Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,168)

Search Parameters:
Keywords = deep-learning models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2849 KB  
Article
From Physical to Virtual Sensors: VSG-SGL for Reliable and Cost-Efficient Environmental Monitoring
by Murad Ali Khan, Qazi Waqas Khan, Ji-Eun Kim, SeungMyeong Jeong, Il-yeop Ahn and Do-Hyeun Kim
Automation 2026, 7(1), 27; https://doi.org/10.3390/automation7010027 - 3 Feb 2026
Abstract
Reliable environmental monitoring in remote or sparsely instrumented regions is hindered by the cost, maintenance demands, and inaccessibility of dense physical sensor deployments. To address these challenges, this study introduces VSG-SGL, a unified virtual sensor generation framework that integrates Sparse Gaussian Process Regression [...] Read more.
Reliable environmental monitoring in remote or sparsely instrumented regions is hindered by the cost, maintenance demands, and inaccessibility of dense physical sensor deployments. To address these challenges, this study introduces VSG-SGL, a unified virtual sensor generation framework that integrates Sparse Gaussian Process Regression (SGPR) and Bayesian Ridge Regression (BRR) with deep generative learning via Variational Autoencoders (VAE) and Conditional Tabular GANs (CTGAN). Real meteorological datasets from multiple South Korean cities were preprocessed using thresholding and Isolation Forest anomaly detection and evaluated using distributional alignment (KDE) and sequence-learning validation with BiLSTM and BiGRU models. Experimental findings demonstrate that VAE-augmented virtual sensors provide the most stable and reliable performance. For temperature, VAE maintains predictive errors close to those of BRR and SGPR, reflecting the already well-modeled dynamics of this variable. In contrast, humidity and wind-related variables exhibit measurable gains with VAE; for example, SGPR-based wind speed MAE improves from 0.1848 to 0.1604, while BRR-based wind direction RMSE decreases from 0.1842 to 0.1726. CTGAN augmentation, however, frequently increases error, particularly for humidity and wind speed. Overall, the results establish VAE-enhanced VSG-SGL virtual sensors as a cost-effective and accurate alternative in scenarios where physical sensing is limited or impractical. Full article
25 pages, 1793 KB  
Review
Potential of Deep Learning Models for Point Cloud-Based Infrastructure Management
by Wei Wei, Fang Ding, Sardar Usman Ali, Tariq Ur Rahman, Shi Qiu, Mansoor Khan, Jin Wang and Qasim Zaheer
Electronics 2026, 15(3), 672; https://doi.org/10.3390/electronics15030672 - 3 Feb 2026
Abstract
The increasing recognition within the infrastructure sector of the transformative potential of 3D point cloud data for civil structure management has prompted a growing interest. However, the inherent complexity of these data poses significant challenges. With the expanding accessibility to point cloud data [...] Read more.
The increasing recognition within the infrastructure sector of the transformative potential of 3D point cloud data for civil structure management has prompted a growing interest. However, the inherent complexity of these data poses significant challenges. With the expanding accessibility to point cloud data and the rising demand for robust infrastructure management, the strategic application of deep learning becomes opportune. Deep learning models exhibit promise in various tasks, including object visualization, anomaly detection, element classification, and component segmentation. Addressing a notable research gap between point cloud technology and its allied fields, this review provides a comprehensive overview of deep learning models specifically tailored for Civil Infrastructure Management. Commencing with an exploration of the core principles underlying foundational models such as CNN, GNN, PointNet, and ResNet, the discussion progresses to advanced architectures, including DGCNN and ResPointNet++. Through a comparative analysis, this review delineates pathways for advancing deep learning models, with a particular emphasis on integrating domain knowledge and streamlining architectural designs. The findings contribute valuable insights aimed at developing more effective approaches for leveraging deep learning in point cloud-based infrastructure management, aligning with the dynamic demands of the industry. This paper centers on the strategic utilization of deep learning to address complex infrastructure challenges, providing insights that are indispensable for staying aligned with the evolving landscape of the industry. Full article
Show Figures

Figure 1

11 pages, 1179 KB  
Article
Physics-Informed Neural Network-Assisted Imaging for Oil Palm Fruit Ripeness Classification
by Kuan-Huei Ng, Mohd Ikmal Hafizi Azaman, Waldo Udos, Mohd Ramdhan Mohd Khalid, Mohd Azwan Mohd Bakri and Kok-Sing Lim
Electronics 2026, 15(3), 671; https://doi.org/10.3390/electronics15030671 - 3 Feb 2026
Abstract
In this work, we present a Physics-Informed Neural Network (PINN) framework for the classification of oil palm fresh fruit bunch (FFB) ripeness using RGB images. Unlike conventional Convolutional Neural Networks (CNNs) that learn solely from visual patterns, the proposed PINN integrates a physics-based [...] Read more.
