Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = delay-tolerant network (DTN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2001 KiB  
Article
Reliable Low-Latency Multicasting in MANET: A DTN7-Driven Pub/Sub Framework Optimizing Delivery Rate and Throughput
by Xinwei Liu and Satoshi Fujita
Information 2025, 16(6), 508; https://doi.org/10.3390/info16060508 - 18 Jun 2025
Viewed by 441
Abstract
This paper addresses the challenges of multicasting in Mobile Ad Hoc Networks (MANETs), where communication relies exclusively on direct interactions between mobile nodes without the support of fixed infrastructure. In such networks, efficient information dissemination is critical, particularly in scenarios where an event [...] Read more.
This paper addresses the challenges of multicasting in Mobile Ad Hoc Networks (MANETs), where communication relies exclusively on direct interactions between mobile nodes without the support of fixed infrastructure. In such networks, efficient information dissemination is critical, particularly in scenarios where an event detected by one node must be reliably communicated to a designated subset of nodes. The highly dynamic nature of MANET, characterized by frequent topology changes and unpredictable connectivity, poses significant challenges to stable and efficient multicasting. To address these issues, we adopt a Publish/Subscribe (Pub/Sub) model that utilizes brokers as intermediaries for information dissemination. However, ensuring the robustness of broker-based multicasting in a highly mobile environment requires novel strategies to mitigate the effects of frequent disconnections and mobility-induced disruptions. To this end, we propose a framework based on three key principles: (1) leveraging the Disruption-Tolerant Networking Implementations of the Bundle Protocol 7 (DTN7) at the network layer to sustain message delivery even in the presence of intermittent connectivity and high node mobility; (2) dynamically generating broker replicas to ensure that broker functionality persists despite sudden node failures or disconnections; and (3) enabling brokers and their replicas to periodically broadcast advertisement packets to maintain communication paths and facilitate efficient data forwarding, drawing inspiration from Named Data Networking (NDN) techniques. To evaluate the effectiveness of our approach, we conduct extensive simulations using ns-3, examining its impact on message delivery reliability, latency, and overall network throughput. The results demonstrate that our method significantly reduces message delivery delays while improving delivery rates, particularly in high-mobility scenarios. Additionally, the integration of DTN7 at the bundle layer proves effective in mitigating performance degradation in environments where nodes frequently change their positions. Our findings highlight the potential of our approach in enhancing the resilience and efficiency of broker-assisted multicasting in MANET, making it a promising solution for real-world applications such as disaster response, military operations, and decentralized IoT networks. Full article
(This article belongs to the Special Issue Wireless IoT Network Protocols, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 1392 KiB  
Article
A Simulation of Contact Graph Routing for Mars–Earth Data Communication
by Basuki Suhardiman, Kuntjoro Adji Sidarto and Novriana Sumarti
Algorithms 2025, 18(5), 293; https://doi.org/10.3390/a18050293 - 19 May 2025
Viewed by 351
Abstract
In this study, we develop a simulation of Contact Graph Routing (CGR) for data communication between Mars, Earth, and relay satellites. Due to the changing of the satellites’ distances to Mars and Earth, respectively, there are specific contact windows between NASA’s Mars rovers [...] Read more.
In this study, we develop a simulation of Contact Graph Routing (CGR) for data communication between Mars, Earth, and relay satellites. Due to the changing of the satellites’ distances to Mars and Earth, respectively, there are specific contact windows between NASA’s Mars rovers and orbiting relay satellites, and specific contact windows between these relay satellites and NASA’s global system of antennas on Earth. The barrier in communication develops delays caused by link propagation, so it needs a Delay Tolerant Network (DTN) for routing networks among the nodes (satellites and antennas), which is the concept of storing and forwarding data whenever the windows are open. We construct an efficient algorithm for CGR, which puts all objects into a general framework of numbered nodes, so that we can easily develop another application of a network with a larger number of nodes. Simulated data are generated randomly to mimic the unpredicted data volumes that are sent from Mars to Earth. We construct some cases involving delivering data for one Martian day, and the simulation performs well in carrying, storing, and forwarding data from Mars to Earth, even though the relay satellites are not able to contact Earth for a period of time. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

