiloiro, G.; Boldrini, L.; Masciocchi, C.; Dinapoli, N.; Gatta, R.; Casà, C.; Damiani, A.; et al. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. Radiol. Med. 2021, 126, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Filitto, G.; Coppola, F.; Curti, N.; Giampieri, E.; Dall’Olio, D.; Merlotti, A.; Cattabriga, A.; Cocozza, M.A.; Tomassoni, M.T.; Remondini, D.; et al. Automated Prediction of the Response to Neoadjuvant Chemoradiotherapy in Patients Affected by Rectal Cancer. Cancers 2022, 14, 2231. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, X.; Shen, F.; Lu, H.; Xia, Y.; Lu, J. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. BMC Med. Imaging 2021, 21, 30. [Google Scholar] [CrossRef]
- Horvat, N.; Veeraraghavan, H.; Nahas, C.S.; Bates, D.D.; Ferreira, F.R.; Zheng, J.; Capanu, M.; Fuqua III, J.L.; Fernandes, M.C.; Sosa, R.E.; et al. Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: An external validation study. Abdom. Radiol. 2022, 47, 2770–2782. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.; Peng, S.-H.; Lin, H.-Y.; Lan, T.-L.; Jiang, J.-K.; Liang, W.-Y.; Hu, Y.-W.; Wang, L.-W. Radiomic features derived from pretherapeutic MRI predict chemoradiation response in locally advanced rectal cancer. J. Chin. Med. Assoc. 2023, 86, 399–408. [Google Scholar] [CrossRef]
- Qin, S.; Liu, K.; Chen, Y.; Zhou, Y.; Zhao, W.; Yan, R.; Xin, P.; Zhu, Y.; Wang, H.; Lang, N. Prediction of pathological response and lymph node metastasis after neoadjuvant therapy in rectal cancer through tumor and mesorectal MRI radiomic features. Sci. Rep. 2024, 14, 21927. [Google Scholar] [CrossRef]
- Crimì, F.; D’alessandro, C.; Zanon, C.; Celotto, F.; Salvatore, C.; Interlenghi, M.; Castiglioni, I.; Quaia, E.; Pucciarelli, S.; Spolverato, G. A Machine Learning Model Based on MRI Radiomics to Predict Response to Chemoradiation Among Patients with Rectal Cancer. Life 2024, 14, 1530. [Google Scholar] [CrossRef]
- Battersby, N.J.; How, P.; Moran, B.; Stelzner, S.; West, N.P.; Branagan, G.; Strassburg, J.; Quirke, P.; Tekkis, P.; Pedersen, B.G.; et al. Prospective Validation of a Low Rectal Cancer Magnetic Resonance Imaging Staging System and Development of a Local Recurrence Risk Stratification Model. Ann. Surg. 2016, 263, 751–760. [Google Scholar] [CrossRef]
- Kudou, M.; Nakanishi, M.; Kuriu, Y.; Murayama, Y.; Arita, T.; Kishimoto, M.; Konishi, E.; Goto, M.; Yamada, K.; Otsuji, E. Value of intra-tumor heterogeneity evaluated by diffusion-weighted MRI for predicting pathological stages and therapeutic responses to chemoradiotherapy in lower rectal cancer. J. Cancer 2020, 11, 168–176. [Google Scholar] [CrossRef]
