Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = curved stratified ground

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6582 KiB  
Article
Experimental Study on Dynamic Response Characteristics of Rural Residential Buildings Subjected to Blast-Induced Vibrations
by Jingmin Pan, Dongli Zhang, Zhenghua Zhou, Jiacong He, Long Zhang, Yi Han, Cheng Peng and Sishun Wang
Buildings 2025, 15(14), 2511; https://doi.org/10.3390/buildings15142511 - 17 Jul 2025
Viewed by 224
Abstract
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along [...] Read more.
Numerous rural residential buildings exhibit inadequate seismic performance when subjected to blast-induced vibrations, which poses potential threats to their overall stability and structural integrity when in proximity to blasting project sites. The investigation conducted in conjunction with the Qianshi Mountain blasting operations along the Wenzhou segment of the Hangzhou–Wenzhou High-Speed Railway integrates household field surveys and empirical measurements to perform modal analysis of rural residential buildings through finite element simulation. Adhering to the principle of stratified arrangement and composite measurement point configuration, an effective and reasonable experimental observation framework was established. In this investigation, the seven-story rural residential building in adjacent villages was selected as the research object. Strong-motion seismographs were strategically positioned adjacent to frame columns on critical stories (ground, fourth, seventh, and top floors) within the observational system to acquire test data. Methodical signal processing techniques, including effective signal extraction, baseline correction, and schedule conversion, were employed to derive temporal dynamic characteristics for each story. Combined with the Fourier transform, the frequency–domain distribution patterns of different floors are subsequently obtained. Leveraging the structural dynamic theory, time–domain records were mathematically converted to establish the structure’s maximum response spectra under blast-induced loading conditions. Through the analysis of characteristic curves, including floor acceleration response spectra, dynamic amplification coefficients, and spectral ratios, the dynamic response patterns of rural residential buildings subjected to blast-induced vibrations have been elucidated. Following the normalization of peak acceleration and velocity parameters, the mechanisms underlying differential floor-specific dynamic responses were examined, and the layout principles of measurement points were subsequently formulated and summarized. These findings offer valuable insights for enhancing the seismic resilience and structural safety of rural residential buildings exposed to blast-induced vibrations, with implications for both theoretical advancements and practical engineering applications. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

