Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = cyclotron targetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4843 KiB  
Article
Development of TR-19 Cyclotron Parameter Settings for Fully Automated Production of Radiometals with Applications in Nuclear Medicine
by Liviu Ștefan Crăciun, Tiberiu Relu Eșanu, Radu Leonte, Hermann Anton Schubert, Raul Victor Erhan and Dana Niculae
Instruments 2025, 9(1), 3; https://doi.org/10.3390/instruments9010003 - 26 Feb 2025
Viewed by 1302
Abstract
At the Radiopharmaceutical Research Center (CCR) of the Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), we operate a TR-19 cyclotron for radio isotope production. To broaden our spectrum of radioisotopes with applications in nuclear medicine, we add a [...] Read more.
At the Radiopharmaceutical Research Center (CCR) of the Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), we operate a TR-19 cyclotron for radio isotope production. To broaden our spectrum of radioisotopes with applications in nuclear medicine, we add a new external beam line towards a state-of-the-art solid target station. Besides practical experience with the implementation of the Comecer ALCEO metal solid targetry system, a new, more efficient way of tuning the beam onto the target and the design of a dedicated neutron local layered shielding are presented. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics, 2nd Edition)
Show Figures

Figure 1

9 pages, 1781 KiB  
Article
Niobium as Preferential Material for Cyclotron Target Windows
by Sergio J. C. do Carmo and Francisco Alves
Instruments 2024, 8(2), 33; https://doi.org/10.3390/instruments8020033 - 27 May 2024
Viewed by 1658
Abstract
The present work promotes and validates the benefits of using niobium instead of Havar® as the material for the target windows in most routine irradiations in cyclotrons. Calculation of the material activation and measurements of the contamination of the transferred target liquids [...] Read more.
The present work promotes and validates the benefits of using niobium instead of Havar® as the material for the target windows in most routine irradiations in cyclotrons. Calculation of the material activation and measurements of the contamination of the transferred target liquids show major improvements with the use of niobium. Also, the data of the daily routine productions at our production center are presented, proving that Havar® is not mandatory unless large target currents and/or pressures are required. Full article
Show Figures

Figure 1

9 pages, 2469 KiB  
Article
Production and Processing of the Radionuclide 76Br
by Karsten Franke, Jann Schöngart and Alexander Mansel
Instruments 2024, 8(1), 22; https://doi.org/10.3390/instruments8010022 - 13 Mar 2024
Cited by 2 | Viewed by 2082
Abstract
Four-dimensional visualization, i.e., three-dimensional space plus time, of fluid flow and its interactions in geological materials using positron emission tomography (PET) requires suitable radiotracers that exhibit the desired physicochemical interactions. 76Br is a likely candidate as a conservative tracer in these studies. [...] Read more.
Four-dimensional visualization, i.e., three-dimensional space plus time, of fluid flow and its interactions in geological materials using positron emission tomography (PET) requires suitable radiotracers that exhibit the desired physicochemical interactions. 76Br is a likely candidate as a conservative tracer in these studies. [76Se]CoSe was produced and used as the target material for the production of 76Br via the (p,n) reaction at a Cyclone 18/9 cyclotron. 76Br was separated from the target by thermochromatographic distillation using a semi-automated system, combining a quartz glass apparatus with a synthesis module. 76Br was successfully produced at the cyclotron with a physical yield of 72 MBq/µAh (EOB). The total radiochemical yield of 76Br from the irradiated [76Se]CoSe target (EOS) was 68.6%. A total of 40 MBq–100 MBq n.c.a. 76Br were routinely prepared for PET experiments in 3 mL 20 mM Cl solution. The spatial resolution of a PET scan with 76Br in geological materials was determined to be about 5 mm. The established procedure enables the routine investigation of hydrodynamics by PET techniques in geological materials that strongly sorb commonly used PET tracers such as 18F. Full article
Show Figures