- Lu, H.; Yuan, Y.; Zhou, Z.; Ma, X.; Shen, F.; Xia, Y.; Lu, J. Assessment of MRI-Based Radiomics in Preoperative T Staging of Rectal Cancer: Comparison between Minimum and Maximum Delineation Methods. BioMed Res. Int. 2021, 2021, 5566885. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, H.; Liu, P.; Zhang, L.; Jiao, Y.; Xu, P.; Lyu, Z.; Fu, P. A nomogram model based on MRI and radiomic features developed and validated for the evaluation of lymph node metastasis in patients with rectal cancer. Abdom. Imaging 2022, 47, 4103–4114. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Mao, D.; Song, Q.; Xu, Y.; Pang, P.; Zhang, Y. Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer. Eur. Radiol. 2022, 32, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, R.; Akiyoshi, T.; Toda, S.; Murakami, Y.; Taguchi, S.; Oba, K.; Hanaoka, Y.; Nagasaki, T.; Yamaguchi, T.; Konishi, T.; et al. Radiomics Approach Outperforms Diameter Criteria for Predicting Pathological Lateral Lymph Node Metastasis After Neoadjuvant (Chemo)Radiotherapy in Advanced Low Rectal Cancer. Ann. Surg. Oncol. 2020, 27, 4273–4283. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jin, Y.-M.; Zhang, Y.-C.; Zhao, Y.-L.; Huang, C.-C.; Liu, S.-M.; Song, B. Radiomics for predicting perineural invasion status in rectal cancer. World J. Gastroenterol. 2021, 27, 5610–5621. [Google Scholar] [CrossRef]
- Beets-Tan, R.G.; Lambregts, D.M.; Maas, M.; Bipat, S.; Barbaro, B.; Curvo-Semedo, L.; Fenlon, H.M.; Gollub, M.J.; Gourtsoyianni, S.; Halligan, S.; et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur. Radiol. 2018, 28, 1465–1475. [Google Scholar] [CrossRef]
- Qin, S.; Chen, Y.; Liu, K.; Li, Y.; Zhou, Y.; Zhao, W.; Xin, P.; Wang, Q.; Lu, S.; Wang, H.; et al. Predicting the response to neoadjuvant chemoradiation for rectal cancer using nomograms based on MRI tumour regression grade. Cancer Radiother. 2024, 28, 341–353. [Google Scholar] [CrossRef]
- Conroy, T.; Castan, F.; Etienne, P.-L.; Rio, E.; Mesgouez-Nebout, N.; Evesque, L.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Total neoadjuvant therapy with mFOLFIRINOX versus preoperative chemoradiotherapy in patients with locally advanced rectal cancer: Long-term results of the UNICANCER-PRODIGE 23 trial. Ann. Oncol. 2024, 35, 873–881. [Google Scholar] [CrossRef]
- Kuzior, H.; Eisenblätter, M. Complete response after neoadjuvant therapy: How certain is radiology? Der Chir. 2022, 93, 123–131. [Google Scholar] [CrossRef]
- Wan, L.; Sun, Z.; Peng, W.; Wang, S.; Li, J.; Zhao, Q.; Wang, S.; Ouyang, H.; Zhao, X.; Zou, S.; et al. Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics. J. Magn. Reson. Imaging 2022, 56, 1130–1142. [Google Scholar] [CrossRef]