17 pages, 7992 KiB  
Article
Comparative Study on the Seismic Vulnerability of Continuous Bridges with Steel–Concrete Composite Girder and Reinforced Concrete Girder
by Baishun Xu, Chuanzhi Sun, Shuai Song, Xuening Zhang, Bin Zhao and Wenhao Zhang
Buildings 2024, 14(6), 1768; https://doi.org/10.3390/buildings14061768 - 12 Jun 2024
Cited by 3 | Viewed by 1206
Abstract
For medium- and small-span bridges, the weight of the superstructure in steel–concrete composite girder bridges is lighter than that of a reinforced concrete girder bridge. However, it is still uncertain whether steel–concrete composite girder bridges exhibit superior seismic performance compared to reinforced concrete [...] Read more.
For medium- and small-span bridges, the weight of the superstructure in steel–concrete composite girder bridges is lighter than that of a reinforced concrete girder bridge. However, it is still uncertain whether steel–concrete composite girder bridges exhibit superior seismic performance compared to reinforced concrete girder bridges. This study quantitatively compared the seismic performance of the two types of bridges. Using the theory of probabilistic seismic demand analysis, the seismic vulnerability curves of bridges were derived. To conduct seismic demand analysis for probabilistic analysis on the OpenSEES platform, bridge samples were generated using the Latin hypercube stratified sampling method, which considers the uncertainties associated with the two types of bridges. The vulnerability curves of the piers, bearings, abutments, and the system of the two bridges were established using probabilistic analysis of the time history analyses. The results showed that the seismic vulnerabilities of components and the overall system of the steel–concrete composite girder bridge were both lower than those of the reinforced concrete girder bridge. When the peak ground acceleration (PGA) of the ground motion was 0.3 g, the moderate and serious damage probabilities of the piers in the steel–concrete composite bridge were only 54.61% and 60.89%, respectively, of those of the reinforced concrete bridge. Consequently, replacing the upper reinforced concrete girders with steel–concrete composite girders can significantly improve the seismic performance of a large number of existing bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 1542 KiB  
Article
Effects of an Unripe Avocado Extract on Glycaemic Control in Individuals with Obesity: A Double-Blinded, Parallel, Randomised Clinical Trial
by Lijun Zhao, Donald K. Ingram, Eric Gumpricht, Trent De Paoli, Xiao Tong Teong, Bo Liu, Trevor A. Mori, Leonie K. Heilbronn and George S. Roth
Nutrients 2023, 15(22), 4812; https://doi.org/10.3390/nu15224812 - 17 Nov 2023
Cited by 1 | Viewed by 3394
Abstract
Background: Unripe avocados (Persea americana) are naturally enriched in mannoheptulose (MH), which is a candidate caloric restriction mimetic. Objectives: To evaluate the effects of a diet supplement made from unripe avocado on glucose tolerance, and cardiometabolic risk factors in free-living nondiabetic [...] Read more.
Background: Unripe avocados (Persea americana) are naturally enriched in mannoheptulose (MH), which is a candidate caloric restriction mimetic. Objectives: To evaluate the effects of a diet supplement made from unripe avocado on glucose tolerance, and cardiometabolic risk factors in free-living nondiabetic adults with obesity. Methods: In a double-blinded, randomised controlled trial, 60 adults (female n = 47, age 48 ± 13 years, BMI 34.0 ± 2.6 kg/m2) were stratified by sex and randomised to avocado extract (AvX, 10 g finely ground, freeze-dried unripe avocado) or placebo (10 g finely ground cornmeal plus 5% spinach powder) daily, for 12 weeks. The primary outcome was a change in glucose area under the curve (AUC) in response to a 75 g oral glucose tolerance test. A post-hoc analysis was subsequently performed in a subgroup with insulin AUC above the median of baseline values after removal of participants >2 SD from the mean. Results: There were no between-group differences in glucose AUC (p = 0.678), insulin AUC (p = 0.091), or cardiovascular outcomes. In the subgroup analysis, insulin AUC was lower in AxV versus placebo (p = 0.024). Conclusions: Daily consumption of unripe avocado extract enriched in MH did not alter glucose tolerance or insulin sensitivity in nondiabetic adults with obesity, but the data provided preliminary evidence for a benefit in insulin AUC in a subgroup of participants with elevated baseline postprandial insulin levels. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Graphical abstract

15 pages, 3335 KiB  
Article
Calculation and Analysis of Pipe Joint Settlement Control in Large Back Silting Immersed Tube Tunnel
by Zhijun Li, Xiabing Yue and Guanqing Wu
Sustainability 2023, 15(9), 7446; https://doi.org/10.3390/su15097446 - 30 Apr 2023
Cited by 4 | Viewed by 2135
Abstract
The use of the segmental pipe section immersed tunnel suffers from several problems, such as complex construction, weak foundation, great water depth, great thickness of siltation back on the top of the tube, and difficult settlement control. Based on Winkel’s elastic foundation beam [...] Read more.
The use of the segmental pipe section immersed tunnel suffers from several problems, such as complex construction, weak foundation, great water depth, great thickness of siltation back on the top of the tube, and difficult settlement control. Based on Winkel’s elastic foundation beam theory, a mechanical calculation model is established according to the case of an inhomogeneous soil layer, and the force and deformation of the structural system of the immersed tube tunnel are calculated based on a bridge in Zhuhai as an example of an immersed tube tunnel. The results show that the derived formula for calculating the allowable differential settlement per unit length of the longitudinally immersed tube is applicable to the sudden change type foundation stiffness deformation model of the natural foundation section of the tube tunnel of the aforementioned bridge in Zhuhai. The relationship between the settlement control index and related influencing factors is analyzed. Hence, a formula for calculating the stratified ground foundation’s integrated bed coefficient is derived, and the equations for tunnel deflection curves and shear forces are solved. A set of calculation methods that are applicable to the foundation settlement control criteria of the segmental immersed tunnel is provided, and the results provide a significant reference for the optimization of the foundation scheme and improvement of the construction process for similar projects. Full article
(This article belongs to the Special Issue Sustainable Geotechnical Engineering and Rock Mechanics)
Show Figures

