Delay and Disruption Tolerant Networking for Terrestrial and TCP/IP Applications: A Systematic Literature Review
Abstract
:1. Introduction
2. Paper’s Organization
3. Related Work
4. Contributions
- →
- A classification of papers based on four main aspects, architecture, performance, routing, and applications.
- →
- A matrix of all the papers studied, which is a reference to facilitate the work of researchers.
5. Methodology
5.1. Planning the SLR
5.2. SLR Protocol
- Studies available as open access;
- Studies written in English;
- Articles published after 2000;
- Articles published in journals and books.
- →
- Articles where “DTN” stands for something different than delay-tolerant networks or networking.
- →
- Articles whose focus was mainly related to space communication.
5.3. Conducting the SLR
- →
- DTN performance. This category includes papers that study any issue that might affect performance in DTN applications.
- →
- DTN routing. This category includes papers that discuss routing protocols, types of protocols, metrics, or any aspect of routing.
- →
- DTN applications. This category includes papers that propose applications either at the protocol level or implementations in real environments.
- →
- DTN architecture. This category includes mostly discussion papers that analyze aspects of the protocol and specific features.
6. Results
6.1. DTN Architecture
6.2. DTN Performance
6.3. DTN Routing
- →
- Number of nodes. With the higher number of nodes, (>60), SNW, Prophet, and ICR show comparable performance and outperform the others. Epidemic, Prophet, and CDBR suffer from high overhead because they rely on multiple copies of messages.
- →
- Buffer size. SNW, ICR, and CDBR are affected by an increased buffer size. ICR and SNW are good performers with high delivery ratios and low overheads.
- →
- Message size. For larger-size messages, all algorithms have low performance, but for smaller sizes, SNW and ICR outperform the others.
6.4. Classification of Papers
7. Discussion
8. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caini, C.; Firrincieli, R.; Marchese, M.; de Cola, T.; Luglio, M.; Roseti, C.; Celandroni, N.; Potortí, F. Transport layer protocols and architectures for satellite networks. Int. J. Satell. Commun. Netw. 2006, 25, 1–26. [Google Scholar] [CrossRef]
- Wang, R.; Modi, B.; Zhang, Q.; Hou, J.; Guo, Q.; Yang, M. Use of a hybrid of DTN convergence layer adapters (CLAs) in interplanetary Internet. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012. [Google Scholar]
- Al-Fagih, A.E.; Hassanein, H.S.; Al-Fagih, A.E.; Hassanein, H.S. Routing Schemes for Delay-Tolerant Networks—An Applications Perspective; Queen’s University Canada: Kingston, ON, Canada, 2012. [Google Scholar]
- Chahal, S.; Singh, M. An Extensive Literature Review of Various Routing Protocols in Delay Tolerant Networks. Int. Res. J. Eng. Technol. 2017, 4, 1309–1312. [Google Scholar]
- Madni, M.A.A.; Iranmanesh, S.; Raad, R. DTN and Non-DTN Routing Protocols for Inter-CubeSat Communications: A comprehensive survey. Electronics 2020, 9, 482. [Google Scholar] [CrossRef]
- Tornell, S.M.; Calafate, C.T.; Cano, J.-C.; Manzoni, P. DTN Protocols for Vehicular Networks: An Application Oriented Overview. IEEE Commun. Surv. Tutor. 2014, 17, 868–887. [Google Scholar] [CrossRef]
- Xia, F.; Liu, L.; Li, J.; Ma, J.; Vasilakos, A.V. Socially Aware Networking: A Survey. IEEE Syst. J. 2015, 9, 904–921. [Google Scholar] [CrossRef]
- Kumar, V.; Singhrova, A. A Review of Routing Protocols for Delay Tolerant Networks. 2014. Available online: https://www.erpublication.org/published_paper/IJETR021640.pdf (accessed on 6 December 2023).
- Wei, T.; Feng, W.; Chen, Y.; Wang, C.-X.; Ge, N.; Lu, J. Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges. IEEE Internet Things J. 2021, 8, 8910–8934. [Google Scholar] [CrossRef]
- Sakthivel, T.; Balaram, A. The Impact of Mobility Models on Geographic Routing in Multi-Hop Wireless Networks and Extensions—A Survey. Int. J. Comput. Netw. Appl. 2021, 8, 364. [Google Scholar] [CrossRef]
- Perumal, S.; Raman, V.; Samy, G.N.; Shanmugam, B.; Kisenasamy, K.; Ponnan, S. Comprehensive literature review on delay tolerant network (DTN) framework for improving the efficiency of internet connection in rural regions of Malaysia. Int. J. Syst. Assur. Eng. Manag. 2022, 13 (Suppl. 1), 764–777. [Google Scholar] [CrossRef]
- More, A.; Kale, R. Review on Recent Research Trends and Applications in Delay Tolerant Networks. In Proceedings of the 2022 6th International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 26–27 August 2022; pp. 1–9. [Google Scholar]
- Makawana, P.R.; Joshi, S.; Katira, A.; Bharvad, J.; Pawar, C. A Bibliometric Analysis of Recent Research on Delay-Tolerant Networks. In Proceedings of the ICT Systems and Sustainability: Proceedings of ICT4SD 2022, Goa, India, 29–30 July 2022; pp. 247–256. [Google Scholar]
- Kitchenham, B. Guidelines for Performing Systematic Literature Reviews in Software Engineering. 2007. Available online: https://www.researchgate.net/publication/302924724 (accessed on 6 December 2023).
- Lakkakorpi, J.; Pitkanen, M.; Ott, J. Using Buffer Space Advertisements to Avoid Congestion in Mobile Opportunistic DTNs. In International Conference on Wired/Wireless Internet Communications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 386–397. [Google Scholar] [CrossRef]
- Herbertsson, F. Implementation of a Delay-Tolerant Routing Protocol in the Network Simulator NS-3. 2010. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-63754 (accessed on 16 July 2021).
- Lakkakorpi, J.; Pittkänen Ott, J. Adaptive Routing in Mobile Opportunistic Networks. In Proceedings of the 13th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, ACM, Barcelona, Spain, 3–8 November 2010; pp. 101–109. [Google Scholar] [CrossRef]
- CCSDS 734.2-B-1; Recommendation for Space Data System Standards, CCSDS Bundle Protocol Specification Recommended Standard. The Consultative Committee for Space Data Systems: Sanford, FL, USA, 2015.