In this work, we present a Physics-Informed Neural Network (PINN) framework for the classification of oil palm fresh fruit bunch (FFB) ripeness using RGB images. Unlike conventional Convolutional Neural Networks (CNNs) that learn solely from visual patterns, the proposed PINN integrates a physics-based index—derived from the red-to-green pixel intensity ratio—directly into the network architecture and loss function. This hybrid design embeds wavelength-dependent physical knowledge related to chlorophyll degradation during ripening, enabling the model to learn more robust and generalizable features even with limited and imbalanced training data. The PINN model achieves a peak accuracy of 0.73, outperforming the purely data-driven CNN baseline (0.68) by a margin of 5%. Overall, the PINN demonstrates superior performance in minority-class detection and maintains stable convergence under three different lighting conditions (different light spectra). These results highlight the effectiveness of integrating domain-specific physical insights into deep learning models, offering a promising pathway toward reliable, non-destructive, and automated ripeness assessment for agricultural applications. Full article
(This article belongs to the Special Issue Trends and Challenges in Integrated Photonics)
21 pages, 4384 KB  
Article
Fault Diagnosis and Health Monitoring Method for Semiconductor Manufacturing Equipment Based on Deep Learning and Subspace Transfer
by Peizhu Chen, Zhongze Liu, Junxi Han, Yi Dai, Zhifeng Wang and Zhuyun Chen
Machines 2026, 14(2), 176; https://doi.org/10.3390/machines14020176 - 3 Feb 2026
Abstract
Semiconductor manufacturing equipment such as vacuum pumps, wafer handling mechanisms, etching machines, and deposition systems operates for a long time under high vacuum, high temperature, strong electromagnetic, and high-precision continuous production environments. Its reliability is directly related to the yield and stability of [...] Read more.
Semiconductor manufacturing equipment such as vacuum pumps, wafer handling mechanisms, etching machines, and deposition systems operates for a long time under high vacuum, high temperature, strong electromagnetic, and high-precision continuous production environments. Its reliability is directly related to the yield and stability of the production line. During equipment operation, the fault signals are often weak, the noise is strong, and the working conditions are variable, so traditional methods are difficult to achieve high-precision recognition. To solve this problem, this paper proposes a fault diagnosis and health monitoring method for semiconductor manufacturing equipment based on deep learning and subspace transfer. Firstly, considering the cyclostationary characteristics of the operating signals of key equipment, the cyclic spectral analysis technology is used to obtain the cyclic spectral coherence map, which effectively reveals the feature differences under different health states. Then, a deep fault diagnosis model based on the convolutional neural network (CNN) is constructed to extract deep feature representations. Furthermore, the subspace transfer learning technology is introduced, and group normalization and correlation alignment unsupervised adaptation layers are designed to achieve automatic alignment and enhancement of the statistical characteristics of deep features between the source domain and the target domain, which effectively improves the generalization and adaptability of the model. Finally, simulation experiments based on the public bearing dataset verify that the proposed method has strong feature representation ability and high classification accuracy under different working conditions and different loads. Because the key components and experimental scenarios of semiconductor manufacturing equipment have similar signal characteristics, this method can be directly transferred to the early fault diagnosis and health monitoring of semiconductor production line equipment, which has important engineering application value. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

17 pages, 5066 KB  
Article
Fine-Grained Detection and Sorting of Fresh Tea Leaves Using an Enhanced YOLOv12 Framework
by Shuang Zhao, Chun Ye, Chentao Lian, Liye Mei, Luofa Wu and Jianneng Chen
Foods 2026, 15(3), 544; https://doi.org/10.3390/foods15030544 - 3 Feb 2026
Abstract
As the raw material for tea making, the quality of fresh tea leaves directly affects the quality of finished tea. Traditional manual sorting and machine sorting struggle to meet the requirements for high-quality tea processing. Based on machine vision and deep learning, intelligent [...] Read more.