18 pages, 574 KiB  
Article
Leveraging IPv6 and ICMPv6 for Delay-Tolerant Networking in Deep Space
by Umberto Pirovano, Oriol Fusté and Anna Calveras
Technologies 2025, 13(4), 163; https://doi.org/10.3390/technologies13040163 - 18 Apr 2025
Viewed by 493
Abstract
Communications in delay-tolerant networking (DTN) environments like deep space face significant challenges due to immense distances and the intermittent nature of links. Overcoming these issues requires moving beyond the assumptions of immediacy and reliability that underpin traditional terrestrial Internet Protocol (IP) networks. Historically, [...] Read more.
Communications in delay-tolerant networking (DTN) environments like deep space face significant challenges due to immense distances and the intermittent nature of links. Overcoming these issues requires moving beyond the assumptions of immediacy and reliability that underpin traditional terrestrial Internet Protocol (IP) networks. Historically, deep-space networks have relied on custom architectures or protocols like the Bundle Protocol (BP) to address these challenges; however, such solutions impose the constraint that nodes must implement the chosen protocol for proper operation, thereby not providing interoperability with standard IP-based nodes. This paper proposes an alternative approach, leveraging innovations in IP version 6 (IPv6) and Internet Control Message Protocol version 6 (ICMPv6) to integrate delay-tolerant features directly at Layer 3. By embedding these functionalities within the existing IPv6 framework, the proposed IP-compliant solution enhances interoperability, with terrestrial networks enabling DTN nodes to seamlessly communicate with compliant IPv6 nodes. This study provides a detailed comparison of the capabilities of IPv6 and BP version 7, highlighting gaps and opportunities. Based on this analysis, a node architecture is designed to implement the necessary functionalities for DTN, paving the way for more seamless integration of deep-space and terrestrial networks while reducing complexity and improving scalability. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Graphical abstract

15 pages, 3315 KiB  
Article
Transmission Control Protocol (TCP)-Based Delay Tolerant Networking for Space-Vehicle Communications in Cislunar Domain: An Experimental Approach
by Ding Wang and Ruhai Wang
Sensors 2025, 25(4), 1136; https://doi.org/10.3390/s25041136 - 13 Feb 2025
Viewed by 607
Abstract
The integrated heterogeneous 7G/8G networks may face multiple challenges for reliable data delivery such as link disruption, intermittent link availability, long latency and a highly lossy channel. Delay tolerant networking (DTN) was proposed as a highly reliable networking technology for space networks that [...] Read more.
The integrated heterogeneous 7G/8G networks may face multiple challenges for reliable data delivery such as link disruption, intermittent link availability, long latency and a highly lossy channel. Delay tolerant networking (DTN) was proposed as a highly reliable networking technology for space networks that will be part of future 7G/8G networks. In this paper, an experimental evaluation of transmission control protocol (TCP)-based DTN (i.e., running TCP at the transport layer of DTN) for space-vehicle communications in the cislunar domain is presented. The impact of link disruption is also considered. The evaluation was conducted using the DTN protocol suites over a realistic experimental testbed. The study results show that TCP-based DTN works effectively for space-vehicle communications in cislunar domain in the presence of a link disruption event. However, a roughly exponential goodput decrease is observed with a linear increase in link delay from 1250 ms to 5 s. Full article
Show Figures

Figure 1

17 pages, 29455 KiB  
Article
FloatingBlue: A Delay Tolerant Networks-Enabled Internet of Things Architecture for Remote Areas Combining Data Mules and Low Power Communications
by Ruan C. M. Teixeira, Celso B. Carvalho, Carlos T. Calafate, Edjair Mota, Rubens A. Fernandes, Andre L. Printes and Lennon B. F. Nascimento
Sensors 2024, 24(19), 6218; https://doi.org/10.3390/s24196218 - 26 Sep 2024
Cited by 1 | Viewed by 2018
Abstract
Monitoring vast and remote areas like forests using Wireless Sensor Networks (WSNs) presents significant challenges, such as limited energy resources and signal attenuation over long distances due to natural obstacles. Traditional solutions often require extensive infrastructure, which is impractical in such environments. To [...] Read more.
Monitoring vast and remote areas like forests using Wireless Sensor Networks (WSNs) presents significant challenges, such as limited energy resources and signal attenuation over long distances due to natural obstacles. Traditional solutions often require extensive infrastructure, which is impractical in such environments. To address these limitations, we introduce the “FloatingBlue” architecture. This architecture, known for its superior energy efficiency, combines Bluetooth Low Energy (BLE) technology with Delay Tolerant Networks (DTN) and data mules. It leverages BLE’s low power consumption for energy-efficient sensor broadcasts while utilizing DTN-enabled data mules to collect data from dispersed sensors without constant network connectivity. Deployed in a remote agricultural area in the Amazon region, “FloatingBlue” demonstrated significant improvements in energy efficiency and communication range, with a high Packet Delivery Ratio (PDR). The developed BLE beacon sensor achieved state-of-the-art energy consumption levels, using only 2.25 µJ in sleep mode and 11.8 µJ in transmission mode. Our results highlight “FloatingBlue” as a robust, low-power solution for remote monitoring in challenging environments, offering an energy-efficient and scalable alternative to traditional WSN approaches. Full article
(This article belongs to the Special Issue Energy Efficient Design in Wireless Ad Hoc and Sensor Networks)
Show Figures

