Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = cyclic nucleotide binding domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1194 KiB  
Review
Nucleic Acid Sensor-Mediated PANoptosis in Viral Infection
by Lili Zhu, Zehong Qi, Huali Zhang and Nian Wang
Viruses 2024, 16(6), 966; https://doi.org/10.3390/v16060966 - 16 Jun 2024
Cited by 4 | Viewed by 3122
Abstract
Innate immunity, the first line of host defense against viral infections, recognizes viral components through different pattern-recognition receptors. Nucleic acids derived from viruses are mainly recognized by Toll-like receptors, nucleotide-binding domain leucine-rich repeat-containing receptors, absent in melanoma 2-like receptors, and cytosolic DNA sensors [...] Read more.
Innate immunity, the first line of host defense against viral infections, recognizes viral components through different pattern-recognition receptors. Nucleic acids derived from viruses are mainly recognized by Toll-like receptors, nucleotide-binding domain leucine-rich repeat-containing receptors, absent in melanoma 2-like receptors, and cytosolic DNA sensors (e.g., Z-DNA-binding protein 1 and cyclic GMP-AMP synthase). Different types of nucleic acid sensors can recognize specific viruses due to their unique structures. PANoptosis is a unique form of inflammatory cell death pathway that is triggered by innate immune sensors and driven by caspases and receptor-interacting serine/threonine kinases through PANoptosome complexes. Nucleic acid sensors (e.g., Z-DNA-binding protein 1 and absent in melanoma 2) not only detect viruses, but also mediate PANoptosis through providing scaffold for the assembly of PANoptosomes. This review summarizes the structures of different nucleic acid sensors, discusses their roles in viral infections by driving PANoptosis, and highlights the crosstalk between different nucleic acid sensors. It also underscores the promising prospect of manipulating nucleic acid sensors as a therapeutic approach for viral infections. Full article
(This article belongs to the Special Issue PANoptosis in Viral Infection)
Show Figures

Figure 1

35 pages, 4782 KiB  
Review
Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4
by Isabel Amador-Martínez, Omar Emiliano Aparicio-Trejo, Bismarck Bernabe-Yepes, Ana Karina Aranda-Rivera, Alfredo Cruz-Gregorio, Laura Gabriela Sánchez-Lozada, José Pedraza-Chaverri and Edilia Tapia
Int. J. Mol. Sci. 2023, 24(21), 15875; https://doi.org/10.3390/ijms242115875 - 1 Nov 2023
Cited by 10 | Viewed by 4126
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses [...] Read more.
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)–adenosine monophosphate (AMP) synthase (cGAS)–stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 5282 KiB  
Article
Xenon’s Sedative Effect Is Mediated by Interaction with the Cyclic Nucleotide-Binding Domain (CNBD) of HCN2 Channels Expressed by Thalamocortical Neurons of the Ventrobasal Nucleus in Mice
by Nour El Dine Kassab, Verena Mehlfeld, Jennifer Kass, Martin Biel, Gerhard Schneider and Gerhard Rammes
Int. J. Mol. Sci. 2023, 24(10), 8613; https://doi.org/10.3390/ijms24108613 - 11 May 2023
Cited by 4 | Viewed by 2166
Abstract
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 [...] Read more.
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 channels are dually gated by the membrane voltage and via cyclic nucleotides binding to the cyclic nucleotide-binding domain (CNBD) on the channel. In this study, we hypothesize that xenon interferes with the HCN2 CNBD to mediate its effect. Using the transgenic mice model HCN2EA, in which the binding of cAMP to HCN2 was abolished by two amino acid mutations (R591E, T592A), we performed ex-vivo patch-clamp recordings and in-vivo open-field test to prove this hypothesis. Our data showed that xenon (1.9 mM) application to brain slices shifts the V1/2 of Ih to more hyperpolarized potentials in wild-type thalamocortical neurons (TC) (V1/2: −97.09 [−99.56–−95.04] mV compared to control −85.67 [−94.47–−82.10] mV; p = 0.0005). These effects were abolished in HCN2EA neurons (TC), whereby the V1/2 reached only −92.56 [−93.16– −89.68] mV with xenon compared to −90.03 [−98.99–−84.59] mV in the control (p = 0.84). After application of a xenon mixture (70% xenon, 30% O2), wild-type mice activity in the open-field test decreased to 5 [2–10] while in HCN2EA mice it remained at 30 [15–42]%, (p = 0.0006). In conclusion, we show that xenon impairs HCN2 channel function by interfering with the HCN2 CNBD site and provide in-vivo evidence that this mechanism contributes to xenon-mediated hypnotic properties. Full article
Show Figures