As the raw material for tea making, the quality of fresh tea leaves directly affects the quality of finished tea. Traditional manual sorting and machine sorting struggle to meet the requirements for high-quality tea processing. Based on machine vision and deep learning, intelligent grading technology has been applied to the automated sorting of fresh tea leaves. However, when faced with machine-picked tea leaves, the characteristics of complex morphology, small target recognition size, and dense spatial distribution can interfere with accurate category recognition, which in turn limits classification accuracy and consistency. Therefore, we propose an enhanced YOLOv12 detection framework that integrates three key modules—C3k2_EMA, A2C2f_DYT, and RFAConv—to strengthen the model's ability to capture delicate tea bud features, thereby improving detection accuracy and robustness. Experimental results demonstrate that the proposed method achieves precision, recall, and mAP@0.5 of 81.2%, 90.6%, and 92.7% in premium tea recognition, effectively supporting intelligent and efficient tea harvesting and sorting operations. This study addresses the challenges of subtle fine-grained differences, small object sizes, variable morphology, and complex background interference in premium tea bud images. The proposed model not only achieves high accuracy and robustness in fine-grained tea bud detection but also provides technical feasibility for intelligent fresh tea leaves classification and production monitoring. Full article
27 pages, 1144 KB  
Article
Preference-Aligned Ride-Sharing Repositioning via a Two-Stage Bilevel RLHF Framework
by Ruihan Li and Vaneet Aggarwal
Electronics 2026, 15(3), 669; https://doi.org/10.3390/electronics15030669 - 3 Feb 2026
Abstract
Vehicle repositioning is essential for improving efficiency and service quality in ride-sharing platforms, yet existing approaches typically optimize proxy rewards that fail to reflect human-centered preferences such as wait time, service coverage, and unnecessary empty travel. We propose the first two-stage Bilevel Reinforcement [...] Read more.
Vehicle repositioning is essential for improving efficiency and service quality in ride-sharing platforms, yet existing approaches typically optimize proxy rewards that fail to reflect human-centered preferences such as wait time, service coverage, and unnecessary empty travel. We propose the first two-stage Bilevel Reinforcement Learning (RL) from Human Feedback (RLHF) framework for preference-aligned vehicle repositioning. In Stage 1, a value-based Deep Q-Network (DQN)-RLHF warm start learns an initial preference-aligned reward model and stable reference policy, mitigating the reward-model drift and cold-start instability that arise when applying on-policy RLHF directly. In Stage 2, a Kullback–Leibler (KL)-regularized Proximal Policy Optimization (PPO)-RLHF algorithm, equipped with action masking, behavioral-cloning anchoring, and alternating forward–reverse KL, fine-tunes the repositioning policy using either Large Language Model (LLM)-generated or rubric-based preference labels. We develop and compare two coordination schemes, pure alternating (PPO-Alternating) and k-step alternating (PPO-k-step), demonstrating that both yield consistent improvements across all tested arrival scales. Empirically, our framework reduces wait time and empty-mile ratio while improving served rate, without inducing trade-offs or reducing platform profit. These results show that human preference alignment can be stably and effectively incorporated into large-scale ride-sharing repositioning. Full article
22 pages, 33722 KB  
Article
Integrated Transcriptomic and Histological Analysis of TP53/CTNNB1 Mutations and Microvascular Invasion in Hepatocellular Carcinoma
by Ignacio Garach, Nerea Hernandez, Luis J. Herrera, Francisco M. Ortuño and Ignacio Rojas
Genes 2026, 17(2), 190; https://doi.org/10.3390/genes17020190 - 3 Feb 2026
Abstract
Background/Objectives: Hepatocellular carcinoma (HCC) shows marked molecular and histopathological heterogeneity. Among the alterations most strongly associated with clinical outcome are mutations in TP53 and CTNNB1, as well as the presence of microvascular invasion (MVI). Although these factors are well established as [...] Read more.