- Araniti, G.; Bezirgiannidis, N.; Birrane, E.; Bisio, I.; Burleigh, S.; Caini, C.; Feldmann, M.; Marchese, M.; Segui, J.; Suzuki, K. Contact graph routing in DTN space networks: Overview, enhancements and performance. IEEE Commun. Mag. 2015, 53, 38–46. [Google Scholar] [CrossRef]
- Morgenroth, J.; Pöttner, W.-B.; Schildt, S.; Wolf, L. Performance issues and design choices in delay-tolerant network (DTN) algorithms and protocols. In Advances in Delay-Tolerant Networks (DTNs); Woodhead Publishing: Sawston, UK, 2015; pp. 225–250. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G.; Liu, C.; Zhao, F.; Zhang, X. Delay Tolerant Network and the Algorithms of DTN Routing. J. Phys. Conf. Ser. 2019, 1169, 012058. [Google Scholar] [CrossRef]
- Voyiatzis, A.G. The quest for a killer app for delay-tolerant networks (DTNs). In Advances in Delay-Tolerant Networks (DTNs); Woodhead Publishing: Sawston, UK, 2015; pp. 251–267. [Google Scholar] [CrossRef]
- Verma, A.; Savita; Kumar, S. Routing Protocols in Delay Tolerant Networks: Comparative and Empirical Analysis. Wirel. Pers. Commun. 2021, 118, 551–574. [Google Scholar] [CrossRef]
- Mauldin, A.N. Comparative Analysis of Disruption Tolerant Network Routing Simulations in the ONE and NS-3. 2017. Available online: https://calhoun.nps.edu/handle/10945/56763 (accessed on 16 July 2021).
- Puneet, B.; Chauhan, A. A Study of Black Hole Attacks in Delay Tolerant Network. In Lecture Notes in Electrical Engineering; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2021; pp. 9–17. [Google Scholar] [CrossRef]
- Zhang, C. Design and Simulation of Separate Broadcast Control Architecture of Satellite Delay Tolerant Network for Mass Sensors. J. Phys. Conf. Ser. 2019, 1169, 012069. [Google Scholar] [CrossRef]
- Tan, L.; Men, Z. Routing in Delay-tolerant network Based on Nodes’ Sociality. J. Phys. Conf. Ser. 2021, 2006, 012021. [Google Scholar] [CrossRef]
- Srivastava, A.; Nayyar, A.; Jain, R.; Nagrath, P. Simulation based Performance Comparison & Analysis regarding Static and Mobile Throwboxes impact on Network Performance in Delay Tolerant Networks (DTNs) using ONE Simulator. J. Phys. Conf. Ser. 2018, 1142, 012015. [Google Scholar] [CrossRef]
- Koulali, S.; Azizi, M. Performance analysis of content dissemination protocols for delay tolerant networks. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 249–254. [Google Scholar] [CrossRef]
- Jedari, B.; Xia, F.; Ahmed, A.M.; Pirozmand, P.; Najaflou, Y. Using social network analysis (SNA) to design socially aware network solutions in delay-tolerant networks (DTNs). In Advances in Delay-Tolerant Networks (DTNs); Woodhead Publishing: Sawston, UK, 2015; pp. 205–223. [Google Scholar] [CrossRef]
- Chenji, H.; Stoleru, R. Delay-tolerant networks (DTNs) for emergency communications. In Advances in Delay-Tolerant Networks (DTNs); Woodhead Publishing: Sawston, UK, 2015; pp. 105–136. [Google Scholar] [CrossRef]
- Lakkakorpi, J.; Ginzboorg, P. ns-3 Module for routing and congestion control studies in mobile opportunistic DTNs. In Proceedings of the 2013 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Toronto, ON, Canada, 7–10 July 2013; pp. 46–50. [Google Scholar]
- Raffelsberger, C.; Hellwagner, H. Proceedings of the Combined Workshop on Self-Organizing, Adaptive, and Context-Sensitive Distributed Systems and Self-Organized Communication in Disaster Scenarios (SACS/SoCoDiS 2013) Overview of Hybrid MANET-DTN Networking and Its Potential for Emergency Response Operations Overview of Hybrid MANET-DTN Networking and its Potential for Emergency Response Operations. In Electronic Communications of the EASST; Universität Hamburg: Hamburg, Germany, 2013; Volume 56, Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4be371676abfd9777a61a25865d1083c60bfc3da (accessed on 6 December 2023). [CrossRef]
- Alaoui, E.A.A.; Koumetio, C.S.T.; Gallais, A.; Agoujil, S. Towards a DTN protocol for the Internet of Things. In 2019 Global Information Infrastructure and Networking Symposium, GIIS 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Bin, L.; Zhi-Lin, W.; Ren-Jie, Z. A Routing Algorithm for Delay Tolerant Networks. J. Phys. Conf. Ser. 2020, 1684, 012052. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H. A Simulation Module of NS3 for DTN with Time-Space Model Based Routing. Web Proc. 2017. [Google Scholar] [CrossRef]
- Pentland, A.; Fletcher, R.; Hasson, A. DakNet: Rethinking connectivity in developing nations. Computer 2004, 37, 78–83. [Google Scholar] [CrossRef]
- Guo, S.; Derakhshani, M.; Falaki, M.; Ismail, U.; Luk, R.; Oliver, E.; Rahman, S.U.; Seth, A.; Zaharia, M.; Keshav, S. Design and implementation of the KioskNet system. Comput. Netw. 2010, 55, 264–281. [Google Scholar] [CrossRef]
- Lindgren, A.; Doria, A.; Lindblom, J.; Ek, M. Networking in the Land of Northern Lights—Two Years of Experiences from DTN System Deployments; Association for Computing Machinery: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Selavo, L.; Wood, A.; Cao, Q.; Sookoor, T.; Liu, H.; Srinivasan, A.; Wu, Y.; Kang, W.; Stankovic, J.; Young, D.; et al. LUSTER: Wireless sensor network for environmental research. In Proceedings of the SenSys’07—5th ACM Conference on Embedded Networked Sensor Systems, Sydney, Australia, 6–9 November 2007; pp. 103–116. [Google Scholar] [CrossRef]
- Hull, B.; Bychkovsky, V.; Zhang, Y.; Chen, K.; Goraczko, M.; Miu, A.; Shih, E.; Balakrishnan, H.; Madden, S. CarTel: A distributed mobile sensor computing system. In Proceedings of the SenSys’06: Fourth International Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 31 October—3 November 2006; pp. 125–138. [Google Scholar] [CrossRef]