Figure 1

23 pages, 10006 KiB  
Article
Operational Tests for Delay-Tolerant Network between the Moon and Earth Using the Korea Pathfinder Lunar Orbiter in Lunar Orbit
by Inkyu Kim, Sang Ik Han and Dongsoo Har
Electronics 2024, 13(15), 3088; https://doi.org/10.3390/electronics13153088 - 4 Aug 2024
Cited by 1 | Viewed by 2251
Abstract
The Korea Pathfinder Lunar Orbiter (KPLO) was launched on 5 August 2022, equipped on the SpaceX Falcon 9 launch vehicle. At present, the KPLO is effectively carrying out its scientific mission in lunar orbit. The KPLO serves as a cornerstone for the development [...] Read more.
The Korea Pathfinder Lunar Orbiter (KPLO) was launched on 5 August 2022, equipped on the SpaceX Falcon 9 launch vehicle. At present, the KPLO is effectively carrying out its scientific mission in lunar orbit. The KPLO serves as a cornerstone for the development and validation of Korean space science and deep space technology. Among its payloads is the DTNPL, enabling the first-ever test of delay-tolerant network (DTN) technology for satellites in lunar orbit. DTN technology represents a significant advancement in space communication, offering stable communication capabilities characterized by high delay tolerance, reliability, and asymmetric communication speeds—a necessity for existing satellite and space communication systems to evolve. In this paper, we briefly give an overview of the Korea Lunar Exploration Program (KLEP) and present scientific data gathered through the KPLO mission. Specifically, we focus on the operational tests for DTN-ION conducted for message and file transfer, as well as real-time video streaming, during the initial operations of the KPLO. Lastly, this study offers insights and lessons learned from KPLO DTNPL operations, with the goal of providing valuable guidance for future advancements in space communication. Full article
(This article belongs to the Special Issue Delay Tolerant Networks and Applications, 2nd Edition)
Show Figures

Figure 1

23 pages, 1344 KiB  
Review
Delay and Disruption Tolerant Networking for Terrestrial and TCP/IP Applications: A Systematic Literature Review
by Aris Castillo, Carlos Juiz and Belen Bermejo
Network 2024, 4(3), 237-259; https://doi.org/10.3390/network4030012 - 1 Jul 2024
Cited by 2 | Viewed by 3133
Abstract
Delay and Disruption Tolerant Networking (DTN) is a network architecture created basically to overcome non-continuing connectivity. There has been a great deal of research on this topic, from space communication to terrestrial applications. Since there are still many places on earth where there [...] Read more.
Delay and Disruption Tolerant Networking (DTN) is a network architecture created basically to overcome non-continuing connectivity. There has been a great deal of research on this topic, from space communication to terrestrial applications. Since there are still many places on earth where there is no means of communication, the focus of this work is on the latest. A systematic literature review (SLR) was performed to know the main issues and advances related to the implementation of DTN for terrestrial and TCP/IP applications, especially in places where telecommunication infrastructure is lacking. The result is a classification of papers based on key aspects, such as architecture, performance, routing, and applications. A matrix of all the papers about these aspects is included to help researchers find the missing piece and concrete terrestrial solutions. The matrix uses three colors, green, yellow, and red according to the focus, either high, medium, or low, so that it is easy to identify specific papers. Full article
Show Figures