Figure 1

15 pages, 1835 KiB  
Article
A Novel Flow Cytometry-Based Assay for the Identification of HCN4 CNBD Ligands
by Magdalena N. Wojciechowski, Sebastian Schreiber and Joachim Jose
Pharmaceuticals 2023, 16(5), 710; https://doi.org/10.3390/ph16050710 - 7 May 2023
Cited by 2 | Viewed by 2718
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are promising therapeutic targets because of their association with the genesis of several diseases. The identification of selective compounds that alter cAMP-induced ion channel modulation by binding to the cyclic nucleotide-binding domain (CNBD) will facilitate HCN channel-specific [...] Read more.
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are promising therapeutic targets because of their association with the genesis of several diseases. The identification of selective compounds that alter cAMP-induced ion channel modulation by binding to the cyclic nucleotide-binding domain (CNBD) will facilitate HCN channel-specific drug development. In this study, a fast and protein purification-free ligand-binding approach with a surface-displayed HCN4 C-Linker-CNBD on E. coli is presented. 8-Fluo-cAMP ligand binding was monitored by single-cell analysis via flow cytometry, and a Kd-value of 173 ± 46 nM was determined. The Kd value was confirmed by ligand depletion analysis and equilibrium state measurements. Applying increasing concentrations of cAMP led to a concentration-dependent decrease in fluorescence intensity, indicating a displacement of 8-Fluo-cAMP. A Ki-value of 8.5 ± 2 µM was determined. The linear relationship of IC50 values obtained for cAMP as a function of ligand concentration confirmed the competitive binding mode: IC50: 13 ± 2 µM/16 ± 3 µM/23 ± 1 µM/27 ± 1 µM for 50 nM/150 nM/250 nM/500 nM 8-Fluo-cAMP. A similar competitive mode of binding was confirmed for 7-CH-cAMP, and an IC50 value of 230 ± 41 nM and a Ki of 159 ± 29 nM were determined. Two established drugs were tested in the assay. Ivabradine, an approved HCN channel pore blocker and gabapentin, is known to bind to HCN4 channels in preference to other isoforms with an unknown mode of action. As expected, ivabradine had no impact on ligand binding. In addition, gabapentin had no influence on 8-Fluo-cAMP’s binding to HCN4-CNBD. This is the first indication that gabapentin is not interacting with this part of the HCN4 channel. The ligand-binding assay as described can be used to determine binding constants for ligands such as cAMP and derivatives. It could also be applied for the identification of new ligands binding to the HCN4-CNBD. Full article
Show Figures