- Zhang, X.; Kurose, J.K.; Levine, B.N.; Towsley, D.; Zhang, H. Study of a bus-based disruption-tolerant network: Mobility modeling and impact on routing. In Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM, Montreal, QC, Canada, 9–14 September 2007; pp. 195–206. [Google Scholar] [CrossRef]
- Eisenman, S.B.; Miluzzo, E.; Lane, N.D.; Peterson, R.A.; Ahn, G.S.; Campbell, A.T. The BikeNet mobile sensing system for cyclist experience mapping. In Proceedings of the SenSys’07—5th ACM Conference on Embedded Networked Sensor Systems, Sydney, Australia, 6–9 November 2007; pp. 87–101. [Google Scholar] [CrossRef]
- Zarafshan-Araki, M.; Chin, K.-W. TrainNet: A transport system for delivering non real-time data. Comput. Commun. 2010, 33, 1850–1863. [Google Scholar] [CrossRef]
- Spanakis, E.G.; Voyiatzis, A.G. DAPHNE: A Disruption-Tolerant Application Proxy for e-Health Network Environments; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Agussalim; Tsuru, M.; Cahyo, W.N.; Brastama, P.A. Performance of Delay Tolerant Network Protocol in Smart City Scenario. J. Phys. Conf. Ser. 2020, 1569, 022056. [Google Scholar] [CrossRef]
- Lochin, E.; Lacan, J.; Tournoux, P.-U.; Leguay, J. Reliable data streaming over delay-tolerant networks (DTNs). In Advances in Delay-Tolerant Networks (DTNs); Woodhead Publishing: Sawston, UK, 2015; pp. 173–185. [Google Scholar] [CrossRef]
- Dhabliya, D. Delay-Tolerant Sensor Network (DTN) Implementation in Cloud Computing. J. Phys. Conf. Ser. 2021, 1979. [Google Scholar] [CrossRef]
- Cerf, V.; Kaneko, Y.; Burleigh, S.; Suzuki, K.; Luque, M. IPNSIG Strategy Working Group Report; Interplanetary Networking Special Interest Group: San Diego, CA, USA, 2021. [Google Scholar]
- Raffelsberger, H. Overview of Hybrid MANET-DTN Networking and Its Potential for Emergency Response Operations; TU Berlin: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Usino, W.; Damanik, H.A.; Anggraeni, M. A Satellite LTE Delay Tolerant Capabilities Tunnelling: Design and Performance Evaluation. J. Phys. Conf. Ser. 2019, 1192, 012047. [Google Scholar] [CrossRef]
- Husni, E. Rural Internet Service System Based on Delay Tolerant Network (DTN) Using Train System. In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, 17–19 July 2011. [Google Scholar] [CrossRef]
- Guo, S.; Falaki, M.H.; Oliver, E.A.; Rahman, S.U.; Seth, A.; Zaharia, M.A.; Keshav, S. Very low-cost internet access using KioskNet. ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 95–100. [Google Scholar] [CrossRef]
- Silva, A.P.; Burleigh, S.; Hirata, C.M.; Obraczka, K. Congestion control in disruption-tolerant networks: A comparative study for interplanetary and terrestrial networking applications. Ad Hoc Netw. 2016, 44, 1–18. [Google Scholar] [CrossRef]
- Godha, P.; Jadon, S.; Patle, A.; Gupta, I.; Sharma, B.; Singh, A.K. Architecture, an efficient routing, applications, and challenges in delay tolerant network. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Chongqing, China, 6–8 December 2019; pp. 824–829. [Google Scholar] [CrossRef]
- Lonkar, P.; Chaudhari, S.; Chouskey, P. A Review on DTN Implementation on Android Platform for Social Needs. Int. J. Comp. Eng. Appl. 2018, 12, 55–64. [Google Scholar] [CrossRef]
- Singh, D.; Indora, S.; Rani, A.; Sharma, A. Routing Policies & Strategies in Delay Tolerant Network. Int. J. Eng. Res. Appl. (IJERA) 2014. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ijera.com/special_issue/AET_Mar_2014/CSE/Version%2520%25202/F2329.pdf&ved=2ahUKEwi8yeSh-f2GAxVN_gIHHbjmBiwQFnoECBQQAQ&usg=AOvVaw3PGMxHGyjiqN7kBFZS0ylO (accessed on 6 December 2023).
- Shih, T.K.; Cho, H.-H.; Chen, C.-Y.; Chao, H.-C. Survey on underwater delay/disruption tolerant wireless sensor network routing. IET Wirel. Sens. Syst. 2014, 4, 112–121. [Google Scholar] [CrossRef]
- Cello, M.; Marchese, M.; Patrone, F. Research Challenges in Nanosatellite-DTN Networks, Personal Satellite Services. In Proceedings of the Next-Generation Satellite Networking and Communication Systems: 6th International Conference, PSATS 2014, Genoa, Italy, 28–29 July 2014; Revised Selected Papers. Springer: Berlin/Heidelberg, Germany, 2016; pp. 89–93. [Google Scholar]
- Shubashini, B.; Thanamani, A.S. An Opportunistic on Routing Protocols and Persisting Challenges in Delay-Tolerant Networking. Int. J. Innov. Res. Comput. Commun. Eng. 2014, 2, 5373–5379. [Google Scholar]
- Pereira, P.R.; Casaca, A.; Rodrigues, J.J.P.C.; Soares, V.N.G.J.; Triay, J.; Cervello-Pastor, C. From Delay-Tolerant Networks to Vehicular Delay-Tolerant Networks. IEEE Commun. Surv. Tutor. 2011, 14, 1166–1182. [Google Scholar] [CrossRef]
- Benamar, N.; Singh, K.D.; Benamar, M.; El Ouadghiri, D.; Bonnin, J.-M. Routing protocols in Vehicular Delay Tolerant Networks: A comprehensive survey. Comput. Commun. 2014, 48, 141–158. [Google Scholar] [CrossRef]
- Zhang, Z. Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Commun. Surv. Tutor. 2006, 8, 24–37. [Google Scholar] [CrossRef]
- Almelu, S.; Deen, A.J.; Silakari, S. Delay tolerant network routing protocol: A comprehensive survey with hybrid technique. Int. J. Res. Eng. Technol. IJETR 2015, 4, 481–487. [Google Scholar]
- Arif, M.; Daud, A. Adaptive Routing Techniques in Disruption Tolerant Networks. In International Conference on Web and Semantic Technology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 336–348. [Google Scholar]
- Khabbaz, M.J.; Assi, C.M.; Fawaz, W.F. Disruption-tolerant networking: A comprehensive survey on recent developments and persisting challenges. IEEE Commun. Surv. Tutor. 2011, 14, 607–640. [Google Scholar] [CrossRef]
- Bouk, S.H.; Ahmed, S.H.; Kim, D. Delay Tolerance in Underwater Wireless Communications: A Routing Perspective. Mob. Inf. Syst. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Sundararaj, L.; Vellaiyan, P. Throughput Enhancement in AUDTWMN Using Throwboxes—An Overview. Int. J. Comput. Inf. Eng. World Acad. Sci. Eng. Technol. 2010, 4, 1583–1591. [Google Scholar]