Background/Objectives: Hepatocellular carcinoma (HCC) shows marked molecular and histopathological heterogeneity. Among the alterations most strongly associated with clinical outcome are mutations in TP53 and CTNNB1, as well as the presence of microvascular invasion (MVI). Although these factors are well established as prognostic indicators, how their molecular effects relate to tumor morphology remains unclear. In this work, we studied transcriptomic changes linked to TP53 and CTNNB1 mutational status and to MVI, and examined whether these changes are reflected in routine histology. Methods: RNA sequencing data from HCC samples annotated for mutations and vascular invasion were analyzed using differential expression analysis combined with machine learning-based feature selection to characterize the underlying transcriptional programs. In parallel, we trained a weakly supervised multitask deep learning model on hematoxylin and eosin-stained whole-slide images using slide-level labels only, without spatial annotations, to assess whether these features could be inferred from global histological patterns. Results: Distinct gene expression profiles were observed for TP53-mutated, CTNNB1-mutated, and MVI-positive tumors, involving pathways related to proliferation, metabolism, and invasion. Image-based models were able to capture morphological patterns associated with these states, achieving above-random discrimination with variable performance across tasks. Conclusions: Taken together, these results support the existence of coherent biological programs underlying key risk determinants in HCC and indicate that their phenotypic effects are, at least in part, detectable in routine histopathology. This provides a rationale for integrative morpho-molecular approaches to risk assessment in HCC. Full article
(This article belongs to the Special Issue AI and Machine Learning in Cancer Genomics)
23 pages, 643 KB  
Article
Care-MOVE: A Smartphone-Based Application for Continuous Monitoring of Mobility, Environmental Exposure and Cognitive Status in Older Patients
by Fabrizia Devito, Vincenzo Gattulli and Donato Impedovo
Appl. Sci. 2026, 16(3), 1549; https://doi.org/10.3390/app16031549 - 3 Feb 2026
Abstract
This study presents Care-MOVE, a smartphone-based application designed for continuous, passive, and unobtrusive monitoring of mobility, environmental exposure, and cognitive status in older adults within a telemedicine framework. The system integrates movement-related data collected through smartphone sensors (GPS, activity recognition, and caloric [...] Read more.
This study presents Care-MOVE, a smartphone-based application designed for continuous, passive, and unobtrusive monitoring of mobility, environmental exposure, and cognitive status in older adults within a telemedicine framework. The system integrates movement-related data collected through smartphone sensors (GPS, activity recognition, and caloric expenditure estimation) with contextual air quality information and standardized neuropsychological assessments, resulting in a comprehensive multimodal dataset (Care-MOVE Dataset). An exploratory proof-of-concept study was conducted on a subsample of 53 participants aged over 65, each monitored continuously for five days, contributing on average more than 30,000 longitudinal records. To investigate whether daily motor behavior can serve as a digital biomarker of cognitive functioning, several Machine Learning and Deep Learning models were evaluated using a Leave-One-User-Out (LOUO) cross-validation strategy. The comparative analysis included traditional classifiers (Logistic Regression, Random Forest, Gradient Boosting, K-Nearest Neighbors, and Support Vector Machines) as well as temporal deep learning architectures (1D CNN, LSTM, GRU, and Transformer). Among all of the evaluated approaches, the Support Vector Machine with RBF kernel achieved the best performance, reaching an accuracy of 98.1%, a balanced accuracy of 0.988, and an F1-score of 0.981, demonstrating robust generalization across unseen subjects. For this reason, the study was designed and presented as an exploratory proof-of-concept rather than a definitive clinical validation. This integrated approach not only enables the collection of detailed and contextualized data but also opens new perspectives for proactive digital healthcare, focused on risk prevention, improving quality of life, and promoting autonomy in elderly patients. Full article
(This article belongs to the Special Issue Robotics, IoT and AI Technologies in Bioengineering, 2nd Edition)
Show Figures

Figure 1

21 pages, 1315 KB  
Article
Ensemble Deep Learning Models for Multi-Class DNA Sequence Classification: A Comparative Study of CNN, BiLSTM, and GRU Architectures
by Elias Tabane, Ernest Mnkandla and Zenghui Wang
Appl. Sci. 2026, 16(3), 1545; https://doi.org/10.3390/app16031545 - 3 Feb 2026
Abstract
DNA sequence classification is a fundamental problem in bioinformatics, playing an indispensable role in gene annotation and disease prediction. Whereas most deep learning models, such as CNNs, BiLSTM networks, and GRUs, have been found individually optimal, each of these methods excels in modeling [...] Read more.