Graphical abstract

17 pages, 13654 KiB  
Article
The SLC9C2 Gene Product (Na+/H+ Exchanger Isoform 11; NHE11) Is a Testis-Specific Protein Localized to the Head of Mature Mammalian Sperm
by Cameron C. Gardner and Paul F. James
Int. J. Mol. Sci. 2023, 24(6), 5329; https://doi.org/10.3390/ijms24065329 - 10 Mar 2023
Cited by 14 | Viewed by 2516
Abstract
Na+/H+ exchangers (NHEs) are a family of ion transporters that regulate the pH of various cell compartments across an array of cell types. In eukaryotes, NHEs are encoded by the SLC9 gene family comprising 13 genes. SLC9C2, which encodes the [...] Read more.
Na+/H+ exchangers (NHEs) are a family of ion transporters that regulate the pH of various cell compartments across an array of cell types. In eukaryotes, NHEs are encoded by the SLC9 gene family comprising 13 genes. SLC9C2, which encodes the NHE11 protein, is the only one of the SLC9 genes that is essentially uncharacterized. Here, we show that SLC9C2 exhibits testis/sperm-restricted expression in rats and humans, akin to its paralog SLC9C1 (NHE10). Similar to NHE10, NHE11 is predicted to contain an NHE domain, a voltage sensing domain, and finally an intracellular cyclic nucleotide binding domain. An immunofluorescence analysis of testis sections reveals that NHE11 localizes with developing acrosomal granules in spermiogenic cells in both rat and human testes. Most interestingly, NHE11 localizes to the sperm head, likely the plasma membrane overlaying the acrosome, in mature sperm from rats and humans. Therefore, NHE11 is the only known NHE to localize to the acrosomal region of the head in mature sperm cells. The physiological role of NHE11 has yet to be demonstrated but its predicted functional domains and unique localization suggests that it could modulate intracellular pH of the sperm head in response to changes in membrane potential and cyclic nucleotide concentrations that are a result of sperm capacitation events. If NHE11 is shown to be important for male fertility, it will be an attractive target for male contraceptive drugs due to its exclusive testis/sperm-specific expression. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 2835 KiB  
Review
Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin
by Aritra Bej and James B. Ames
Int. J. Mol. Sci. 2022, 23(22), 14143; https://doi.org/10.3390/ijms232214143 - 16 Nov 2022
Cited by 4 | Viewed by 2326
Abstract
Retinal cyclic nucleotide-gated (CNG) ion channels bind to intracellular cGMP and mediate visual phototransduction in photoreceptor rod and cone cells. Retinal rod CNG channels form hetero-tetramers comprised of three CNGA1 and one CNGB1 protein subunits. Cone CNG channels are similar tetramers consisting of [...] Read more.
Retinal cyclic nucleotide-gated (CNG) ion channels bind to intracellular cGMP and mediate visual phototransduction in photoreceptor rod and cone cells. Retinal rod CNG channels form hetero-tetramers comprised of three CNGA1 and one CNGB1 protein subunits. Cone CNG channels are similar tetramers consisting of three CNGA3 and one CNGB3 subunits. Calmodulin (CaM) binds to two distinct sites (CaM1: residues 565–587 and CaM2: residues 1120–1147) within the cytosolic domains of rod CNGB1. The binding of Ca2+-bound CaM to CNGB1 promotes the Ca2+-induced desensitization of CNG channels in retinal rods that may be important for photoreceptor light adaptation. Mutations that affect Ca2+-dependent CNG channel function are responsible for inherited forms of blindness. In this review, we propose structural models of the rod CNG channel bound to CaM that suggest how CaM might cause channel desensitization and how dysregulation of the channel may lead to retinal disease. Full article
(This article belongs to the Special Issue Molecular Basis of Sensory Transduction in Health and Disease 2.0)
Show Figures

Figure 1

18 pages, 5908 KiB  
Article
Whole-Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat
by Qiaoling Chen, Yuan Chai, Wencan Zhang, Yiwen Cheng, Zhenxing Zhang, Qi An, Si Chen, Churiga Man, Li Du, Wenguang Zhang and Fengyang Wang
Genes 2022, 13(9), 1539; https://doi.org/10.3390/genes13091539 - 26 Aug 2022
Cited by 16 | Viewed by 3682
Abstract
Goats have become one of the most adaptive and important livestock species distributed in developing countries in recent years. The Hainan Black goat is a native goat breed of the Hainan region that is generally well-liked by the local population and is thus [...] Read more.
Goats have become one of the most adaptive and important livestock species distributed in developing countries in recent years. The Hainan Black goat is a native goat breed of the Hainan region that is generally well-liked by the local population and is thus raised in large numbers. However, the genomic diversity and selective signals of the Hainan Black goat have not been clearly elucidated yet. Therefore, in this study, we performed whole-genome resequencing of 16 Hainan Black goats and compared the results with those of 71 goats of 6 other breeds from different geographic regions. Principal component analysis (PCA) and phylogenetic analysis identified seven lineages for all goats. Hainan Black goats showed the most similarity with Leizhou goats and the least similarity with Boer goats. Selective sweep analysis identified candidate genes associated with various functions, including immune resistance to disease (TNFAIP2 (TNF alpha induced protein 2) and EXOC3L4 (exocyst complex component 3 like 4)), melanin biosynthetic process (CDH15 (cadherin 15), ASIP (agouti signaling protein), and PARD3 (par-3 family cell polarity regulator)), and light sensitivity (CNGB3 (cyclic nucleotide gated channel subunit beta 3) and CNBD1 (cyclic nucleotide binding domain containing 1)), underlying strong selection signatures in Hainan Black goats. The melanin biosynthetic process, circadian entrainment, regulation of cyclic adenosine 3,5-monophosphate (cAMP)-mediated signaling, and the Rap-1 signaling pathway were significantly enriched in Hainan Black and Alashan Cashmere goats. This result may be important for understanding each trait. Selection signature analysis revealed candidate single nucleotide polymorphisms (SNPs) and genes correlated with the traits of Hainan Black goats. Collectively, our results provide valuable insights into the genetic basis of specific traits correlated with the Hainan island climate, artificial selection in certain local goat breeds, and the importance of protecting breed resources. Full article
(This article belongs to the Special Issue Genetics and Breeding of Small Ruminants)
Show Figures