- Arora, P.; Jain, S. Underwater sensor network delay aware routing protocols: A survey. In Proceedings of the 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), Jaipur, India, 26–27 March 2018; pp. 26–27. [Google Scholar]
- Trifunovic, S.; Kouyoumdjieva, S.T.; Distl, B.; Pajevic, L.; Karlsson, G.; Plattner, B. A Decade of Research in Opportunistic Networks: Challenges, Relevance, and Future Directions. IEEE Commun. Mag. 2017, 55, 168–173. [Google Scholar] [CrossRef]
- Marshall, P.F. Recent progress in moving cognitive radio and services to deployment. In Proceedings of the 2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks, Newport Beach, CA, USA, 23–26 June 2008. [Google Scholar]
- Li, Y.; Bartos, R. A survey of protocols for intermittently connected delay-tolerant wireless sensor networks. J. Netw. Comput. Appl. 2014, 41, 411–423. [Google Scholar] [CrossRef]
- Matracia, M.; Saeed, N.; Kishk, M.A.; Alouini, M.-S. Post-disaster communications: Enabling technologies, architectures, and open challenges. IEEE Open J. Commun. Soc. 2022, 3, 1177–1205. [Google Scholar] [CrossRef]
- Araniti, G.; Bisio, I.; De Sanctis, M. State of the art and innovative communications and networking solutions for a reliable and efficient Interplanetary Internet. Int. J. Adv. Internet Technol. 2010, 3, 118–127. [Google Scholar]
- Gou, L.; Zhang, G.; Zhang, W.; Bian, D. Cluster-based architecture and network model for InterPlaNetary Internet. J. Commun. Inf. Netw. 2016, 1, 51–66. [Google Scholar] [CrossRef]
- Debnath, S.; Arif, W.; Roy, S.; Baishya, S.; Sen, D. A comprehensive survey of emergency communication network and management. Wirel. Pers. Commun. 2022, 124, 1375–1421. [Google Scholar] [CrossRef]
- Dalal, R.; Khari, M.; Anzola, J.P.; García-Díaz, V. Proliferation of opportunistic routing: A systematic review. IEEE Access 2021, 10, 5855–5883. [Google Scholar] [CrossRef]
- Babich, F.; Comisso, M.; Cuttin, A.; Marchese, M.; Patrone, F. Nanosatellite-5G Integration in the Millimeter Wave Domain: A Full Top-Down Approach. IEEE Trans. Mob. Comput. 2019, 19, 390–404. [Google Scholar] [CrossRef]
- Khabbaz, M.J.; Fawaz, W.F.; Assi, C.M. Modeling and Delay Analysis of Intermittently Connected Roadside Communication Networks. IEEE Trans. Veh. Technol. 2012, 61, 2698–2706. [Google Scholar] [CrossRef]
- Caini, C.; Cruickshank, H.; Farrell, S.; Marchese, M. Delay- and Disruption-Tolerant Networking (DTN): An Alternative Solution for Future Satellite Networking Applications. Proc. IEEE 2011, 99, 1980–1997. [Google Scholar] [CrossRef]
- Lu, R.; Lin, X.; Zhu, H.; Shen, X.; Preiss, B. Pi: A practical incentive protocol for delay tolerant networks. IEEE Trans. Wirel. Commun. 2010, 9, 1483–1493. [Google Scholar] [CrossRef]
- Chen, K.; Shen, H. DTN-FLOW: Inter-Landmark Data Flow for High-Throughput Routing in DTNs. IEEE/ACM Trans. Netw. 2014, 23, 212–226. [Google Scholar] [CrossRef]
- Falcão, D.; Salles, R.; Maranhão, P. Performance evaluation of disruption tolerant networks on warships’ tactical messages for secure transmissions. J. Commun. Netw. 2021, 23, 473–487. [Google Scholar] [CrossRef]
- Huang, M.; Chen, S.; Zhu, Y.; Wang, Y. Topology Control for Time-Evolving and Predictable Delay-Tolerant Networks. IEEE Trans. Comput. 2012, 62, 2308–2321. [Google Scholar] [CrossRef]
- Ochiai, H.; Ishizuka, H.; Kawakami, Y.; Esaki, H. A DTN-Based Sensor Data Gathering for Agricultural Applications. IEEE Sens. J. 2011, 11, 2861–2868. [Google Scholar] [CrossRef]
- Fu, Q.; Krishnamachari, B.; Zhang, L. DAWN: A density adaptive routing for deadline-based data collection in vehicular delay tolerant networks. Tsinghua Sci. Technol. 2013, 18, 230–241. [Google Scholar] [CrossRef]
- Lee, C.; Rhee, J.-K.K. Efficient Design and Scalable Control for Store-and-Forward Capable Optical Transport Networks. J. Opt. Commun. Netw. 2017, 9, 699–710. [Google Scholar] [CrossRef]
- Birrane, E.J.; Heiner, S.; McKeever, K. Delay-Tolerant Security Architecture Elements. In Securing Delay-Tolerant Networks with BPSec; Wiley: Hoboken, NJ, USA, 2023; pp. 51–70. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, B.; Shi, X.; Wang, Y. A Survey of Social-Based Routing in Delay Tolerant Networks: Positive and Negative Social Effects. IEEE Commun. Surv. Tutor. 2012, 15, 387–401. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Levine, B.N.; Venkataramani, A. Replication Routing in DTNs: A Resource Allocation Approach. IEEE/ACM Trans. Netw. 2009, 18, 596–609. [Google Scholar] [CrossRef]
- Li, Y.; Hui, P.; Jin, D.; Su, L.; Zeng, L. Evaluating the Impact of Social Selfishness on the Epidemic Routing in Delay Tolerant Networks. IEEE Commun. Lett. 2010, 14, 1026–1028. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, X.; Wen, Y.; Cao, G.; La Porta, T. Algorithms and Applications for Community Detection in Weighted Networks. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 2916–2926. [Google Scholar] [CrossRef]
- Abdelkader, T.; Naik, K.; Nayak, A.; Goel, N.; Srivastava, V. SGBR: A Routing Protocol for Delay Tolerant Networks Using Social Grouping. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 2472–2481. [Google Scholar] [CrossRef]
- Li, F.; Chen, S.; Huang, M.; Yin, Z.; Zhang, C.; Wang, Y. Reliable Topology Design in Time-Evolving Delay-Tolerant Networks with Unreliable Links. IEEE Trans. Mob. Comput. 2014, 14, 1301–1314. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Qian, Y. HoP-DTN: Modeling and Evaluation of Homing-Pigeon-Based Delay-Tolerant Networks. IEEE Trans. Veh. Technol. 2009, 59, 857–868. [Google Scholar] [CrossRef]