DNA sequence classification is a fundamental problem in bioinformatics, playing an indispensable role in gene annotation and disease prediction. Whereas most deep learning models, such as CNNs, BiLSTM networks, and GRUs, have been found individually optimal, each of these methods excels in modeling a specific aspect of sequence data: local motifs, long-range dependencies, and efficient temporal modeling of the sequences. Here, we present and evaluate an ensemble model that integrates CNN, BiLSTM, and GRU architectures via a majority voting combination scheme so that their complementary strengths can be harnessed. We trained and evaluated each standalone and the integrated model on a DNA dataset comprising 4380 sequences falling under five functional categories. The ensemble model achieved a classification accuracy of 90.6% with precision, recall, and F1 score equal to 0.91, thereby outperforming the state-of-the-art techniques by large margins. Although previous studies have tried analyzing each Deep Learning method individually for DNA classification tasks, none have attempted a systematic combination of CNN, BiLSTM, and GRU based on their ability to extract features simultaneously. The current research aims at presenting a novel method that combines these architectures based on a Majority Voting strategy and proves how their combination is better at extracting local patterns and long dependency information when compared individually. In particular, the proposed ensemble model smoothed the high recall of BiLSTM with the high precision of CNN, leading to more robust and reliable classification. The experiments involved a publicly available DNA sequence data set of 4380 sequences distributed over 5 classes. Our results emphasized the prospect of hybrid ensemble deep learning as a strong approach for complex genomic data analysis, opening ways toward more accurate and interpretable bioinformatics research. Full article
(This article belongs to the Special Issue Advances in Deep Learning and Intelligent Computing)
Show Figures

Figure 1

35 pages, 6562 KB  
Article
Sub-Hourly Multi-Horizon Quantile Forecasting of Photovoltaic Power Using Meteorological Data and a HybridCNN–STTransformer
by Guldana Taganova, Alma Zakirova, Assel Abdildayeva, Bakhyt Nurbekov, Zhanar Akhayeva and Talgat Azykanov
Algorithms 2026, 19(2), 123; https://doi.org/10.3390/a19020123 - 3 Feb 2026
Abstract
The rapid deployment of photovoltaic generation increases uncertainty in power-system operation and strengthens the need for ultra-short-term forecasts with reliable uncertainty estimates. Point-forecasting approaches alone are often insufficient for dispatch and reserve decisions because they do not quantify risk. This study investigates probabilistic [...] Read more.