Figure 1

14 pages, 1669 KiB  
Article
Propofol, an Anesthetic Agent, Inhibits HCN Channels through the Allosteric Modulation of the cAMP-Dependent Gating Mechanism
by Morihiro Shimizu, Xinya Mi, Futoshi Toyoda, Akiko Kojima, Wei-Guang Ding, Yutaka Fukushima, Mariko Omatsu-Kanbe, Hirotoshi Kitagawa and Hiroshi Matsuura
Biomolecules 2022, 12(4), 570; https://doi.org/10.3390/biom12040570 - 12 Apr 2022
Cited by 8 | Viewed by 3135
Abstract
Propofol is a broadly used intravenous anesthetic agent that can cause cardiovascular effects, including bradycardia and asystole. A possible mechanism for these effects is slowing cardiac pacemaker activity due to inhibition of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. However, it remains unclear how [...] Read more.
Propofol is a broadly used intravenous anesthetic agent that can cause cardiovascular effects, including bradycardia and asystole. A possible mechanism for these effects is slowing cardiac pacemaker activity due to inhibition of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. However, it remains unclear how propofol affects the allosteric nature of the voltage- and cAMP-dependent gating mechanism in HCN channels. To address this aim, we investigated the effect of propofol on HCN channels (HCN4 and HCN2) in heterologous expression systems using a whole-cell patch clamp technique. The extracellular application of propofol substantially suppressed the maximum current at clinical concentrations. This was accompanied by a hyperpolarizing shift in the voltage dependence of channel opening. These effects were significantly attenuated by intracellular loading of cAMP, even after considering the current modification by cAMP in opposite directions. The differential degree of propofol effects in the presence and absence of cAMP was rationalized by an allosteric gating model for HCN channels, where we assumed that propofol affects allosteric couplings between the pore, voltage-sensor, and cyclic nucleotide-binding domain (CNBD). The model predicted that propofol enhanced autoinhibition of pore opening by unliganded CNBD, which was relieved by the activation of CNBD by cAMP. Taken together, these findings reveal that propofol acts as an allosteric modulator of cAMP-dependent gating in HCN channels, which may help us to better understand the clinical action of this anesthetic drug. Full article
(This article belongs to the Special Issue Molecular Pathogenesis of Cardiac Arrhythmia)
Show Figures

Figure 1

14 pages, 2959 KiB  
Article
Origin and Isoform Specific Functions of Exchange Proteins Directly Activated by cAMP: A Phylogenetic Analysis
by Zhuofu Ni and Xiaodong Cheng
Cells 2021, 10(10), 2750; https://doi.org/10.3390/cells10102750 - 14 Oct 2021
Cited by 4 | Viewed by 2903
Abstract
Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are one of the several families of cellular effectors of the prototypical second messenger cAMP. To understand the origin and molecular evolution of EPAC proteins, we performed a comprehensive phylogenetic analysis of EPAC1 and [...] Read more.
Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are one of the several families of cellular effectors of the prototypical second messenger cAMP. To understand the origin and molecular evolution of EPAC proteins, we performed a comprehensive phylogenetic analysis of EPAC1 and EPAC2. Our study demonstrates that unlike its cousin PKA, EPAC proteins are only present in multicellular Metazoa. Within the EPAC family, EPAC1 is only associated with chordates, while EPAC2 spans the entire animal kingdom. Despite a much more contemporary origin, EPAC1 proteins show much more sequence diversity among species, suggesting that EPAC1 has undergone more selection and evolved faster than EPAC2. Phylogenetic analyses of the individual cAMP binding domain (CBD) and guanine nucleotide exchange (GEF) domain of EPACs, two most conserved regions between the two isoforms, further reveal that EPAC1 and EPAC2 are closely clustered together within both the larger cyclic nucleotide receptor and RAPGEF families. These results support the notion that EPAC1 and EPAC2 share a common ancestor resulting from a fusion between the CBD of PKA and the GEF from RAPGEF1. On the other hand, the two terminal extremities and the RAS-association (RA) domains show the most sequence diversity between the two isoforms. Sequence diversities within these regions contribute significantly to the isoform-specific functions of EPACs. Importantly, unique isoform-specific sequence motifs within the RA domain have been identified. Full article
(This article belongs to the Collection Compartmentilisation of Cellular Signaling)
Show Figures