Figure 1

19 pages, 2365 KiB  
Article
Gait Indicators Contribute to Screening Cognitive Impairment: A Single- and Dual-Task Gait Study
by Xiaoqin Wang, Wuhan Yu, Lihong Huang, Mengyu Yan, Wenbo Zhang, Jiaqi Song, Xintong Liu, Weihua Yu and Yang Lü
Brain Sci. 2023, 13(1), 154; https://doi.org/10.3390/brainsci13010154 - 16 Jan 2023
Cited by 7 | Viewed by 2601
Abstract
Background: Screening cognitive impairment is complex and not an appliance for early screening. Gait performance is strongly associated with cognitive impairment. Objectives: We aimed to explore gait indicators that could potentially screen cognitive dysfunction. Methods: A total of 235 subjects were recruited [...] Read more.
Background: Screening cognitive impairment is complex and not an appliance for early screening. Gait performance is strongly associated with cognitive impairment. Objectives: We aimed to explore gait indicators that could potentially screen cognitive dysfunction. Methods: A total of 235 subjects were recruited from June 2021 to June 2022. Four gait tasks, including the walking test, the timed “Up & Go” test (TUG), foot pressure balance (FPB), and one-legged standing with eyes closed test (OLS-EC), were performed. Moreover, in the walking test, participants were instructed to walk at their usual pace for the single-gait test. For the dual-task tests, participants walked at their usual pace while counting backward from 100 by 1s. The data were analyzed by the independent sample t-test, univariate and multivariate logistic regression, a linear trend, stratified and interaction analysis, the receiver operating characteristic (ROC) curve, and Pearson’s correlations. Results: Among the 235 participants, 81 (34.5%) were men and 154 (65.5%) were women. The mean age of participants was 72 ± 7.836 years. The control, MCI, mild AD, and severe AD groups had means of 71, 63, 71, and 30, respectively. After adjusting for age, sex, education, and body mass index (BMI), the dual-task toe-off-ground angle (TOA) (odds ratio (OR) = 0.911, 95% confidence interval (CI): 0.847, 0.979), single-task TOA (OR = 0.904, 95% CI: 0.841–0.971), and the timed “Up & Go” time (TUGT) (OR = 1.515, 95% CI: 1.243–1.846) were significantly associated with an increased risk of cognitive impairment. In addition, the trend test and stratified analysis results had no significant differences (all p > 0.05). The area under the roc curve (AUC) values of TOA in the dual-task and TUGT were 0.812 and 0.847, respectively. Additionally, TOA < 36.75° in the dual-task, TOA < 38.90° in the single-task, and TUGT > 9.83 seconds (s) are likely to indicate cognitive impairment. The cognitive assessment scale scores were significantly correlated with TOA (all r > 0.3, p < 0.001) and TUGT (all r > 0.2), respectively. Conclusion: TOA and TUGT scores are, in some circumstances, associated with cognitive impairment; therefore, they can be used as simple initial screenings to identify patients at risk. Full article
(This article belongs to the Special Issue Neurobiology of Choice Behavior)
Show Figures