The rapid deployment of photovoltaic generation increases uncertainty in power-system operation and strengthens the need for ultra-short-term forecasts with reliable uncertainty estimates. Point-forecasting approaches alone are often insufficient for dispatch and reserve decisions because they do not quantify risk. This study investigates probabilistic forecasting of short-horizon solar generation using quantile regression on a public dataset of solar output and meteorological variables. This study proposes a hybrid attention–convolution model that combines an attention-based encoder to capture long-range temporal dependencies with a causal temporal convolution module that extracts fast local fluctuations using only past information, preventing information leakage. The two representations are fused and decoded jointly across multiple future horizons to produce consistent quantile trajectories. Experiments against representative machine-learning and deep-learning baselines show improved probabilistic accuracy and competitive central forecasts, while illustrating an important sharpness–calibration trade-off relevant to risk-aware grid operation. Key novelties include a multi-horizon quantile formulation at 15 min resolution for one-hour-ahead PV increments, a HybridCNN–STTransformer that fuses causal temporal convolutions with Transformer attention, and a horizon-token decoder that models inter-horizon dependencies to produce consistent multi-step quantile trajectories; reliability/sharpness diagnostics and post hoc calibration are discussed for operational risk-aware use. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
21 pages, 2641 KB  
Article
Exploring Variation in α-Biodiversity in Mangrove Forests Following Long-Term Restoration Activities: A Remote Sensing Perspective
by Zongzhu Chen, Tiezhu Shi, Qian Liu, Chao Yang, Xiaoyan Pan, Tingtian Wu, Xiaohua Chen, Yuanling Li and Yiqing Chen
Remote Sens. 2026, 18(3), 494; https://doi.org/10.3390/rs18030494 - 3 Feb 2026
Abstract
Monitoring the α-biodiversity indicators of mangrove forests and understanding their spatiotemporal trends can guide mangrove restoration strategies. Taking Qinglan Port in Hainan Province, China, as our study area, we compared multiple machine learning methods to predict the spatial distribution of α-biodiversity indicator Shannon’s [...] Read more.
Monitoring the α-biodiversity indicators of mangrove forests and understanding their spatiotemporal trends can guide mangrove restoration strategies. Taking Qinglan Port in Hainan Province, China, as our study area, we compared multiple machine learning methods to predict the spatial distribution of α-biodiversity indicator Shannon’s diversity index (SHDI) by integrating LiDAR points and Worldview-2 images. In addition, the relationship between mangrove forests’ SHDI values and growth years was analyzed. The study extracted 28 spectral features and 99 LiDAR features from Worldview-2 and LiDAR data, respectively. The RReliefF method was adopted to select informative features. Four machine learning methods, including support vector machines (SVMs), extreme gradient boosting (XGBoost), deep neural networks (DNNs), and Gaussian process regression (GPR), were used to establish SHDI prediction models. The leave-one-out cross-validation (LOOCV) method was used to evaluate prediction accuracy, and the optimal model was adopted to generate a spatial map of SHDI. Based on Google Earth and Worldview-2 images, the spatial regions of mangrove forests in 2008, 2013, 2018, and 2023 were identified. The SHDI values within different restoration periods were statistically analyzed by using the mangroves’ spatiotemporal distributions. The results showed that RReliefF selected a total of 30 features, including 13 spectral features and 17 LiDAR features. Using preferred features, GPR had the highest prediction accuracy, with an LOOCV R2 of 0.51, followed by SVM (R2 = 0.44) and DNN (R2 = 0.32); the accuracy of XGBoost (R2 = 0.29) was relatively poor. The increased areas of rehabilitated mangrove forests in the periods of 2008–2013, 2013–2018, and 2018–2023 were 0.31 km2, 0.13 km2, and 1.35 km2, respectively. Mangroves growing before 2008 owned the highest mean SHDI value of 0.74, followed by mangroves in 2008–2013 and 2013–2018; mangrove forests restored in 2018–2023 had the lowest mean SHDI value of 0.63. The results indicated that mangrove SHDI can be predicted by integrating LiDAR and Worldview-2. The mangrove population exhibited more diverse α-biodiversity characteristics as growth time increased. In subsequent mangrove restoration processes, planting mangroves of diverse species is beneficial to ensure the stability of the mangrove community. Full article
28 pages, 922 KB  
Article
MAESTRO: A Multi-Scale Ensemble Framework with GAN-Based Data Refinement for Robust Malicious Tor Traffic Detection
by Jinbu Geng, Yu Xie, Jun Li, Xuewen Yu and Lei He
Mathematics 2026, 14(3), 551; https://doi.org/10.3390/math14030551 - 3 Feb 2026
Abstract
Malicious Tor traffic data contains deep domain-specific knowledge, which makes labeling challenging, and the lack of labeled data degrades the accuracy of learning-based detectors. Real-world deployments also exhibit severe class imbalance, where malicious traffic constitutes a small minority of network flows, which further [...] Read more.