- Mahendran, V.; Gunasekaran, R.; Murthy, C.S.R. Performance Modeling of Delay-Tolerant Network Routing via Queueing Petri Nets. IEEE Trans. Mob. Comput. 2013, 13, 1816–1828. [Google Scholar] [CrossRef]
- Su, Y.; Fan, R.; Jin, Z. ORIT: A Transport Layer Protocol Design for Underwater DTN Sensor Networks. IEEE Access 2019, 7, 69592–69603. [Google Scholar] [CrossRef]
- Han, C.; Yao, H.; Mai, T.; Zhang, N.; Guizani, M. QMIX Aided Routing in Social-Based Delay-Tolerant Networks. IEEE Trans. Veh. Technol. 2022, 71, 1952–1963. [Google Scholar] [CrossRef]
- Fall, K.; Farrell, S. DTN: An architectural retrospective. IEEE J. Sel. Areas Commun. 2008, 26, 828–836. [Google Scholar] [CrossRef]
- Zhu, H.; Du, S.; Gao, Z.; Dong, M.; Cao, Z. A Probabilistic Misbehavior Detection Scheme toward Efficient Trust Establishment in Delay-Tolerant Networks. IEEE Trans. Parallel Distrib. Syst. 2013, 25, 22–32. [Google Scholar] [CrossRef]
- Li, Y.; Qian, M.; Jin, D.; Hui, P.; Wang, Z.; Chen, S. Multiple Mobile Data Offloading Through Disruption Tolerant Networks. IEEE Trans. Mob. Comput. 2013, 13, 1579–1596. [Google Scholar] [CrossRef]
- Li, F.; Jiang, H.; Li, H.; Cheng, Y.; Wang, Y. SEBAR: Social-Energy-Based Routing for Mobile Social Delay-Tolerant Networks. IEEE Trans. Veh. Technol. 2017, 66, 7195–7206. [Google Scholar] [CrossRef]
- Zhu, K.; Li, W.; Fu, X. SMART: A Social- and Mobile-Aware Routing Strategy for Disruption-Tolerant Networks. IEEE Trans. Veh. Technol. 2014, 63, 3423–3434. [Google Scholar] [CrossRef]
- Agarwal, A.; Starobinski, D.; Little, T.D.C. Phase Transition of Message Propagation Speed in Delay-Tolerant Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2011, 13, 249–263. [Google Scholar] [CrossRef]
- Marchese, M.; Patrone, F.; Cello, M. DTN-Based Nanosatellite Architecture and Hot Spot Selection Algorithm for Remote Areas Connection. IEEE Trans. Veh. Technol. 2017, 67, 689–702. [Google Scholar] [CrossRef]
- Peng, W.; Li, F.; Zou, X.; Wu, J. Behavioral Malware Detection in Delay Tolerant Networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 53–63. [Google Scholar] [CrossRef]
- Cui, J.; Cao, S.; Chang, Y.; Wu, L.; Liu, D.; Yang, Y. An Adaptive Spray and Wait Routing Algorithm Based on Quality of Node in Delay Tolerant Network. IEEE Access 2020, 7, 35274–35286. [Google Scholar] [CrossRef]
- Mahendran, V.; Murthy, C.S.R. Buffer Dimensioning of DTN Replication-Based Routing Nodes. IEEE Commun. Lett. 2012, 17, 123–126. [Google Scholar] [CrossRef]
- Qi, W.; Song, Q.; Wang, X.; Guo, L. Trajectory Data Mining-Based Routing in DTN-Enabled Vehicular Ad Hoc Networks. IEEE Access 2017, 5, 24128–24138. [Google Scholar] [CrossRef]
- Atakora, M.; Chenji, H. Multicast Techniques for Hybrid RF/FSO DTNs. J. Opt. Commun. Netw. 2017, 9, 1051–1061. [Google Scholar] [CrossRef]
- de Andrade, G.E.; Junior, L.A.P.L.; Calsavara, A.; Michelon, G.A.; Brussamolin, V. A Greedy Routing Strategy Based on Euclidean Geometry for Vehicular Delay Tolerant Network. IEEE Lat. Am. Trans. 2018, 16, 2000–2006. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Tan, J.; Lv, H.; Zhu, M. A Delay Tolerant Network Routing Policy Based on Optimized Control Information Generation Method. IEEE Access 2018, 6, 51791–51803. [Google Scholar] [CrossRef]
- Rong, W.; Yahui, W.; Hongbin, H.; Su, D. Cooperative transmission in delay tolerant network. J. Syst. Eng. Electron. 2019, 30, 30–36. [Google Scholar] [CrossRef]
- Pathirana, P.; Bulusu, N.; Savkin, A.; Jha, S. Node localization using mobile robots in delay-tolerant sensor networks. IEEE Trans. Mob. Comput. 2005, 4, 285–296. [Google Scholar] [CrossRef]
- Choi, B.J.; Shen, X. Adaptive Asynchronous Sleep Scheduling Protocols for Delay Tolerant Networks. IEEE Trans. Mob. Comput. 2010, 10, 1283–1296. [Google Scholar] [CrossRef]
- Pham, T.N.D.; Yeo, C.K. Detecting Colluding Blackhole and Greyhole Attacks in Delay Tolerant Networks. IEEE Trans. Mob. Comput. 2015, 15, 1116–1129. [Google Scholar] [CrossRef]
- Gao, L.; Luan, T.H.; Yu, S.; Zhou, W.; Liu, B. FogRoute: DTN-based Data Dissemination Model in Fog Computing. IEEE Internet Things J. 2016, 4, 225–235. [Google Scholar] [CrossRef]
- Cho, J.-H.; Chen, I.-R. PROVEST: Provenance-Based Trust Model for Delay Tolerant Networks. IEEE Trans. Dependable Secur. Comput. 2016, 15, 151–165. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Jin, D.; Su, L.; Zeng, L.; Chen, S. Optimal Beaconing Control for Epidemic Routing in Delay-Tolerant Networks. IEEE Trans. Veh. Technol. 2011, 61, 311–320. [Google Scholar] [CrossRef]
- Picu, A.; Spyropoulos, T. DTN-Meteo: Forecasting the Performance of DTN Protocols Under Heterogeneous Mobility. IEEE/ACM Trans. Netw. 2014, 23, 587–602. [Google Scholar] [CrossRef]
- Iranmanesh, S.; Raad, R.; Raheel, M.S.; Tubbal, F.; Jan, T. Novel DTN Mobility-Driven Routing in Autonomous Drone Logistics Networks. IEEE Access 2020, 8, 13661–13673. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhu, H.; Sun, L. Coff: Contact-Duration-Aware Cellular Traffic Offloading Over Delay Tolerant Networks. IEEE Trans. Veh. Technol. 2014, 64, 5257–5268. [Google Scholar] [CrossRef]
- Qin, S.; Feng, G.; Zhang, Y. How the Contact-Probing Mechanism Affects the Transmission Capacity of Delay-Tolerant Networks. IEEE Trans. Veh. Technol. 2011, 60, 1825–1834. [Google Scholar] [CrossRef]
- Sakai, K.; Sun, M.-T.; Ku, W.-S.; Wu, J.; Alanazi, F.S. Performance and Security Analyses of Onion-Based Anonymous Routing for Delay Tolerant Networks. IEEE Trans. Mob. Comput. 2017, 16, 3473–3487. [Google Scholar] [CrossRef]
- Pham, T.N.D.; Yeo, C.K.; Yanai, N.; Fujiwara, T. Detecting Flooding Attack and Accommodating Burst Traffic in Delay-Tolerant Networks. IEEE Trans. Veh. Technol. 2018, 67, 795–808. [Google Scholar] [CrossRef]