Figure 1

21 pages, 1084 KiB  
Review
Cyclotron Production of Gallium-68 Radiopharmaceuticals Using the 68Zn(p,n)68Ga Reaction and Their Regulatory Aspects
by Zarif Ashhar, Muhammad Fakhrurazi Ahmad Fadzil, Muhamad Faiz Othman, Nor Azah Yusof, Muhammad Adib Abdul Onny, Noratikah Mat Ail and Siti Fatimah Abd Rahman
Pharmaceutics 2023, 15(1), 70; https://doi.org/10.3390/pharmaceutics15010070 - 26 Dec 2022
Cited by 12 | Viewed by 7153
Abstract
Designing and implementing various radionuclide production methods guarantees a sustainable supply, which is important for medical use. The use of medical cyclotrons for radiometal production can increase the availability of gallium-68 (68Ga) radiopharmaceuticals. Although generators have greatly influenced the demand for [...] Read more.
Designing and implementing various radionuclide production methods guarantees a sustainable supply, which is important for medical use. The use of medical cyclotrons for radiometal production can increase the availability of gallium-68 (68Ga) radiopharmaceuticals. Although generators have greatly influenced the demand for 68Ga radiopharmaceuticals, the use of medical cyclotrons is currently being explored. The resulting 68Ga production is several times higher than obtained from a generator. Moreover, the use of solid targets yields end of purification and end of synthesis (EOS) of up to 194 GBq and 72 GBq, respectively. Furthermore, experiments employing liquid targets have provided promising results, with an EOS of 3 GBq for [68Ga]Ga-PSMA-11. However, some processes can be further optimized, specifically purification, to achieve high 68Ga recovery and apparent molar activity. In the future, 68Ga will probably remain one of the most in-demand radionuclides; however, careful consideration is needed regarding how to reduce the production costs. Thus, this review aimed to discuss the production of 68Ga radiopharmaceuticals using Advanced Cyclotron Systems, Inc. (ACSI, Richmond, BC, Canada) Richmond, Canada and GE Healthcare, Wisconsin, USA cyclotrons, its related factors, and regulatory concerns. Full article
(This article belongs to the Special Issue Recent Advances in Radiopharmacy)
Show Figures

Graphical abstract

27 pages, 8420 KiB  
Review
Production, Purification, and Applications of a Potential Theranostic Pair: Cobalt-55 and Cobalt-58m
by Kendall E. Barrett, Hailey A. Houson, Wilson Lin, Suzanne E. Lapi and Jonathan W. Engle
Diagnostics 2021, 11(7), 1235; https://doi.org/10.3390/diagnostics11071235 - 9 Jul 2021
Cited by 15 | Viewed by 3852
Abstract
The emerging success of [68Ga/177Lu]Ga/Lu-DOTATATE as a theranostic pair has spurred interest in other isotopes as potential theranostic combinations. Here, we review cobalt-55 and cobalt-58m as a potential theranostic pair. Radionuclidically pure cobalt-55 and cobalt-58m have been produced on [...] Read more.
The emerging success of [68Ga/177Lu]Ga/Lu-DOTATATE as a theranostic pair has spurred interest in other isotopes as potential theranostic combinations. Here, we review cobalt-55 and cobalt-58m as a potential theranostic pair. Radionuclidically pure cobalt-55 and cobalt-58m have been produced on small cyclotrons with high molar activity. In vitro, DOTATOC labeled with cobalt has shown greater affinity for SSTR2 than DOTATOC labeled with gallium and yttrium. Similarly, [58mCo]Co-DOTATATE has shown improved cell-killing capabilities as compared to DOTATATE labeled with either indium-111 or lutetium-177. Finally, PET imaging with an isotope such as cobalt-55 allows for image acquisition at much later timepoints than gallium, allowing for an increased degree of biological clearance of non-bound radiotracer. We discuss the accelerator targetry and radiochemistry used to produce cobalt-55,58m, emphasizing the implications of these techniques to downstream radiotracers being developed for imaging and therapy. Full article
(This article belongs to the Special Issue Future Trends in Radioisotope-Based Imaging)
Show Figures