Malicious Tor traffic data contains deep domain-specific knowledge, which makes labeling challenging, and the lack of labeled data degrades the accuracy of learning-based detectors. Real-world deployments also exhibit severe class imbalance, where malicious traffic constitutes a small minority of network flows, which further reduces detection performance. In addition, Tor’s fixed 512-byte cell architecture removes packet-size diversity that many encrypted-traffic methods rely on, making feature extraction difficult. This paper proposes an efficient three-stage framework, MAESTRO v1.0, for malicious Tor traffic detection. In Stage 1, MAESTRO extracts multi-scale behavioral signatures by fusing temporal, positional, and directional embeddings at cell, direction, and flow granularities to mitigate feature homogeneity; it then compresses these representations with an autoencoder into compact latent features. In Stage 2, MAESTRO introduces an ensemble-based quality quantification method that combines five complementary anomaly detection models to produce robust discriminability scores for adaptive sample weighting, helping the classifier to emphasize high-quality samples. MAESTRO also trains three specialized GANs per minority class and applies strict five-model ensemble validation to synthesize diverse high-fidelity samples, addressing extreme class imbalance. We evaluate MAESTRO under systematic imbalance settings, ranging from the natural distribution to an extreme 1% malicious ratio. On the CCS’22 Tor malware dataset, MAESTRO achieves 92.38% accuracy, 64.79% recall, and 73.70% F1-score under the natural distribution, improving F1-score by up to 15.53% compared with state-of-the-art baselines. Under the 1% malicious setting, MAESTRO maintains 21.1% recall, which is 14.1 percentage points higher than the best baseline, while conventional methods drop below 10%. Full article
(This article belongs to the Special Issue New Advances in Network Security and Data Privacy)
Show Figures

Figure 1

30 pages, 4892 KB  
Article
A Method for 3D Building Individualization Integrating SAMPolyBuild and Multiple Spatial-Geometric Features
by Lianshuai Cao, Yi Cheng, Zheng Zhang, Ge Zhu, Kunyang Ma and Xinyue Xu
Sensors 2026, 26(3), 999; https://doi.org/10.3390/s26030999 - 3 Feb 2026
Abstract
Individualization of buildings is one of the key issues in the establishment of three-dimensional (3D) building models. Most existing individualization methods rely on inefficient manual separation, while deep learning approaches require extensive pre-training and are highly influenced by the spatial structure of the [...] Read more.
Individualization of buildings is one of the key issues in the establishment of three-dimensional (3D) building models. Most existing individualization methods rely on inefficient manual separation, while deep learning approaches require extensive pre-training and are highly influenced by the spatial structure of the models. To address these issues, this paper proposes a novel method for 3D building individualization that integrates SAMPolyBuild with multiple spatial-geometric features. Leveraging the zero-shot learning capability of SAMPolyBuild, the method first performs coarse extraction of individual buildings, then refines the extraction accuracy using multiple spatial-geometric features. Innovatively, two statistical parameters—Jensen-Shannon Divergence and Earth Mover’s Distance—are introduced into the building identification process. To validate the feasibility and effectiveness of the proposed method, experiments were conducted on the Semantic Urban Meshes (SUM) dataset. The results demonstrate that the method can effectively extract individual building models from urban oblique photogrammetric 3D models, achieving an F1-score of approximately 0.83 for buildings with typical spatial structures. Full article
(This article belongs to the Special Issue Remote Sensing, Geophysics and GIS)
23 pages, 9808 KB  
Article
Improved UCTransNet by Integrating Pyramid Kernel Interaction with Triplet Attention for Identifying Multi-Scale Landslides from GF-2 Imagery
by Miao Wang, Weicui Ding, Meiling Liu, Zujian Liu, Xiangnan Liu, Yanan Wen and Hao Li
Remote Sens. 2026, 18(3), 492; https://doi.org/10.3390/rs18030492 - 3 Feb 2026
Abstract
Landslides in mountainous regions threaten infrastructure and human safety, making high-accuracy landslide inventories crucial for disaster management. However, fine-grained identification using high-resolution remote sensing imagery is hindered by low small-landslide detection accuracy and bare soil spectral interference. The aim of this study is [...] Read more.