- Li, W.; Hu, Y.; Fu, X.; Lu, S.; Chen, D. Cooperative Positioning and Tracking in Disruption Tolerant Networks. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 382–391. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Guo, F.; Feng, G.; Lv, H. ARAG: A Routing Algorithm Based on Incentive Mechanisms for DTN With Nodes’ Selfishness. IEEE Access 2018, 6, 29419–29425. [Google Scholar] [CrossRef]
- Li, F.; Yin, Z.; Tang, S.; Cheng, Y.; Wang, Y. Optimization Problems in Throwbox-Assisted Delay Tolerant Networks: Which Throwboxes to Activate? How Many Active Ones I Need? IEEE Trans. Comput. 2015, 65, 1663–1670. [Google Scholar] [CrossRef]
- Vazintari, A.; Cottis, P.G. Mobility Management in Energy Constrained Self-Organizing Delay Tolerant Networks: An Autonomic Scheme Based on Game Theory. IEEE Trans. Mob. Comput. 2015, 15, 1401–1411. [Google Scholar] [CrossRef]
- Alim, A.; Li, X.; Nguyen, N.P.; Thai, M.T.; Helal, A. Structural Vulnerability Assessment of Community-Based Routing in Opportunistic Networks. IEEE Trans. Mob. Comput. 2016, 15, 3156–3170. [Google Scholar] [CrossRef]
- Maia, S.L.F.; Silva, E.R.; Guardieiro, P.R. A New Optimization Strategy Proposal for Multi-Copy Forwarding in Energy Constrained DTNs. IEEE Commun. Lett. 2014, 18, 1623–1626. [Google Scholar] [CrossRef]
- Cello, M.; Gnecco, G.; Marchese, M.; Sanguineti, M. Evaluation of the Average Packet Delivery Delay in Highly-Disrupted Networks: The DTN and IP-like Protocol Cases. IEEE Commun. Lett. 2014, 18, 519–522. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, S.; Huang, H. Control of Message Transmission in Delay/Disruption Tolerant Network. IEEE Trans. Comput. Soc. Syst. 2017, 5, 132–143. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Qian, Y.; Roy, S.; Mitchell, K. Quasi-Optimal Dual-Phase Scheduling for Pigeon Networks. IEEE Trans. Veh. Technol. 2012, 61, 4157–4169. [Google Scholar] [CrossRef]
- Li, W.; Galluccio, L.; Bassi, F.; Kieffer, M. Distributed Faulty Node Detection in Delay Tolerant Networks: Design and Analysis. IEEE Trans. Mob. Comput. 2017, 17, 831–844. [Google Scholar] [CrossRef]
- Karaliopoulos, M. Engage Others or Leave it to the Source? On Optimal Message Replication in DTNs Under Imperfect Cooperation. IEEE Trans. Mob. Comput. 2016, 16, 730–743. [Google Scholar] [CrossRef]
- Silva, R.F. Adaptive: An Adaptive Routing Protocol for Vehicle Delay-Tolerant Networks. IEEE Lat. Am. Trans. 2020, 18, 223–231. [Google Scholar] [CrossRef]
- Shah, V.K.; Luciano, B.; Silvestri, S.; Bhattacharjee, S.; Das, S.K. A Diverse Band-Aware Dynamic Spectrum Access Network Architecture for Delay-Tolerant Smart City Applications. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1125–1139. [Google Scholar] [CrossRef]
- Yuan, P.; Yang, Z.; Wang, Y.; Gu, S.; Zhang, Q. A Task-Driven Updated Discrete Graph Assisted Minimum Delivery Delay Routing for Remote Sensing Disruption-Tolerant Networks. IEEE Access 2019, 7, 69351–69362. [Google Scholar] [CrossRef]
- Brugger, M.; Bradford, K.; Ehsan, S.; Hamdaoui, B.; Kovchegov, Y. Analytic Bounds on Data Loss Rates in Mostly-Covered Mobile DTNs. IEEE Trans. Wirel. Commun. 2013, 12, 3121–3129. [Google Scholar] [CrossRef]
- Stute, M.; Kohnhauser, F.; Baumgartner, L.; Almon, L.; Hollick, M.; Katzenbeisser, S.; Freisleben, B. RESCUE: A Resilient and Secure Device-to-Device Communication Framework for Emergencies. IEEE Trans. Dependable Secur. Comput. 2020, 19, 1722–1734. [Google Scholar] [CrossRef]
- Silva, R.A.; Netto, J.E.; Paiva, M.A.C.; Anzaloni, A. SynFlight: A Disruption-Aware Programmed Transmission Approach for Air-Ground Networks. IEEE Lat. Am. Trans. 2014, 12, 1417–1425. [Google Scholar] [CrossRef]
- Birrane, E.J.; Heiner, S.; McKeever, K. DTN Security Stressors and Strategies. In Securing Delay-Tolerant Networks with BPSec; Wiley: Hoboken, NJ, USA, 2023; pp. 31–50. [Google Scholar] [CrossRef]
- Birrane, E.J.; Heiner, S.; McKeever, K. Introduction. In Securing Delay-Tolerant Networks with BPSec; Wiley: Hoboken, NJ, USA, 2023; Volume 1, p. 11. [Google Scholar] [CrossRef]
- Misra, S.; Goswami, S. Reliability and fault-tolerant and delay-tolerant routing. In Network Routing: Fundamentals, Applications, and Emerging Technologies; Wiley: Hoboken, NJ, USA, 2014; pp. 377–410. [Google Scholar] [CrossRef]
- Datta, S.; Madria, S.K. Prioritized Content Determination and Dissemination Using Reinforcement Learning in DTNs. IEEE Trans. Netw. Sci. Eng. 2021, 9, 20–32. [Google Scholar] [CrossRef]
- Yuan, Q.; Cardei, I.; Wu, J. An Efficient Prediction-Based Routing in Disruption-Tolerant Networks. IEEE Trans. Parallel Distrib. Syst. 2011, 23, 19–31. [Google Scholar] [CrossRef]
- Krifa, A.; Barakat, C.; Spyropoulos, T. Message Drop and Scheduling in DTNs: Theory and Practice. IEEE Trans. Mob. Comput. 2011, 11, 1470–1483. [Google Scholar] [CrossRef]
- Yin, L.; Huimei, L.; Cao, Y. Similarity Degree-based Mobile Pattern Aware Routing in DTNs*. Chin. J. Electron. CIE 2010, 19, 23–28. [Google Scholar] [CrossRef]
- Rhee, I.; Shin, M.; Hong, S.; Lee, K.; Kim, S.J.; Chong, S. On the Levy-Walk Nature of Human Mobility. IEEE/ACM Trans. Netw. 2011, 19, 630–643. [Google Scholar] [CrossRef]
- Jones, E.P.; Li, L.; Schmidtke, J.K.; Ward, P.A. Practical Routing in Delay-Tolerant Networks. IEEE Trans. Mob. Comput. 2007, 6, 943–959. [Google Scholar] [CrossRef]
- Chen, I.-R.; Bao, F.; Chang, M.; Cho, J.-H. Dynamic Trust Management for Delay Tolerant Networks and Its Application to Secure Routing. IEEE Trans. Parallel Distrib. Syst. 2013, 25, 1200–1210. [Google Scholar] [CrossRef]
- Zhuo, X.; Gao, W.; Cao, G.; Hua, S. An Incentive Framework for Cellular Traffic Offloading. IEEE Trans. Mob. Comput. 2013, 13, 541–555. [Google Scholar] [CrossRef]