Figure 1

21 pages, 386 KiB  
Review
All about Delay-Tolerant Networking (DTN) Contributions to Future Internet
by Georgios Koukis, Konstantina Safouri and Vassilis Tsaoussidis
Future Internet 2024, 16(4), 129; https://doi.org/10.3390/fi16040129 - 9 Apr 2024
Cited by 5 | Viewed by 5595
Abstract
Although several years have passed since its first introduction, the significance of Delay-Tolerant Networking (DTN) remains evident, particularly in challenging environments where traditional networks face operational limitations such as disrupted communication or high latency. This survey paper aims to explore the diverse array [...] Read more.
Although several years have passed since its first introduction, the significance of Delay-Tolerant Networking (DTN) remains evident, particularly in challenging environments where traditional networks face operational limitations such as disrupted communication or high latency. This survey paper aims to explore the diverse array of applications where DTN technologies have proven successful, with a focus on emerging and novel application paradigms. In particular, we focus on the contributions of DTN in the Future Internet, including its contribution to space applications, smart cities and the Internet of Things, but also to underwater communications. We also discuss its potential to be used jointly with information-centric networks to change the internet communication paradigm in the future. Full article
(This article belongs to the Special Issue Machine Learning for Blockchain and IoT Systems in Smart City)
Show Figures

Figure 1

23 pages, 2415 KiB  
Article
Hybrid Encryption for Securing and Tracking Goods Delivery by Multipurpose Unmanned Aerial Vehicles in Rural Areas Using Cipher Block Chaining and Physical Layer Security
by Elias Yaacoub, Khalid Abualsaud and Mohamed Mahmoud
Drones 2024, 8(3), 111; https://doi.org/10.3390/drones8030111 - 21 Mar 2024
Cited by 4 | Viewed by 2544
Abstract
This paper investigated the use of unmanned aerial vehicles (UAVs) for the delivery of critical goods to remote areas in the absence of network connectivity. Under such conditions, it is important to track the delivery process and record the transactions in a delay-tolerant [...] Read more.
This paper investigated the use of unmanned aerial vehicles (UAVs) for the delivery of critical goods to remote areas in the absence of network connectivity. Under such conditions, it is important to track the delivery process and record the transactions in a delay-tolerant fashion so that this information can be recovered after the UAV’s return to base. We propose a novel framework that combines the strengths of cipher block chaining, physical layer security, and symmetric and asymmetric encryption techniques in order to safely encrypt the transaction logs of remote delivery operations. The proposed approach is shown to provide high security levels, making the keys undetectable, in addition to being robust to attacks. Thus, it is very useful in drone systems used for logistics and autonomous goods delivery to multiple destinations. This is particularly important in health applications, e.g., for vaccine transmissions, or in relief and rescue operations. Full article
(This article belongs to the Special Issue Advances of Drones in Logistics)
Show Figures

Figure 1

20 pages, 3319 KiB  
Article
Multi-Decision Dynamic Intelligent Routing Protocol for Delay-Tolerant Networks
by Yao Xiong and Shengming Jiang
Electronics 2023, 12(21), 4528; https://doi.org/10.3390/electronics12214528 - 3 Nov 2023
Cited by 1 | Viewed by 1520
Abstract
Delay-tolerant networks face challenges in efficiently utilizing network resources and real-time sensing of node and message statuses due to the dynamic changes in their topology. In this paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing protocol based on double Q-learning, node relationships, [...] Read more.
Delay-tolerant networks face challenges in efficiently utilizing network resources and real-time sensing of node and message statuses due to the dynamic changes in their topology. In this paper, we propose a Multi-Decision Dynamic Intelligent (MDDI) routing protocol based on double Q-learning, node relationships, and message attributes to achieve efficient message transmission. In the proposed protocol, the entire network is considered a reinforcement learning environment, with all mobile nodes treated as intelligent agents. Each node maintains two Q-tables, which store the Q-values corresponding to when a node forwards a message to a neighboring node. These Q-values are also related to the network’s average latency and average hop count. Additionally, we introduce node relationships to further optimize route selection. Nodes are categorized into three types of relationships: friends, colleagues, and strangers, based on historical interaction information, and message forwarding counts and remaining time are incorporated into the decision-making process. This protocol comprehensively takes into account the attributes of various resources in the network, enabling the dynamic adjustment of message-forwarding decisions as the network evolves. Simulation results show that the proposed multi-decision dynamic intelligent routing protocol achieves the highest message delivery rate as well as the lowest latency and overhead in all states of the network compared with other related routing protocols for DTNs. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