Figure 1

16 pages, 3816 KiB  
Article
Developments toward the Implementation of 44Sc Production at a Medical Cyclotron
by Nicholas P. van der Meulen, Roger Hasler, Zeynep Talip, Pascal V. Grundler, Chiara Favaretto, Christoph A. Umbricht, Cristina Müller, Gaia Dellepiane, Tommaso S. Carzaniga and Saverio Braccini
Molecules 2020, 25(20), 4706; https://doi.org/10.3390/molecules25204706 - 14 Oct 2020
Cited by 46 | Viewed by 4574
Abstract
44Sc has favorable properties for cancer diagnosis using Positron Emission Tomography (PET) making it a promising candidate for application in nuclear medicine. The implementation of its production with existing compact medical cyclotrons would mean the next essential milestone in the development of [...] Read more.
44Sc has favorable properties for cancer diagnosis using Positron Emission Tomography (PET) making it a promising candidate for application in nuclear medicine. The implementation of its production with existing compact medical cyclotrons would mean the next essential milestone in the development of this radionuclide. While the production and application of 44Sc has been comprehensively investigated, the development of specific targetry and irradiation methods is of paramount importance. As a result, the target was optimized for the 44Ca(p,n)44Sc nuclear reaction using CaO instead of CaCO3, ensuring decrease in target radioactive degassing during irradiation and increased radionuclidic yield. Irradiations were performed at the research cyclotron at the Paul Scherrer Institute (~11 MeV, 50 µA, 90 min) and the medical cyclotron at the University of Bern (~13 MeV, 10 µA, 240 min), with yields varying from 200 MBq to 16 GBq. The development of targetry, chemical separation as well as the practical issues and implications of irradiations, are analyzed and discussed. As a proof-of-concept study, the 44Sc produced at the medical cyclotron was used for a preclinical study using a previously developed albumin-binding prostate-specific membrane antigen (PSMA) ligand. This work demonstrates the feasibility to produce 44Sc with high yields and radionuclidic purity using a medical cyclotron, equipped with a commercial solid target station. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for PET Imaging - Issue B)
Show Figures

Figure 1

8 pages, 3315 KiB  
Communication
Solid Target System with In-Situ Target Dissolution
by William Z. Gelbart and Richard R. Johnson
Instruments 2019, 3(1), 14; https://doi.org/10.3390/instruments3010014 - 11 Feb 2019
Cited by 5 | Viewed by 4632
Abstract
A significant number of medical radioisotopes use solid, often metallic, parent materials. These materials are deposited on a substrate to facilitate the cooling and handling of the target during placing, irradiation, and processing. The processing requires the transfer of the target to a [...] Read more.
A significant number of medical radioisotopes use solid, often metallic, parent materials. These materials are deposited on a substrate to facilitate the cooling and handling of the target during placing, irradiation, and processing. The processing requires the transfer of the target to a processing area outside the irradiation area. In this new approach the target is processed at the irradiation site for liquid only transport of the irradiated target material to the processing area. The design features common to higher energy production target systems are included in the target station. The target is inclined at 14 degrees to the beam direction. The system has been designed to accept an incident beam of 15 to 16 mm diameter and a beam power between 2 and 5 kW. Thermal modeling is presented for targets of metals and compounds. A cassette of five or 10 prepared targets is housed at the target station as well as a target dissolution assembly. Only the dissolved target material is transported to the chemistry laboratory so that the design does not require additional irradiation area penetrations. This work presents the design, construction, and modeling details of the assembly. A full performance characterization will be reported after the unit is moved to a cyclotron facility for beam related measurements. Full article
(This article belongs to the Special Issue Instruments and Methods for Cyclotron Produced Radioisotopes)
Show Figures

Figure 1

8 pages, 4079 KiB  
Article
Enhancement and Validation of a 3D-Printed Solid Target Holder at a Cyclotron Facility in Perth, Australia
by Sun Chan, David Cryer and Roger I. Price
Instruments 2019, 3(1), 12; https://doi.org/10.3390/instruments3010012 - 2 Feb 2019
Cited by 2 | Viewed by 4196
Abstract
A 3D-printed metal solid target using additive manufacturing process is a cost-effective production solution to complex and intricate target design. The initial proof-of-concept prototype solid target holder was 3D-printed in cast alloy, Al–7Si–0.6Mg (A357). However, given the relatively low thermal conductivity for A357 [...] Read more.
A 3D-printed metal solid target using additive manufacturing process is a cost-effective production solution to complex and intricate target design. The initial proof-of-concept prototype solid target holder was 3D-printed in cast alloy, Al–7Si–0.6Mg (A357). However, given the relatively low thermal conductivity for A357 (κmax, 160 W/m·K), replication of the solid target holder in sterling silver (SS925) with higher thermal conductivity (κmax, 361 W/m·K) was investigated. The SS925 target holder enhances the cooling efficiency of the target design, thus achieving higher target current during irradiation. A validation production of 64Cu using the 3D-printed SS925 target holder indicated no loss of enriched 64Ni from proton bombardment above 80 µA, at 11.5 MeV. Full article
(This article belongs to the Special Issue Instruments and Methods for Cyclotron Produced Radioisotopes)
Show Figures