- Nakajima, E.C.; Simpson, A.; Bogaerts, J.; de Vries, E.G.; Do, R.; Garralda, E.; Goldmacher, G.; Kinahan, P.E.; Lambin, P.; LeStage, B.; et al. Tumor Size Is Not Everything: Advancing Radiomics as a Precision Medicine Biomarker in Oncology Drug Development and Clinical Care. A Report of a Multidisciplinary Workshop Coordinated by the RECIST Working Group. JCO Precis. Oncol. 2024, 8, e2300687. [Google Scholar] [CrossRef]
- El Naqa, I.; Ten Haken, R.K. Can radiomics personalise immunotherapy? Lancet Oncol. 2018, 19, 1138–1139. [Google Scholar] [CrossRef] [PubMed]
- Kummar, S.; Lu, R. Using Radiomics in Cancer Management. JCO Precis. Oncol. 2024, 8, e2400155. [Google Scholar] [CrossRef] [PubMed]
Study First Author | Year | N. pts/Stage | Neoadjuvant Regimen | Time of MRI (Baseline/Post nCRT) | Time Until Surgery | pCR Rate |
---|---|---|---|---|---|---|
Wei Q. [17] | 2017–2020 | 151 LARC cT3-4N0Mo or cTanyN + Mo | mFOLFOX6 OR 6 XELOX OR 3-6 capecitabine OR 5FU-leucovorin + IMRT (intensity-modulated radiotherapy) | Baseline Post nCRT (5–7 weeks) | 6–8 weeks | 24% in first cohort, 17.6% in external validation cohort |
Peng J. [18] | 2017–2022 | 83 LARC cT3-4N0Mo or cTanyN + Mo | N/A | Baseline Post nCRT (4 weeks) | N/A | 26% |
Wu J. [19] | N/A | 28 LARC cT3-4No or cT3-4N1-2 | SCRT + mFOLFOX6 | N/A | N/A | 18.5% |
Yardimci A. [20] | 2017–2021 | 76 LARC cT2-4 and/or N+ | RT + concurrent capecitabine | Baseline | 6–10 weeks | N/A |
Defeudis A. [21] | 2010–2018 | 95 stage II/III | Chemoradiotherapy (capecitabine or 5FU or CapeOx or FOLFOX) or radiotherapy only | Baseline | N/A | N/A Pts classified as TRG1–2 Vs. TRG3–5 |
Lee Y. [22] | 2010–2021 | 148 LARC cT2-4 and/or N+ | Chemoradiotherapy not specified | Baseline Post nCRT | N/A | 14.4% Pts classified as good/bad response |
Antunes J. [23] | 2009–2019 | 152 LARC cT3-4,N+ or threatening near structures | Long-course chemoradiotherapy | Baseline | Median of 26 days after end of nCRT | 22% |
Palmisano A. [24] | 2013–2018 | 43 LARC cT2-4 and/or N+ | Chemoradiotherapy (5FU + oxaliplatin + RT) | Baseline Mid-nCRT Post nCRT | N/A | 25.6% |
Chen H. [25] | 2010–2018 | 39 LARC cT2-4 and/or N+ | Chemoradiotherapy (not specified) | Baseline Post nCRT | N/A | 23.1% |
Wan L. [26] | 2015–2018 | 165 LARC | Long-course CRT OR short-course CRT | Baseline Post nCRT | N/A | 16.4% |
Chiloiro G. [27] | 2008–2016 | 203 LARC Stage II/III | CRT (5FU or CapOx or capecitabine + RT) | Baseline Post nCRT | 8–12 weeks post nCRT | 28.6% |
Wen L. [28] | 2014–2018 | 126 LARC Stage II/III | CRT (XELOX or mFOLFOX or FOLFOX6 +RT) | Baseline Post nCRT | 22.2% | |
Jiang H. [29] | 2012–2020 | 127 LARC | CRT Chemotherapy (capecitabine or capecitabine + oxaliplatin or capecitabine + 5FU) + RT | Baseline | 6–8 weeks post nCRT | TRG1–2 good response, TRG3–5 bad response |
Peng W. [30] | 2015–2018 | 126 LARC Stage II/III | Long-course CRT or short-course CRT | Baseline Post nCRT | N/A | 16.5% in testing cohort, 14% in validation cohort |