Figure 1

15 pages, 4966 KiB  
Article
Application of A U-Net for Map-like Segmentation and Classification of Discontinuous Fibrosis Distribution in Gd-EOB-DTPA-Enhanced Liver MRI
by Quirin David Strotzer, Hinrich Winther, Kirsten Utpatel, Alexander Scheiter, Claudia Fellner, Michael Christian Doppler, Kristina Imeen Ringe, Florian Raab, Michael Haimerl, Wibke Uller, Christian Stroszczynski, Lukas Luerken and Niklas Verloh
Diagnostics 2022, 12(8), 1938; https://doi.org/10.3390/diagnostics12081938 - 11 Aug 2022
Cited by 3 | Viewed by 2342
Abstract
We aimed to evaluate whether U-shaped convolutional neuronal networks can be used to segment liver parenchyma and indicate the degree of liver fibrosis/cirrhosis at the voxel level using contrast-enhanced magnetic resonance imaging. This retrospective study included 112 examinations with histologically determined liver fibrosis/cirrhosis [...] Read more.
We aimed to evaluate whether U-shaped convolutional neuronal networks can be used to segment liver parenchyma and indicate the degree of liver fibrosis/cirrhosis at the voxel level using contrast-enhanced magnetic resonance imaging. This retrospective study included 112 examinations with histologically determined liver fibrosis/cirrhosis grade (Ishak score) as the ground truth. The T1-weighted volume-interpolated breath-hold examination sequences of native, arterial, late arterial, portal venous, and hepatobiliary phases were semi-automatically segmented and co-registered. The segmentations were assigned the corresponding Ishak score. In a nested cross-validation procedure, five models of a convolutional neural network with U-Net architecture (nnU-Net) were trained, with the dataset being divided into stratified training/validation (n = 89/90) and holdout test datasets (n = 23/22). The trained models precisely segmented the test data (mean dice similarity coefficient = 0.938) and assigned separate fibrosis scores to each voxel, allowing localization-dependent determination of the degree of fibrosis. The per voxel results were evaluated by the histologically determined fibrosis score. The micro-average area under the receiver operating characteristic curve of this seven-class classification problem (Ishak score 0 to 6) was 0.752 for the test data. The top-three-accuracy-score was 0.750. We conclude that determining fibrosis grade or cirrhosis based on multiphase Gd-EOB-DTPA-enhanced liver MRI seems feasible using a 2D U-Net. Prospective studies with localized biopsies are needed to evaluate the reliability of this model in a clinical setting. Full article
(This article belongs to the Special Issue Imaging of Hepatitis)
Show Figures

Figure 1

17 pages, 3729 KiB  
Article
A Spherical “Earth–Ionosphere” Model for Deep Resource Exploration Using Artificial ELF-EM Field
by Fanghua Zheng, Qingyun Di and Changmin Fu
Remote Sens. 2022, 14(13), 3088; https://doi.org/10.3390/rs14133088 - 27 Jun 2022
Cited by 1 | Viewed by 2498
Abstract
Fully coupled lithosphere, atmosphere, and ionosphere theory has demonstrated that extremely low-frequency electromagnetic (ELF-EM) fields present a broad application prospect in deep resource exploration, but previous studies have ignored the contribution of the Earth’s curvature. This study extends the theory of ELF-EM over [...] Read more.
Fully coupled lithosphere, atmosphere, and ionosphere theory has demonstrated that extremely low-frequency electromagnetic (ELF-EM) fields present a broad application prospect in deep resource exploration, but previous studies have ignored the contribution of the Earth’s curvature. This study extends the theory of ELF-EM over a stratified Earth to the case where the Earth’s curvature must be taken into account, and presents an analytical solution of the ELF-EM field excited by a grounded horizontal antenna in a spherical Earth–ionosphere model, whose theoretical approach and solution method are notably different from the flat Earth–ionosphere model. Additionally, the Earth is treated as a concentric-layered sphere rather than an ideal homogeneous sphere. We aim to investigate the effects of the Earth’s curvature on the surface field, so as to broaden the coverage of the ELF wave in resource exploration. The solution is mathematically accurate and physically reasonable, since it reflects the sphericity and radially stratified structure of the Earth. We first verify the correctness and reliability of the proposed method by comparing the results with FDTD in a full-space spherical model. Additionally, we then compared the spherical results with the conventional controlled-source electromagnetic method and flat Earth–ionosphere results. The results show that when the distance between the transmitter and the receiver is comparable to the Earth radius, the spherical model better reflects the resonance of the wave in the cavity, suggesting that the effect of the Earth’s curvature is not negligible. Then, the numerical simulations conducted to investigate the properties of the EM fields and their sensitivities to the conductivity at depth in the Earth are discussed. Finally, the EM responses of some simple electrical conductivity structures models are modeled to illustrate their prospects in future resource exploration. Full article
Show Figures