Figure 1

5 pages, 12705 KiB  
Communication
Molybdenum Sinter-Cladding of Solid Radioisotope Targets
by William Z. Gelbart and Richard R. Johnson
Instruments 2019, 3(1), 11; https://doi.org/10.3390/instruments3010011 - 2 Feb 2019
Cited by 3 | Viewed by 4400
Abstract
In solid targets for radioisotope production, the parent materials—mostly metallic—are usually attached to a substrate (metal part, often copper or silver) to support it during handling and irradiation and to facilitate liquid or gas cooling to remove the heat generated by the particle [...] Read more.
In solid targets for radioisotope production, the parent materials—mostly metallic—are usually attached to a substrate (metal part, often copper or silver) to support it during handling and irradiation and to facilitate liquid or gas cooling to remove the heat generated by the particle beam. This cladding process is most frequently done by electroplating. One of the biggest challenges of preparing solid, high-current, 100Mo targets is the difficulty of cladding the substrate with molybdenum—metal that cannot be electroplated. A number of cladding techniques are used with varying degrees of complexity, success, and cost. A simple cladding process, especially suitable for the production of radioisotope targets, was developed. The process uses a metal slurry (metal powder and binder) painted on the substrate and heated in a hydrogen atmosphere where the metal is sintered and diffusion-bound to the substrate in a single step. Full article
(This article belongs to the Special Issue Instruments and Methods for Cyclotron Produced Radioisotopes)
Show Figures

Figure 1

7 pages, 2078 KiB  
Article
Development of New Target Stations for the South African Isotope Facility
by Gideon F. Steyn, Lyndon S. Anthony, Faiçal Azaiez, Shadley Baard, Robert A. Bark, A. Hugo Barnard, Philip Beukes, Johan I. Broodryk, J. Lowry Conradie, John C. Cornell, J. Garrett De Villiers, Stuart G. Dolley, Herman Du Plessis, William D. Duckitt, Dirk T. Fourie, Mike E. Hogan, Ivan H. Kohler, Jacobus J. Lawrie, Chris Lussi, Joele P. Mira, K. Vuyo Mjali, Hendrik W. Mostert, Clive Naidoo, Fhumulani Nemulodi, David Saal, Nieldane P. Stodart, Reiner W. Thomae, Johan Van Niekerk and Pieter A. Van Schalkwykadd Show full author list remove Hide full author list
Instruments 2018, 2(4), 29; https://doi.org/10.3390/instruments2040029 - 10 Dec 2018
Cited by 6 | Viewed by 4240
Abstract
The development of new target stations for radioisotope production based on a dedicated 70 MeV commercial cyclotron (for protons) is described. Currently known as the South African Isotope Facility (SAIF), this initiative will free the existing separated-sector cyclotron (SSC) at iThemba LABS (near [...] Read more.
The development of new target stations for radioisotope production based on a dedicated 70 MeV commercial cyclotron (for protons) is described. Currently known as the South African Isotope Facility (SAIF), this initiative will free the existing separated-sector cyclotron (SSC) at iThemba LABS (near Cape Town) to mainly pursue research activities in nuclear physics and radiobiology. It is foreseen that the completed SAIF facility will realize a three-fold increase in radioisotope production capacity compared to the current programme based on the SSC. Full article
(This article belongs to the Special Issue Instruments and Methods for Cyclotron Produced Radioisotopes)
Show Figures

Figure 1

7 pages, 3053 KiB  
Article
A Target-Temperature Monitoring System for Cyclotron Targets: Safety Device and Tool to Experimentally Validate Targetry Studies
by Sergio J. C. Do Carmo, Pedro M. De Oliveira and Francisco Alves
Instruments 2018, 2(3), 9; https://doi.org/10.3390/instruments2030009 - 21 Jun 2018
Cited by 2 | Viewed by 3893
Abstract
The present work describes an experimental system enabling temperature measurement in cyclotron targets’ cooling water during bombardment. The developed system provides sensible and immediate response to variations of irradiation conditions during bombardment and enables quantification of the temperature rise in the cooling water [...] Read more.
The present work describes an experimental system enabling temperature measurement in cyclotron targets’ cooling water during bombardment. The developed system provides sensible and immediate response to variations of irradiation conditions during bombardment and enables quantification of the temperature rise in the cooling water due to beam interaction with the irradiated target and with its collimator. Such a system finds application either as a monitoring safety device to instantaneously detect and register abnormal alterations in target conditions to anticipate thermal-related incidents and as a tool to experimentally validate cyclotron targetry optimization studies and thermal simulations. Full article
(This article belongs to the Special Issue Instruments and Methods for Cyclotron Produced Radioisotopes)
Show Figures

Figure 1

Back to TopTop