Tang B. [31] | 2017–2020 | 147 (59 + 88) LARC | Long-course CRT or short-course CRT | Baseline | 6–8 weeks | 16.9% original cohort, 13.6% validation cohort |
Shin J. [32] | 2009–2018 | 898 LARC | nCRT not otherwise specified | Baseline Post nCRT | N/A | 21% |
Cheng Y. [33] | 2014–2018 | 193 LARC | nCRT (mFOLFOX6/CapeOX + RT) | Baseline | 6–8 weeks | 16% |
El Homsi M. [34] | 2013–2019 | 98 LARC | nCRT (capecitabine/FOLFOX +RT) | Baseline | 80 days from nCRT to surgery | 16.3% |
Cusumano D. [35] | 2008–2014 | 198 LARC | nCRT (not specified) | Baseline | 6–8 weeks | 27% and 28% in the two cohorts |
Shaish H. [36] | 2009–2019 | 132 LARC | nCRT (data not available on all patients) | Baseline | N/A | 15% |
Cui Y. [37] | 2012–2016 | 186 LARC | nCRT (capecitabine + RT) | Baseline | 9 weeks | 16.7% |
Petkovska I. [38] | 2011–2015 | 102 LARC | nCRT (capecitabine + RT) | Baseline | 85 days average | 19% |
Boldrini L. [39] | 2017–2018 | 221 LARC | nCRT chemotherapy (capecitabine/5-FU/CapOx) + RT | Baseline | 8–12 weeks | 16.9% |
Chiloiro G. [40] | 2010–2019 | 144 LARC | nCRT chemotherapy (capecitabine/5-FU/CapOx) + RT | Post nCRT | 8 weeks | 81% |
Cusumano D. [41] | 2008–2014 | 195 LARC | nCRT chemotherapy (capecitabine/5-FU/CapOx) + RT | Baseline | 6–8 weeks | 22%, 25% |
Filitto G. [42] | 2018–2020 | 43 LARC | nCRT (capecitabine + RT) | Baseline | N/A | 41% (TRG0, TRG1 as per AJCC) |
Li Z. [43] | 2016–2019 | 80 LARC | nCRT (capecitabine + RT) | Baseline Post nCRT | 8–10 weeks | 18.75% |
Horvat N. [44] | 2012–2016 | 164 LARC | nCRT | N/A | 18% in first cohort, 16% in second cohort | |
Chou Y. [45] | 2010–2019 | 133 LARC | nCRT (uracil-tegafur + mitomycsin + RT) | Baseline | 6–8 weeks | 26% |
Qin S. [46] | 2013–2022 | 209 LARC | nCRT (XELOX or capecitabine + RT) | Baseline Post nCRT | 6–8 weeks | 21.1% |
Crimi 2024 [47] | 2016–2022 | 102 Stage II, III | nCRT (capecitabine or 5-FU chemotherapy + RT_ | Baseline | N/A | 23.5% |
Study First Author | MRI Sequence | Radiomics Software Used | External Validation | Model Created (Radiomics OR Radiomics + Clinical) | Time of Radiomic Extraction in Relation to nCRT | Maximum AUC Achieved: Radiomics | Maximum AUC Achieved: Radiomics + Clinical |
---|---|---|---|---|---|---|---|
Wei Q. [17] | T2WI DWI | PyRadiomics | Yes | Radiomics Radiomics + Clinical | Pre Post | 0.926 initial cohort, 0.829 in external validation | 0.948 in initial cohort, 0.872 in external validation |
Peng J. [18] | T2WI DWI T1WI + C | PyRadiomics | No | Radiomics | Pre Post Delta (Pre–Post/Pre) | Pre 0.771 Post 0.681 Delta 0.871 Combined | 0.907 |
Wu J. [19] | N/A | PyRadiomics | No | Radiomics + clinical | Pre + Delta | N/A | N/A |
Yardimci A. [20] | T2WI | PyRadiomics | No | Radiomics Radiomics + clinical | Pre | 0.753 | 0.767 |