Landslides in mountainous regions threaten infrastructure and human safety, making high-accuracy landslide inventories crucial for disaster management. However, fine-grained identification using high-resolution remote sensing imagery is hindered by low small-landslide detection accuracy and bare soil spectral interference. The aim of this study is to propose a lightweight UCTransNet with Triplet Attention and Pyramid Kernel Interaction (UCTransNet-TPKI) deep learning model for accurate multi-scale landslide extraction. The study area is located in Wushan County, Chongqing. GF-2 imagery from 2022 was collected, along with field sampling data and Mengdong dataset as validation data. The model proposed in this study, named UCTransNet-TPKI, is based on an improved UCTransNet architecture. Its key innovations include the introduction of two critical modules: the Pyramid Kernel Interaction module and the Triplet Attention mechanism. The PKI module captures multi-scale local contextual information in parallel under different receptive fields, significantly enhancing the network’s ability to extract landslide features. Concurrently, the Triplet Attention mechanism effectively refines feature representations by capturing the interaction dependencies across the three dimensions of a feature map. This enables the model to focus more precisely on key areas, such as the main body and edges of a landslide, while simultaneously suppressing interference from background noise. The experimental results show that UCTransNet-TPKI achieved the highest F1-score of 0.9008 and an IoU of 0.8252, outperforming MFFENet, TransLandSeg, and Segformer++. Ablation studies confirmed the contributions of each component, with the PKI module improving IoU by 0.72%, the Triplet Attention mechanism increasing IoU by 0.9%, and their combination yielding a clear synergistic enhancement of overall performance. Furthermore, UCTransNet-TPKI demonstrated strong generalization on the Mengdong dataset, achieving an F1-score of 0.9230 and an IoU of 0.8560. These results demonstrate that UCTransNet-TPKI provides an accurate automated landslide mapping solution, offering significant value for post-disaster emergency response and geological hazard management. Full article
Show Figures

Figure 1

26 pages, 1858 KB  
Review
Artificial Intelligence in Lubricant Research—Advances in Monitoring and Predictive Maintenance
by Raj Shah, Kate Marussich, Vikram Mittal and Andreas Rosenkranz
Lubricants 2026, 14(2), 72; https://doi.org/10.3390/lubricants14020072 - 3 Feb 2026
Abstract
Artificial intelligence transforms lubricant research by linking molecular modeling, diagnostics, and industrial operations into predictive systems. In this regard, machine learning methods such as Bayesian optimization and neural-based Quantitative Structure–Property/Tribological Relationship (QSPR/QSTR) modeling help to accelerate additive design and formulation development. Moreover, deep [...] Read more.
Artificial intelligence transforms lubricant research by linking molecular modeling, diagnostics, and industrial operations into predictive systems. In this regard, machine learning methods such as Bayesian optimization and neural-based Quantitative Structure–Property/Tribological Relationship (QSPR/QSTR) modeling help to accelerate additive design and formulation development. Moreover, deep learning and hybrid physics–AI frameworks are now capable to predict key lubricant properties such as viscosity, oxidation stability, and wear resistance directly from molecular or spectral data, reducing the need for long-duration field trials like fleet or engine endurance tests. With respect to condition monitoring, convolutional neural networks automate wear debris classification, multimodal sensor fusion enables real-time oil health tracking, and digital twins provide predictive maintenance by forecasting lubricant degradation and optimizing drain intervals. AI-assisted blending and process control platforms extend these advantages into manufacturing, reducing waste and improving reproducibility. This article sheds light on recent progress in AI-driven formulation, monitoring, and maintenance, thus identifying major barriers to adoption such as fragmented datasets, limited model transferability, and low explainability. Moreover, it discusses how standardized data infrastructures, physics-informed learning, and secure federated approaches can advance the industry toward adaptive, sustainable lubricant development under the principles of Industry 5.0. Full article
Show Figures

Figure 1

Back to TopTop