- Gao, W.; Cao, G.; La Porta, T.; Han, J. On Exploiting Transient Social Contact Patterns for Data Forwarding in Delay-Tolerant Networks. IEEE Trans. Mob. Comput. 2011, 12, 151–165. [Google Scholar] [CrossRef]
- Li, Y.; Su, G.; Wu, D.O.; Jin, D.; Su, L.; Zeng, L. The Impact of Node Selfishness on Multicasting in Delay Tolerant Networks. IEEE Trans. Veh. Technol. 2011, 60, 2224–2238. [Google Scholar] [CrossRef]
- Li, T.; Zhou, H.; Luo, H.; Yu, S. SERvICE: A Software Defined Framework for Integrated Space-Terrestrial Satellite Communication. IEEE Trans. Mob. Comput. 2018, 17, 703–716. [Google Scholar] [CrossRef]
- Banerjee, N.; Corner, M.D.; Levine, B.N. Design and Field Experimentation of an Energy-Efficient Architecture for DTN Throwboxes. IEEE/ACM Trans. Netw. 2010, 18, 554–567. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, T.; Kaiwartya, O.; Sun, H.; Zhou, H.; Wang, R. Toward Pre-Empted EV Charging Recommendation Through V2V-Based Reservation System. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3026–3039. [Google Scholar] [CrossRef]
- Uddin, Y.S.; Ahmadi, H.; Abdelzaher, T.; Kravets, R. Intercontact Routing for Energy Constrained Disaster Response Networks. IEEE Trans. Mob. Comput. 2012, 12, 1986–1998. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Yang, W.-S. Cloud-Based Multicasting with Feedback in Mobile Social Networks. IEEE Trans. Wirel. Commun. 2013, 12, 6043–6053. [Google Scholar] [CrossRef]
- Tournoux, P.-U.; Leguay, J.; Benbadis, F.; Whitbeck, J.; Conan, V.; de Amorim, M.D. Density-Aware Routing in Highly Dynamic DTNs: The RollerNet Case. IEEE Trans. Mob. Comput. 2010, 10, 1755–1768. [Google Scholar] [CrossRef]
- Seregina, T.; Brun, O.; El-Azouzi, R.; Prabhu, B.J. On the Design of a Reward-Based Incentive Mechanism for Delay Tolerant Networks. IEEE Trans. Mob. Comput. 2016, 16, 453–465. [Google Scholar] [CrossRef]
- Hur, J.; Kang, K. Secure Data Retrieval for Decentralized Disruption-Tolerant Military Networks. IEEE/ACM Trans. Netw. 2012, 22, 16–26. [Google Scholar] [CrossRef]
- Liu, C.; Wu, J. Scalable Routing in Cyclic Mobile Networks. IEEE Trans. Parallel Distrib. Syst. 2008, 20, 1325–1338. [Google Scholar] [CrossRef]
- Fraire, J.A.; Madoery, P.G.; Finochietto, J.M. On the Design and Analysis of Fair Contact Plans in Predictable Delay-Tolerant Networks. IEEE Sens. J. 2014, 14, 3874–3882. [Google Scholar] [CrossRef]
- Xiao, M.; Wu, J.; Huang, L. Home-Based Zero-Knowledge Multi-Copy Routing in Mobile Social Networks. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 1238–1250. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.-S.; Wu, J. Analysis of a Hypercube-Based Social Feature Multipath Routing in Delay Tolerant Networks. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 1706–1716. [Google Scholar] [CrossRef]
- Niyato, D.; Wang, P.; Tan, H.-P.; Saad, W.; Kim, D.I. Cooperation in Delay-Tolerant Networks with Wireless Energy Transfer: Performance Analysis and Optimization. IEEE Trans. Veh. Technol. 2014, 64, 3740–3754. [Google Scholar] [CrossRef]
- Chen, K.; Shen, H.; Yan, L. Multicent: A Multifunctional Incentive Scheme Adaptive to Diverse Performance Objectives for DTN Routing. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 1643–1653. [Google Scholar] [CrossRef]
- Galluccio, L.; Lorenzo, B.; Glisic, S. Sociality-Aided New Adaptive Infection Recovery Schemes for Multicast DTNs. IEEE Trans. Veh. Technol. 2015, 65, 3360–3376. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Li, J.; Zhang, S.; Shen, H. A Dynamic Combined Flow Algorithm for the Two-Commodity Max-Flow Problem Over Delay-Tolerant Networks. IEEE Trans. Wirel. Commun. 2018, 17, 7879–7893. [Google Scholar] [CrossRef]
- Zeng, D.; Guo, S.; Hu, J. Reliable Bulk-Data Dissemination in Delay Tolerant Networks. IEEE Trans. Parallel Distrib. Syst. 2013, 25, 2180–2189. [Google Scholar] [CrossRef]
- Basu, S.; Roy, S.; DasBit, S. A Post-Disaster Demand Forecasting System Using Principal Component Regression Analysis and Case-Based Reasoning Over Smartphone-Based DTN. IEEE Trans. Eng. Manag. 2018, 66, 224–239. [Google Scholar] [CrossRef]
- Liang, H.; Gao, W.; Nguyen, J.H.; Orpilla, M.F.; Yu, W. Internet of Things Data Collection Using Unmanned Aerial Vehicles in Infrastructure Free Environments. IEEE Access 2019, 8, 3932–3944. [Google Scholar] [CrossRef]
- Chen, K.; Shen, H. SMART: Utilizing Distributed Social Map for Lightweight Routing in Delay-Tolerant Networks. IEEE/ACM Trans. Netw. 2013, 22, 1545–1558. [Google Scholar] [CrossRef]
- Medjiah, S.; Taleb, T.; Ahmed, T. Sailing over Data Mules in Delay-Tolerant Networks. IEEE Trans. Wirel. Commun. 2014, 13, 5–13. [Google Scholar] [CrossRef]
- Wei, K.; Guo, S.; Zeng, D.; Xu, K.; Li, K. Exploiting Small World Properties for Message Forwarding in Delay Tolerant Networks. IEEE Trans. Comput. 2015, 64, 2809–2818. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, K.; Min, G.; Weng, J.; Yang, X.; Sun, Z. A Geographic Multicopy Routing Scheme for DTNs With Heterogeneous Mobility. IEEE Syst. J. 2018, 12, 790–801. [Google Scholar] [CrossRef]
- Takahashi, A.; Nishiyama, H.; Kato, N.; Nakahira, K.; Sugiyama, T. Replication Control for Ensuring Reliability of Convergecast Message Delivery in Infrastructure-Aided DTNs. IEEE Trans. Veh. Technol. 2014, 63, 3223–3231. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, J.; Lu, S. Distributed Workload Dissemination for Makespan Minimization in Disruption Tolerant Networks. IEEE Trans. Mob. Comput. 2015, 15, 1661–1673. [Google Scholar] [CrossRef]
- Yang, S.; Yeo, C.K.; Lee, F.B.S. Cooperative Duty Cycling for Energy-Efficient Contact Discovery in Pocket Switched Networks. IEEE Trans. Veh. Technol. 2012, 62, 1815–1826. [Google Scholar] [CrossRef]
