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Abstract: The use of the segmental pipe section immersed tunnel suffers from several problems, such
as complex construction, weak foundation, great water depth, great thickness of siltation back on the
top of the tube, and difficult settlement control. Based on Winkel’s elastic foundation beam theory, a
mechanical calculation model is established according to the case of an inhomogeneous soil layer, and
the force and deformation of the structural system of the immersed tube tunnel are calculated based
on a bridge in Zhuhai as an example of an immersed tube tunnel. The results show that the derived
formula for calculating the allowable differential settlement per unit length of the longitudinally
immersed tube is applicable to the sudden change type foundation stiffness deformation model
of the natural foundation section of the tube tunnel of the aforementioned bridge in Zhuhai. The
relationship between the settlement control index and related influencing factors is analyzed. Hence,
a formula for calculating the stratified ground foundation’s integrated bed coefficient is derived, and
the equations for tunnel deflection curves and shear forces are solved. A set of calculation methods
that are applicable to the foundation settlement control criteria of the segmental immersed tunnel
is provided, and the results provide a significant reference for the optimization of the foundation
scheme and improvement of the construction process for similar projects.

Keywords: immersed tube tunnel; large back-silt soft foundation; segmental pipe section; differential
settlement; calculation analysis

1. Introduction

Since the middle and late 1970s, China began to study immersed tunnels and has
made substantial achievements [1–6]. Since then, immersed tunnels have made significant
progress in China [7–10]. Note that immersed tunnels are widely used in cross-sea engi-
neering with the advantages of a short construction period, high waterproof ability, and
strong adaptability [11–14]. Previous studies on tunnel settlement control mainly focus
on the shield tunnel. On the other hand, there is little research on the settlement control
standard of immersed tunnels as they are complicated. Moreover, the majority of immersed
tunnels in China are deep-buried tunnels and segmental pipe joints are highly affected by
the cyclic load of back silting and desilting during the operation period.

From the essence of pipe joint displacement in immersed tube tunnels, the settlement
is mainly caused by the compression deformation of the underlying base layer of the
tunnel; thus, it is necessary to discuss the settlement control standard. Hu et al. [15]
studied the settlement control standard of the segmental joint shear key of immersed
tunnels using large-scale model tests and finite elements and concluded that under the
longitudinal and transverse differential settlement, the stress process of the segmental joint
shear key is able to be divided into three stages: a compression stage, a stress stage, and a
yield state. Xu et al. [16] investigated the settlement control of the immersed tube tunnel
foundation at the junction of an artificial island and tunnel via laboratory tests and field
tests and obtained the reinforcement measures of the immersed tube tunnel foundation
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at the junction of the island and the tunnel and the pre-lift value of the pipe section. Niu
et al. [17,18] studied the deformation characteristics and settlement characteristics of the
segmental pipe section joint of the immersed tube structure using a model test and a finite
element model and acquired the influence of the settlement and opening of the immersed
tube tunnel, the stress–strain characteristics of the segment joint, and the compressive
stress distribution of marine subsoil. The increase in prestress effectively restrains the
settlement of the pipe section joint element and the joint’s expansion. Xue et al. [19] took the
Hong Kong–Zhuhai–Macao immersed tunnel as an example and presented a calculation
of the reasonable buried depth for an immersed tunnel. Yue et al. [20] considered the
section of the natural foundation of the immersed tube tunnel of the Hong Kong–Zhuhai–
Macao Bridge as the research object, carried out centrifugal model tests, and obtained the
resilience and recompression characteristics of the natural foundation of the immersed
tube tunnel, as well as the deformation characteristics of the immersed tube structure.
Wang et al. [21,22] introduced several ground treatment methods used in the Hong Kong–
Zhuhai–Macao Bridge project to reduce the potential uneven ground settlement between
artificial islands and submerged tunnels. One of the foundation improvement methods
involved a combination of preloaded and high-pressure jet grouting (HPJG) columns.
Furthermore, they introduced the settlement characteristics of the immersed tube tunnel in
the traffic engineering of the Hong Kong–Zhuhai–Macao Bridge. Li et al. [23] proposed a
comprehensive prediction model combining time-series decomposition, the least square
method, the sparrow search algorithm (SSA), and the support vector regression (SVR)
and predicted the thorough deformation of the immersed tube tunnel in operation using
the deformation monitoring data of the E13–E14 and E17–E18 of the Hong Kong–Zhuhai–
Macao Bridge.