Figure 1

23 pages, 4849 KiB  
Article
Identification and Characterization of an Affimer Affinity Reagent for the Detection of the cAMP Sensor, EPAC1
by Hanna K. Buist, Urszula Luchowska-Stańska, Boy van Basten, Jessica Valli, Brian O. Smith, George S. Baillie, Colin Rickman, Bryon Ricketts, Alex Davidson, Ryan Hannam, Joanne Sunderland and Stephen J. Yarwood
Cells 2021, 10(9), 2307; https://doi.org/10.3390/cells10092307 - 3 Sep 2021
Cited by 1 | Viewed by 4128
Abstract
An exchange protein directly activated by cAMP 1 (EPAC1) is an intracellular sensor for cAMP that is involved in a wide variety of cellular and physiological processes in health and disease. However, reagents are lacking to study its association with intracellular cAMP nanodomains. [...] Read more.
An exchange protein directly activated by cAMP 1 (EPAC1) is an intracellular sensor for cAMP that is involved in a wide variety of cellular and physiological processes in health and disease. However, reagents are lacking to study its association with intracellular cAMP nanodomains. Here, we use non-antibody Affimer protein scaffolds to develop isoform-selective protein binders of EPAC1. Phage-display screens were carried out against purified, biotinylated human recombinant EPAC1ΔDEP protein (amino acids 149–811), which identified five potential EPAC1-selective Affimer binders. Dot blots and indirect ELISA assays were next used to identify Affimer 780A as the top EPAC1 binder. Mutagenesis studies further revealed a potential interaction site for 780A within the EPAC1 cyclic nucleotide binding domain (CNBD). In addition, 780A was shown to co-precipitate EPAC1 from transfected cells and co-localize with both wild-type EPAC1 and a mis-targeting mutant of EPAC1(K212R), predominantly in perinuclear and cytosolic regions of cells, respectively. As a novel EPAC1-selective binder, 780A therefore has the potential to be used in future studies to further understand compartmentalization of the cAMP-EPAC1 signaling system. Full article
Show Figures

Figure 1

22 pages, 2860 KiB  
Review
Regulation of Bone Cell Differentiation and Activation by Microbe-Associated Molecular Patterns
by Yeongkag Kwon, Chaeyeon Park, Jueun Lee, Dong Hyun Park, Sungho Jeong, Cheol-Heui Yun, Ok-Jin Park and Seung Hyun Han
Int. J. Mol. Sci. 2021, 22(11), 5805; https://doi.org/10.3390/ijms22115805 - 28 May 2021
Cited by 33 | Viewed by 6645
Abstract
Gut microbiota has emerged as an important regulator of bone homeostasis. In particular, the modulation of innate immunity and bone homeostasis is mediated through the interaction between microbe-associated molecular patterns (MAMPs) and the host pattern recognition receptors including Toll-like receptors and nucleotide-binding oligomerization [...] Read more.
Gut microbiota has emerged as an important regulator of bone homeostasis. In particular, the modulation of innate immunity and bone homeostasis is mediated through the interaction between microbe-associated molecular patterns (MAMPs) and the host pattern recognition receptors including Toll-like receptors and nucleotide-binding oligomerization domains. Pathogenic bacteria such as Porphyromonas gingivalis and Staphylococcus aureus tend to induce bone destruction and cause various inflammatory bone diseases including periodontal diseases, osteomyelitis, and septic arthritis. On the other hand, probiotic bacteria such as Lactobacillus and Bifidobacterium species can prevent bone loss. In addition, bacterial metabolites and various secretory molecules such as short chain fatty acids and cyclic nucleotides can also affect bone homeostasis. This review focuses on the regulation of osteoclast and osteoblast by MAMPs including cell wall components and secretory microbial molecules under in vitro and in vivo conditions. MAMPs could be used as potential molecular targets for treating bone-related diseases such as osteoporosis and periodontal diseases. Full article
(This article belongs to the Special Issue Osteoclastogenesis and Osteogenesis)
Show Figures