14 pages, 5835 KiB  
Article
Multi-Copy Relay Node Selection Strategy Based on Reinforcement Learning
by Yang Gao and Fuquan Zhang
Sensors 2023, 23(13), 6131; https://doi.org/10.3390/s23136131 - 4 Jul 2023
Cited by 2 | Viewed by 1633
Abstract
Delay tolerant networks (DTNs), are characterized by their difficulty in establishing end-to-end paths and and large message propagation delays. To control network overhead costs, reduce message delays, and improve delivery rates in DTNs, it is essential to not only delete messages that have [...] Read more.
Delay tolerant networks (DTNs), are characterized by their difficulty in establishing end-to-end paths and and large message propagation delays. To control network overhead costs, reduce message delays, and improve delivery rates in DTNs, it is essential to not only delete messages that have reached their destination but also to more precisely determine appropriate relay nodes. Based on the above goals, this paper constructs a multi-copy relay node selection router algorithm based on Q-lambda reinforcement learning with reference to the idea of community division (QLCR). In community division, if a node has the highestdegree, it is considered the core node, and nodes with similar interests and structural properties are divided into a community. Node degree refers to the number of nodes associated with the node, indicating its importance in the network. Structural similarity determines the distance between nodes. The selection of relay nodes considers node degree, interests, and structural similarity. The Q-lambda reinforcement learning algorithm enables each node to learn from the entire network, setting corresponding reward values based on encountered nodes meeting the specified conditions. Through iterative processes, the node with the most cumulative reward value is chosen as the final relay node. Experimental results demonstrate that the proposed algorithm achieves a high delivery rate while maintaining low network overhead and delay. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

18 pages, 1183 KiB  
Article
Towards Delay Tolerant Networking for Connectivity Aware Routing Protocol for VANET-WSN Communications
by Linda Mohaisen and Laurie Joiner
Appl. Sci. 2023, 13(6), 4008; https://doi.org/10.3390/app13064008 - 21 Mar 2023
Cited by 7 | Viewed by 1986
Abstract
Vehicular Ad Hoc Networks (VANETs) are increasingly playing a fundamental role in improving driving safety. However, VANETs in a sparse environment may add risk to driving safety. The probability of a low density of vehicles in a rural area at midnight is very [...] Read more.
Vehicular Ad Hoc Networks (VANETs) are increasingly playing a fundamental role in improving driving safety. However, VANETs in a sparse environment may add risk to driving safety. The probability of a low density of vehicles in a rural area at midnight is very high. Consequently, the packet will be lost due to the lack of other vehicles, and the arrival of the following vehicles in the accident area is unavoidable. To overcome this problem, VANET is integrated with Wireless Sensor Network (WSN). The most challenging features of VANETs are their high mobility. This high mobility causes sensor nodes to consume most of their energy during communication with other nodes, leading to frequent network disconnectivity. With the evolution of VANET and WSN, the Store/Carry-Forward (SCF) paradigm has emerged as an exciting research area in the Delay Tolerant Networks (DTNs) to solve network disconnectivity. This paper proposes the Energy-Mobility-Connectivity aware routing protocol (EMCR) for a hybrid network of VANET-WSN. A comprehensive performance analysis that considers realistic propagation models and real city scenario traffic is performed in NS3. The simulation results show that the SCF mechanism is essential in the EMCR protocol to maximize the delivery ratio and minimize energy consumption and overhead. Full article
Show Figures