Defeudis A. [21] | T2WI | PyRadiomics | Yes | Radiomics | Pre | 0.90 initial cohort manual-0.61 external validation | N/A |
Lee Y. [22] | T2WI | PyRadiomics | No | Radiomics Radiomics + Clinical | Pre Post | 0.74 | 0.79 |
Antunes J. [23] | T2WI | MATLAB R2018a | No | Radiomics | Pre | 0.699 | N/A |
Palmisano A. [24] | T2WI DWI T1WI + C | Olea Medical Software, La Ciotat, France | No | Radiomics | Pre Post | 0.89 | N/A |
Chen H. [25] | T2W | IBEX | No | Radiomics | Pre Post | Accuracy 92% | N/A |
Wan L. [26] | T1WI T2WI DWI | Radcloud Platform | No | Radiomics | Delta | 0.91 | N/A |
Chiloiro G. [27] | T2WI DWI | Moddicom | No | Radiomics + Clinical | Delta | 0.80 | 0.80 |
Wen L. [28] | T2WI | MaZda | No | Radiomics + Clinical | Pre Post | Pre 0.717 Post 0.805 Delta 0.724 | 0.852 |
Jiang H. [29] | T2WI DWI | PyRadiomics | No | Radiomics + Clinical | Pre | N/A | DWI + clinical 0.87 T2W + clinical 0.81 Fusion + clinical 0.94 |
Peng W. [30] | T2WI DWI | Pyradiomics | No | Radiomics + Clinical | Pre Post | N/A | Pre-treatment_ + post-treatment combined 0.887 |
Tang B. [31] | T2WI | Moddicom | Yes | Radiomics | Pre | N/A | 0.831 initial 0.828 validation |
Shin J. [32] | T2WI ADC T2WI + DWI fused | PyRadiomics | No | Radiomics | Post | 0.82 | - |
Cheng Y. [33] | T1W, T2W and T2FS | Pyradiomics | No | Radiomics + Clinical | Pre | N/A | 0.959 |
El Homsi M. [34] | T2W | N/A | No | Radiomics | Pre | 0.9 | - |
Cusumano D. [35] | T2W | Moddicom | Yes | Radiomics | Pre | 0.79 | - |
Shaish H. [36] | T2W | Pyradiomics | No | Radiomics + Clinical | Pre | N/A | 0.8 |
Cui Y. [37] | T2W c-T1W ADC | Analysis Kit software, GE Healthcare, Wuxi, China | No | Radiomics + Clinical | Pre | N/A | 0.94 training set 0.944 validation set |
Petkovska I. [38] | T2W DWI | Computational Environment for Radiological Research (CERR) software | No | Radiomics + Anatomic | Pre | N/A | 0.75 |
Boldrini L. [39] | T2W | Moddicom platform | Yes | Radiomics | Pre | 0.83 | - |
Chiloiro G. [40] | T2W DWI | N/A | No | Radiomics + Clinical | Post | 0.73 | 0.84 |
Cusumano D. [41] | T2W | Moddicom | No | Radiomics | Pre | 0.83 | - |
Filitto G. [42] | T2W | Pyradiomics | No | Radiomics | Pre | Precision 0.7 | - |
Li Z. [43] | T2W | Pyradiomics | No | Radiomics | Pre Post | 0.94 | - |
Horvat N. [44] | T2W | N/A | Yes | Radiomics + Clinical | Post | N/A | 0.83 |
Chou Y. [45] | T2W | Pyradiomics | No | Radiomics, Radiomics + Clinical | Pre | 0.85 | 0.79 |
Qin S. [46] | T2W DWI | uAI Research Portal Software Version:1.1 | No | Radiomics | Delta | 0.874 | N/A |
Crimi 2024 [47] | T2W | Trace4Research Platform | Yes | Radiomics | Pre | 0.73 | N/A |
Study | Risk of Bias | Applicability Concerns | |||||
---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | |
Wei [17] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ |
Peng J. [18] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ |
Yardimci [20] | ☹ | ☹ | ☺ | ☺ | ☹ | ☺ | ☹ |
Defeudis [21] | ☹ | ☹ | ☺ | ☺ | ☹ | ☺ | ☺ |
Lee Y. [22] | ☹ | ? | ☺ | ☹ | ☹ | ☺ | ☺ |
Antunes [23] | ☹ | ? | ☹ | ☺ | ☹ | ? | ☹ |
Palmisano [24] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ |
Wan [26] | ☹ | ? | ☺ | ☺ | ☹ | ? | ☺ |
Chiloiro [27] | ☺ | ? | ☺ | ☺ | ☺ | ☺ | ☺ |
Wen [28] | ☹ | ☺ | ☺ | ☹ | ☹ | ☺ | ☺ |
Jiang [29] | ☺ | ☹ | ☺ | ☺ | ☺ | ☺ | ☺ |
Peng W. [30] | ☺ | ☹ | ☺ | ? | ☺ | ☹ | |
Tang [31] | ☺ | ? | ☺ | ? | ☺ | ☹ | |
Shin [32] | ? | ☹ | ☹ | ? | ? | ☺ | |
Cheng [33] | ☺ | ? | ☹ | ? | ☺ | ☹ | ☹ |
El Holmsi [34] | ☺ | ☹ | ☺ | ☹ | ☺ | ☹ | |
Cusumano [35] | ☹ | ☹ | ☹ | ? | ☹ | ☺ | ☺ |
Cusumano 2021 [41] | ☺ | ? | ☹ | ? | ☺ | ☹ | ☺ |
Shaish [36] | ☺ | ☹ | ? | ☺ | ☺ | ☹ | ☹ |
Cui [37] | ☺ | ? | ? | ☺ | ☺ | ☹ | |
Petkovska [38] | ? | ? | ? | ☺ | ? | ☺ | |
Boldrini [39] | ☺ | ☹ | ? | ☺ | ☺ | ? | ☹ |
Chiloiro [40] | ☺ | ? | ? | ☹ | ☺ | ? | ☹ |
Filitto [42] | ☺ | ☹ | ? | ☹ | ☺ | ? | ☺ |
Li [43] | ? | ? | ☺ | ☺ | ? | ? | ☺ |
Horvat [44] | ☺ | ? | ☺ | ☹ | ☺ | ☹ | ☺ |
Chou [45] | ☺ | ☹ | ? | ☹ | ☹ | ☹ | ☺ |
Qin [46] | ☺ | ? | ? | ☺ | ☺ | ? | ☹ |
Crimi [47] | ☺ | ? | ☹ | ? | ☺ | ? | ☹ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seretis, F.; Panagaki, A.; Tzamouri, S.; Triantafyllou, T.; Triantopoulou, C.; Theodorou, D. Can Radiomics Predict Pathologic Complete Response After Neoadjuvant Chemoradiotherapy for Rectal Cancer? A Systematic Review and Meta-Analysis of Diagnostic-Accuracy Studies. J. Pers. Med. 2025, 15, 244. https://doi.org/10.3390/jpm15060244
Seretis F, Panagaki A, Tzamouri S, Triantafyllou T, Triantopoulou C, Theodorou D. Can Radiomics Predict Pathologic Complete Response After Neoadjuvant Chemoradiotherapy for Rectal Cancer? A Systematic Review and Meta-Analysis of Diagnostic-Accuracy Studies. Journal of Personalized Medicine. 2025; 15(6):244. https://doi.org/10.3390/jpm15060244
Chicago/Turabian StyleSeretis, Fotios, Antonia Panagaki, Stavroula Tzamouri, Tania Triantafyllou, Charikleia Triantopoulou, and Dimitrios Theodorou. 2025. "Can Radiomics Predict Pathologic Complete Response After Neoadjuvant Chemoradiotherapy for Rectal Cancer? A Systematic Review and Meta-Analysis of Diagnostic-Accuracy Studies" Journal of Personalized Medicine 15, no. 6: 244. https://doi.org/10.3390/jpm15060244
APA StyleSeretis, F., Panagaki, A., Tzamouri, S., Triantafyllou, T., Triantopoulou, C., & Theodorou, D. (2025). Can Radiomics Predict Pathologic Complete Response After Neoadjuvant Chemoradiotherapy for Rectal Cancer? A Systematic Review and Meta-Analysis of Diagnostic-Accuracy Studies. Journal of Personalized Medicine, 15(6), 244. https://doi.org/10.3390/jpm15060244