Figure 1

18 pages, 4431 KiB  
Article
Molecular Dissection of Escherichia coli CpdB: Roles of the N Domain in Catalysis and Phosphate Inhibition, and of the C Domain in Substrate Specificity and Adenosine Inhibition
by Iralis López-Villamizar, Alicia Cabezas, Rosa María Pinto, José Canales, João Meireles Ribeiro, Joaquim Rui Rodrigues, María Jesús Costas and José Carlos Cameselle
Int. J. Mol. Sci. 2021, 22(4), 1977; https://doi.org/10.3390/ijms22041977 - 17 Feb 2021
Cited by 8 | Viewed by 3058
Abstract
CpdB is a 3′-nucleotidase/2′3′-cyclic nucleotide phosphodiesterase, active also with reasonable efficiency on cyclic dinucleotides like c-di-AMP (3′,5′-cyclic diadenosine monophosphate) and c-di-GMP (3′,5′-cyclic diadenosine monophosphate). These are regulators of bacterial physiology, but are also pathogen-associated molecular patterns recognized by STING to induce IFN-β response [...] Read more.
CpdB is a 3′-nucleotidase/2′3′-cyclic nucleotide phosphodiesterase, active also with reasonable efficiency on cyclic dinucleotides like c-di-AMP (3′,5′-cyclic diadenosine monophosphate) and c-di-GMP (3′,5′-cyclic diadenosine monophosphate). These are regulators of bacterial physiology, but are also pathogen-associated molecular patterns recognized by STING to induce IFN-β response in infected hosts. The cpdB gene of Gram-negative and its homologs of gram-positive bacteria are virulence factors. Their protein products are extracytoplasmic enzymes (either periplasmic or cell–wall anchored) and can hydrolyze extracellular cyclic dinucleotides, thus reducing the innate immune responses of infected hosts. This makes CpdB(-like) enzymes potential targets for novel therapeutic strategies in infectious diseases, bringing about the necessity to gain insight into the molecular bases of their catalytic behavior. We have dissected the two-domain structure of Escherichia coli CpdB to study the role of its N-terminal and C-terminal domains (CpdB_Ndom and CpdB_Cdom). The specificity, kinetics and inhibitor sensitivity of point mutants of CpdB, and truncated proteins CpdB_Ndom and CpdB_Cdom were investigated. CpdB_Ndom contains the catalytic site, is inhibited by phosphate but not by adenosine, while CpdB_Cdom is inactive but contains a substrate-binding site that determines substrate specificity and adenosine inhibition of CpdB. Among CpdB substrates, 3′-AMP, cyclic dinucleotides and linear dinucleotides are strongly dependent on the CpdB_Cdom binding site for activity, as the isolated CpdB_Ndom showed much-diminished activity on them. In contrast, 2′,3′-cyclic mononucleotides and bis-4-nitrophenylphosphate were actively hydrolyzed by CpdB_Ndom, indicating that they are rather independent of the CpdB_Cdom binding site. Full article
(This article belongs to the Special Issue Molecular Enzymology: Advances and Applications)
Show Figures

Graphical abstract

27 pages, 14940 KiB  
Article
Structural Insights into the Intracellular Region of the Human Magnesium Transport Mediator CNNM4
by Paula Giménez-Mascarell, Iker Oyenarte, Irene González-Recio, Carmen Fernández-Rodríguez, María Ángeles Corral-Rodríguez, Igone Campos-Zarraga, Jorge Simón, Elie Kostantin, Serge Hardy, Antonio Díaz Quintana, Mara Zubillaga Lizeaga, Nekane Merino, Tammo Diercks, Francisco J. Blanco, Irene Díaz Moreno, María Luz Martínez-Chantar, Michel L. Tremblay, Dominik Müller, Dritan Siliqi and Luis Alfonso Martínez-Cruz
Int. J. Mol. Sci. 2019, 20(24), 6279; https://doi.org/10.3390/ijms20246279 - 12 Dec 2019
Cited by 14 | Viewed by 4603
Abstract
The four member family of “Cyclin and Cystathionine β-synthase (CBS) domain divalent metal cation transport mediators”, CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings [...] Read more.
The four member family of “Cyclin and Cystathionine β-synthase (CBS) domain divalent metal cation transport mediators”, CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer. Full article
(This article belongs to the Special Issue Structure and Function of Membrane Proteins)
Show Figures