Figure 1

19 pages, 742 KiB  
Article
Improving Bundle Routing in a Space DTN by Approximating the Transmission Time of the Reliable LTP
by Ricardo Lent
Network 2023, 3(1), 180-198; https://doi.org/10.3390/network3010009 - 3 Feb 2023
Cited by 1 | Viewed by 2712
Abstract
Because the operation of space networks is carefully planned, it is possible to predict future contact opportunities from link budget analysis using the anticipated positions of the nodes over time. In the standard approach to space delay-tolerant networking (DTN), such knowledge is used [...] Read more.
Because the operation of space networks is carefully planned, it is possible to predict future contact opportunities from link budget analysis using the anticipated positions of the nodes over time. In the standard approach to space delay-tolerant networking (DTN), such knowledge is used by contact graph routing (CGR) to decide the paths for data bundles. However, the computation assumes nearly ideal channel conditions, disregarding the impact of the convergence layer retransmissions (e.g., as implemented by the Licklider transmission protocol (LTP)). In this paper, the effect of the bundle forwarding time estimation (i.e., the link service time) to routing optimality is analyzed, and an accurate expression for lossy channels is discussed. The analysis is performed first from a general and protocol-agnostic perspective, assuming knowledge of the statistical properties and general features of the contact opportunities. Then, a practical case is studied using the standard space DTN protocol, evaluating the performance improvement of CGR under the proposed forwarding time estimation. The results of this study provide insight into the optimal routing problem for a space DTN and a suggested improvement to the current routing standard. Full article
Show Figures

Figure 1

14 pages, 2430 KiB  
Article
Enhanced Message Replication Technique for DTN Routing Protocols
by Siham Hasan, Meisam Sharifi Sani, Saeid Iranmanesh, Ali H. Al-Bayatti, Sarmadullah Khan and Raad Raad
Sensors 2023, 23(2), 922; https://doi.org/10.3390/s23020922 - 13 Jan 2023
Cited by 12 | Viewed by 2870
Abstract
Delay-tolerant networks (DTNs) are networks where there is no immediate connection between the source and the destination. Instead, nodes in these networks use a store–carry–forward method to route traffic. However, approaches that rely on flooding the network with unlimited copies of messages may [...] Read more.
Delay-tolerant networks (DTNs) are networks where there is no immediate connection between the source and the destination. Instead, nodes in these networks use a store–carry–forward method to route traffic. However, approaches that rely on flooding the network with unlimited copies of messages may not be effective if network resources are limited. On the other hand, quota-based approaches are more resource-efficient but can have low delivery rates and high delivery delays. This paper introduces the Enhanced Message Replication Technique (EMRT), which dynamically adjusts the number of message replicas based on a node’s ability to quickly disseminate the message. This decision is based on factors such as current connections, encounter history, buffer size history, time-to-live values, and energy. The EMRT is applied to three different quota-based protocols: Spray and Wait, Encounter-Based Routing (EBR), and the Destination-Based Routing Protocol (DBRP). The simulation results show that applying the EMRT to these protocols improves the delivery ratio, overhead ratio, and latency average. For example, when combined with Spray and Wait, EBR, and DBRP, the delivery probability is improved by 13%, 8%, and 10%, respectively, while the latency average is reduced by 51%, 14%, and 13%, respectively. Full article
(This article belongs to the Special Issue Congestion Control in Internet of Things Systems)
Show Figures

Figure 1

24 pages, 1495 KiB  
Article
Towards Software-Defined Delay Tolerant Networks
by Dominick Ta, Stephanie Booth and Rachel Dudukovich
Network 2023, 3(1), 15-38; https://doi.org/10.3390/network3010002 - 28 Dec 2022
Cited by 5 | Viewed by 4547
Abstract
This paper proposes a Software-Defined Delay Tolerant Networking (SDDTN) architecture as a solution to managing large Delay Tolerant Networking (DTN) networks in a scalable manner. This work is motivated by the planned deployments of large DTN networks on the Moon and beyond in [...] Read more.
This paper proposes a Software-Defined Delay Tolerant Networking (SDDTN) architecture as a solution to managing large Delay Tolerant Networking (DTN) networks in a scalable manner. This work is motivated by the planned deployments of large DTN networks on the Moon and beyond in deep space. Current space communication involves relatively few nodes and is heavily deterministic and scheduled, which will not be true in the future. It is unclear how these large space DTN networks, consisting of inherently intermittent links, will be able to adapt to dynamically changing network conditions. In addition to the proposed SDDTN architecture, this paper explores data plane programming and the Programming Protocol-Independent Packet Processors (P4) language as a possible method of implementing this SDDTN architecture, enumerates the challenges of this approach, and presents intermediate results. Full article
(This article belongs to the Special Issue Advanced Technologies in Network and Service Management)
Show Figures

Figure 1

Back to TopTop