- Yang, T.; Kong, L.; Zhao, N.; Sun, R. Efficient Energy and Delay Tradeoff for Vessel Communications in SDN Based Maritime Wireless Networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3800–3812. [Google Scholar] [CrossRef]
- Zhao, J.; Zhuo, X.; Li, Q.; Gao, W.; Cao, G. Contact Duration Aware Data Replication in DTNs with Licensed and Unlicensed Spectrum. IEEE Trans. Mob. Comput. 2015, 15, 803–816. [Google Scholar] [CrossRef]
- Basilico, N.; Cesana, M.; Gatti, N. Algorithms to Find Two-Hop Routing Policies in Multiclass Delay Tolerant Networks. IEEE Trans. Wirel. Commun. 2016, 15, 4017–4031. [Google Scholar] [CrossRef]
- Rashidi, L.; Entezari-Maleki, R.; Chatzopoulos, D.; Hui, P.; Trivedi, K.S.; Movaghar, A. Performance Evaluation of Epidemic Content Retrieval in DTNs with Restricted Mobility. IEEE Trans. Netw. Serv. Manag. 2019, 16, 701–714. [Google Scholar] [CrossRef]
- Wei, K.; Duan, R.; Shi, G.; Xu, K. Distribution of inter-contact time: An analysis-based on social relationships. J. Commun. Netw. 2013, 15, 504–513. [Google Scholar] [CrossRef]
- Chen, K.; Shen, H.; Yan, L. DSearching: Using Floating Mobility Information for Distributed Node Searching in DTNs. IEEE Trans. Mob. Comput. 2015, 15, 121–136. [Google Scholar] [CrossRef]
- Jiao, Z.; Tian, R.; Zhang, B.; Li, C. DTN routing with back-pressure based replica distribution. J. Commun. Netw. 2014, 16, 378–384. [Google Scholar] [CrossRef]
- Furutani, T.; Kawamoto, Y.; Nishiyama, H.; Kato, N. Proposal and Performance Evaluation of Information Diffusion Technique with Novel Virtual-Cell-Based Wi-Fi Direct. IEEE Trans. Emerg. Top. Comput. 2019, 9, 1519–1528. [Google Scholar] [CrossRef]
- Cavallari, R.; Toumpis, S.; Verdone, R.; Kontoyiannis, I. Packet Speed and Cost in Mobile Wireless Delay-Tolerant Networks. IEEE Trans. Inf. Theory 2020, 66, 5683–5702. [Google Scholar] [CrossRef]
- Altman, E.; De Pellegrini, F.; Miorandi, D.; Neglia, G. Adaptive Optimal Stochastic Control of Delay-Tolerant Networks. IEEE Trans. Mob. Comput. 2016, 16, 1815–1829. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.; Ma, W.; Deng, S.; Huang, H. Epidemic Routing Performance in DTN With Selfish Nodes. IEEE Access 2019, 7, 65560–65568. [Google Scholar] [CrossRef]
- De Souza, C.D.T.; Ferreira, D.L.; Campos, C.A.V.; Junior, A.C.D.O.; Cardoso, K.V.; Moreira, W. Employing Social Cooperation to Improve Data Discovery and Retrieval in Content-Centric Delay-Tolerant Networks. IEEE Access 2019, 7, 137930–137944. [Google Scholar] [CrossRef]
- Ribeiro, F.J.L.; de Castro Pinto Pedroza, A.; Costa, L.H.M.K. Deepwater Monitoring System in Underwater Delay/Disruption Tolerant Network. IEEE Lat. Am. Trans. 2012, 10, 1324–1331. [Google Scholar] [CrossRef]
- Cao, L.; Viswanathan, R. Average Operation Time of Bundle Protocol in Delay/Disruption-Tolerant Networks. IEEE Trans. Wirel. Commun. 2022, 21, 5801–5813. [Google Scholar] [CrossRef]
- Margalho, M.; Efrat, A.; Johnson, T. Improving Robustness in DTN Networks that Carries Large Medical Files in Amazonia. IEEE Lat. Am. Trans. 2016, 14, 349–355. [Google Scholar] [CrossRef]
- Birrane, E.J.; Heiner, S.; McKeever, K. Special considerations. In Securing Delay-Tolerant Networks with BPSec; Wiley: Hoboken, NJ, USA, 2023; pp. 260–281. [Google Scholar] [CrossRef]
- Birrane, E.J.; Heiner, S.; McKeever, K. Threat considerations for BPv7 networks. In Securing Delay-Tolerant Networks with BPSec; Wiley: Hoboken, NJ, USA, 2023; pp. 159–177. [Google Scholar] [CrossRef]
- Samdanis, K.; Rost, P.; Maeder, A.; Meo, M.; Verikoukis, C. Towards delay-tolerant cognitive cellular networks. In Green Communications: Principles, Concepts and Practice; Wiley: Hoboken, NJ, USA, 2014; pp. 199–216. [Google Scholar] [CrossRef]
- Glisic, S.G. Large scale networks and mean field theory. In Advanced Wireless Networks: Technology and Business Models; Wiley: Hoboken, NJ, USA, 2016; pp. 659–725. [Google Scholar] [CrossRef]
- Birrane, E.J.; Heiner, S.; McKeever, K. The Design of the bundle protocol security extensions. In Securing Delay-Tolerant Networks with BPSec; Wiley: Hoboken, NJ, USA, 2023; pp. 71–92. [Google Scholar] [CrossRef]
- Karlsson, G.; Almeroth, K.; Fall, K.; May, M.; Yates, R.; Lea, C.-T. Guest editorial—Delay and disruption tolerant wireless communication. IEEE J. Sel. Areas Commun. 2008, 26, 745–747. [Google Scholar] [CrossRef]
- Fusté, O.; Marin-De-Yzaguirre, M.; Ruiz-De-Azua, J. Implementation of a Protocol Stack with DTN Protocols for IoT Services Deployed from Non-Terrestrial Networks; International Astronautical Federation: Paris, France, 2023. [Google Scholar]
- Marin-De-Yzaguirre, M.; Fusté, O.; Ruiz-De-Azua, J. Study to Integrate Delay-Tolerant Network Protocols in IoT LEO Constellations for Flood Prevention; International Astronautical Federation: Paris, France, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, A.; Juiz, C.; Bermejo, B. Delay and Disruption Tolerant Networking for Terrestrial and TCP/IP Applications: A Systematic Literature Review. Network 2024, 4, 237-259. https://doi.org/10.3390/network4030012
Castillo A, Juiz C, Bermejo B. Delay and Disruption Tolerant Networking for Terrestrial and TCP/IP Applications: A Systematic Literature Review. Network. 2024; 4(3):237-259. https://doi.org/10.3390/network4030012
Chicago/Turabian StyleCastillo, Aris, Carlos Juiz, and Belen Bermejo. 2024. "Delay and Disruption Tolerant Networking for Terrestrial and TCP/IP Applications: A Systematic Literature Review" Network 4, no. 3: 237-259. https://doi.org/10.3390/network4030012
APA StyleCastillo, A., Juiz, C., & Bermejo, B. (2024). Delay and Disruption Tolerant Networking for Terrestrial and TCP/IP Applications: A Systematic Literature Review. Network, 4(3), 237-259. https://doi.org/10.3390/network4030012