Graphical abstract

23 pages, 2292 KiB  
Review
The Role of the Popeye Domain Containing Gene Family in Organ Homeostasis
by Johanna Ndamwena Amunjela, Alexander H. Swan and Thomas Brand
Cells 2019, 8(12), 1594; https://doi.org/10.3390/cells8121594 - 7 Dec 2019
Cited by 21 | Viewed by 5032
Abstract
The Popeye domain containing (POPDC) gene family consists of POPDC1 (also known as BVES), POPDC2 and POPDC3 and encodes a novel class of cyclic adenosine monophosphate (cAMP) effector proteins. Despite first reports of their isolation and initial characterization at the protein level [...] Read more.
The Popeye domain containing (POPDC) gene family consists of POPDC1 (also known as BVES), POPDC2 and POPDC3 and encodes a novel class of cyclic adenosine monophosphate (cAMP) effector proteins. Despite first reports of their isolation and initial characterization at the protein level dating back 20 years, only recently major advances in defining their biological functions and disease association have been made. Loss-of-function experiments in mice and zebrafish established an important role in skeletal muscle regeneration, heart rhythm control and stress signaling. Patients suffering from muscular dystrophy and atrioventricular block were found to carry missense and nonsense mutations in either of the three POPDC genes, which suggests an important function in the control of striated muscle homeostasis. However, POPDC genes are also expressed in a number of epithelial cells and function as tumor suppressor genes involved in the control of epithelial structure, tight junction formation and signaling. Suppression of POPDC genes enhances tumor cell proliferation, migration, invasion and metastasis in a variety of human cancers, thus promoting a malignant phenotype. Moreover, downregulation of POPDC1 and POPDC3 expression in different cancer types has been associated with poor prognosis. However, high POPDC3 expression has also been correlated to poor clinical prognosis in head and neck squamous cell carcinoma, suggesting that POPDC3 potentially plays different roles in the progression of different types of cancer. Interestingly, a gain of POPDC1 function in tumor cells inhibits cell proliferation, migration and invasion thereby reducing malignancy. Furthermore, POPDC proteins have been implicated in the control of cell cycle genes and epidermal growth factor and Wnt signaling. Work in tumor cell lines suggest that cyclic nucleotide binding may also be important in epithelial cells. Thus, POPDC proteins have a prominent role in tissue homeostasis and cellular signaling in both epithelia and striated muscle. Full article
(This article belongs to the Special Issue New Advances in Cyclic AMP Signalling)
Show Figures

Figure 1

15 pages, 3504 KiB  
Article
A Membrane Permeable Prodrug of S223 for Selective Epac2 Activation in Living Cells
by Yunjian Xu, Frank Schwede, Hans Wienk, Anders Tengholm and Holger Rehmann
Cells 2019, 8(12), 1589; https://doi.org/10.3390/cells8121589 - 6 Dec 2019
Cited by 5 | Viewed by 3848
Abstract
Signalling by cyclic adenosine monophosphate (cAMP) occurs via various effector proteins, notably protein kinase A and the guanine nucleotide exchange factors Epac1 and Epac2. These proteins are activated by cAMP binding to conserved cyclic nucleotide binding domains. The specific roles of the effector [...] Read more.
Signalling by cyclic adenosine monophosphate (cAMP) occurs via various effector proteins, notably protein kinase A and the guanine nucleotide exchange factors Epac1 and Epac2. These proteins are activated by cAMP binding to conserved cyclic nucleotide binding domains. The specific roles of the effector proteins in various processes in different types of cells are still not well defined, but investigations have been facilitated by the development of cyclic nucleotide analogues with distinct selectivity profiles towards a single effector protein. A remaining challenge in the development of such analogues is the poor membrane permeability of nucleotides, which limits their applicability in intact living cells. Here, we report the synthesis and characterisation of S223-AM, a cAMP analogue designed as an acetoxymethyl ester prodrug to overcome limitations of permeability. Using total internal reflection imaging with various fluorescent reporters, we show that S223-AM selectively activates Epac2, but not Epac1 or protein kinase A, in intact insulin-secreting β-cells, and that this effect was associated with pronounced activation of the small G-protein Rap. A comparison of the effects of different cAMP analogues in pancreatic islet cells deficient in Epac1 and Epac2 demonstrates that cAMP-dependent Rap activity at the β-cell plasma membrane is exclusively dependent on Epac2. With its excellent selectivity and permeability properties, S223-AM should get broad utility in investigations of cAMP effector involvement in many different types of cells. Full article
(This article belongs to the Special Issue New Advances in Cyclic AMP Signalling)
Show Figures

Figure 1

Back to TopTop