Figure 1

15 pages, 2634 KiB  
Article
A Thermal Effect Model for the Impact of Vertical Groundwater Migration on Temperature Distribution of Layered Rock Mass and Its Application
by Haifeng Lu, Yuan Zhang, Guifang Zhang and Manman Zhang
Water 2021, 13(9), 1285; https://doi.org/10.3390/w13091285 - 1 May 2021
Cited by 2 | Viewed by 2305
Abstract
On the basis of the one-dimensional heat conduction–convection equation, a thermal effect model for vertical groundwater migration in the stratified rock mass was established, the equations for temperature distribution in layered strata were deduced, and the impacts of the vertical seepage velocity of [...] Read more.
On the basis of the one-dimensional heat conduction–convection equation, a thermal effect model for vertical groundwater migration in the stratified rock mass was established, the equations for temperature distribution in layered strata were deduced, and the impacts of the vertical seepage velocity of groundwater and the thermal conductivity of surrounding rocks on the temperature field distribution in layered strata were analyzed. The proposed model was employed to identify the thermal convection and conduction regions at two temperature-measuring boreholes in coal mines, and the vertical migration velocity of groundwater was obtained through reverse calculation. The results show that the vertical temperature distribution of the layered rock mass is subject to the migration of the geothermal water; the temperature curve of the layered formation is convex when the geothermal water travels upward, but concave when the water moves downward. The temperature distribution in the stratified rock mass is also subject to the thermal conductivity of the rock mass; greater thermal conductivity of the rock mass leads to a larger temperature difference among regions of the rock mass, while weaker thermal conductivity results in a smaller temperature difference. A greater velocity of the vertical migration of geothermal water within the surrounding rock leads to a larger curvature of the temperature curve. The model was applied to a study case, which showed that the model could appropriately describe the variation pattern of the ground temperature in the stratified rock mass, and a comparison between the modeling result and the measured ground temperature distribution revealed a high goodness of fit of the model with the actual situation. Full article
Show Figures

Figure 1

13 pages, 6900 KiB  
Article
Classification of Molecular Subtypes of High-Grade Serous Ovarian Cancer by MALDI-Imaging
by Wanja Kassuhn, Oliver Klein, Silvia Darb-Esfahani, Hedwig Lammert, Sylwia Handzik, Eliane T. Taube, Wolfgang D. Schmitt, Carlotta Keunecke, David Horst, Felix Dreher, Joshy George, David D. Bowtell, Oliver Dorigo, Michael Hummel, Jalid Sehouli, Nils Blüthgen, Hagen Kulbe and Elena I. Braicu
Cancers 2021, 13(7), 1512; https://doi.org/10.3390/cancers13071512 - 25 Mar 2021
Cited by 17 | Viewed by 4931
Abstract
Despite the correlation of clinical outcome and molecular subtypes of high-grade serous ovarian cancer (HGSOC), contemporary gene expression signatures have not been implemented in clinical practice to stratify patients for targeted therapy. Hence, we aimed to examine the potential of unsupervised matrix-assisted laser [...] Read more.
Despite the correlation of clinical outcome and molecular subtypes of high-grade serous ovarian cancer (HGSOC), contemporary gene expression signatures have not been implemented in clinical practice to stratify patients for targeted therapy. Hence, we aimed to examine the potential of unsupervised matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to stratify patients who might benefit from targeted therapeutic strategies. Molecular subtyping of paraffin-embedded tissue samples from 279 HGSOC patients was performed by NanoString analysis (ground truth labeling). Next, we applied MALDI-IMS paired with machine-learning algorithms to identify distinct mass profiles on the same paraffin-embedded tissue sections and distinguish HGSOC subtypes by proteomic signature. Finally, we devised a novel approach to annotate spectra of stromal origin. We elucidated a MALDI-derived proteomic signature (135 peptides) able to classify HGSOC subtypes. Random forest classifiers achieved an area under the curve (AUC) of 0.983. Furthermore, we demonstrated that the exclusion of stroma-associated spectra provides tangible improvements to classification quality (AUC = 0.988). Moreover, novel MALDI-based stroma annotation achieved near-perfect classifications (AUC = 0.999). Here, we present a concept integrating MALDI-IMS with machine-learning algorithms to classify patients according to distinct molecular subtypes of HGSOC. This has great potential to assign patients for personalized treatment. Full article
Show Figures

Graphical abstract

Back to TopTop