In conclusion, based on the elastic foundation beam theory, this study starts with the
structural system of immersed tube tunnels and subsequently establishes a mechanical
model considering uneven soil layers. The Winkler model presents a foundation as an
arrangement of a limited number of soil columns that have been divided [24]. It was
depicted by a sequence of independent springs that are responsible for supporting the
load P at a particular point on a proximate base surface of a superstructure. These springs
worked together to balance the load P with their respective forces. However, since the
springs operated independently of each other, they only provided local resistance at the
point of loading and failed to generate resistance elsewhere [25]. Numerous achievements
were proposed based on this model [26–33], deducing and calculating the stress and
deformation of the structural system of immersed tube tunnels under the action of uneven
soil layers and analyzing the sensitivity of various influencing factors to the settlement,
in addition to obtaining a set of reasonable calculation methods for settlement control
standards of segmental immersed tube tunnels. The research results provide a favorable
scientific basis for the optimization of the tunnel foundation scheme and the improvement
of the construction technology to ensure the safety of the structure to a greater extent.

2. Foundation Beam Model of Uneven Soil Layer

The Zhuhai immersed tube tunnel project, which passes through five different strata,
is the first of its kind in the tunnel industry, domestically and internationally. The structure
system of the immersed tube tunnel is composed of the immersed pipe segment, segment
joint, pipe joint, and shock absorption cable. There is a nonlinear effect between the
immersed tube tunnel structure and foundation stiffness; thus, it is difficult to use static
analysis. As for the immersed tube tunnel, the mechanical properties of its structural
system are the main factors in the settlement control standard research. Therefore, the
settlement control standard research of immersed tube tunnels mainly revolves around the
high-order statically indeterminate problem of the interaction between the immersed tube
tunnel structural system and the foundation soil and backfill soil.
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2.1. Winkler Foundation Model

According to the Winkler foundation model, the pressure strength at any point on the
foundation is:

p = ks (1)

where k is the coefficient of the foundation bed; p denotes the pressure intensity (kPa); s
represents the settlement deformation of foundation (m).

The mechanical model of a constant cross-section infinite beam with a width b, placed
on a Winkler elastic foundation, is shown in Figure 1. A micro section with a length dx
along the longitudinal direction of the beam is taken for force analysis. Under the action
of a uniform load q, the shear force Q and bending moment M of the micro section are as
follows:

dM
dx

= Q,
dQ
dx

= pb− qb (2)
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Figure 1. Elastic foundation beam model and stress state.

Subsequently, the flexural differential equation of the beam section is obtained as
follows:

EI
d2w
dx2 = −M (3)

where E is the elastic modulus and I the moment of inertia of the section.
According to Equations (2) and (3):

EI
d4w
dx4 = qb− pb (4)

For beams on an elastic foundation, the deflection w is equal to s. Hence, p = ks = kw.
Substitute in Equation (4) to obtain:

EI
d4w
dx4 = qb− kwb (5)

According to Equation (3), the bending moment on this section is M = −EI d2w
dx2 .

Combined with Equation (2), the shear force on this section is Q = dM
dx = −EI d3w

dx3 ,
and the angle is θ = dw

dx .
Take the concentrated force F at the midpoint of the elastic foundation beam, as shown

in Figure 2, and calculate the left half; then, according to Equation (5), the deflection w is:

w = eλx(c1 cos λx + c2 sin λx) + e−λx(c3 cos λx + c4 sin λx) (6)

where λ = 4
√

kb
4EI ; c1, c2, c3, and c4 are undetermined constants.
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Figure 2. Concentrated load foundation beam model and stress state.

According to the calculation in Figures 1 and 2:
When x approaches infinity, the deflection w tends to 0, and by substituting into

Equation (6), c1 = c2 = 0.
When x is at the origin O, the angle is θ = dw

dx = 0, and the shear force is Q =

−EI d3w
dx3 = − F

2 , thus, c1 = c2 = F
8λ3EI .

Substituting the assumed coefficient into Equation (6) yields:

w = Fλ
2kb eλx(cos λx + sin λx)

= F
8λ3EI e−λx(cos λx + sin λx)

(7)

2.2. Foundation Beam Model under Concentrated Load
2.2.1. The Concentrated Load Acts on the Boundary of the Soil Layer

As shown in Figure 3, the concentrated load acts on point O, and k1 and k2 are the
foundation bed coefficients acting on the left and right of the origin O, respectively.
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Figure 3. Foundation beam model and stress under concentrated load.

The homogeneous solution of the control Equation (5) of the Z-section is Equation (6),
and the general solution of the left section beam of k1 is obtained as follows:

w1 = eλ1x(c11 cos λ1x + c21 sin λ1x)

+e−λ1x(c31 cos λ1x + c41 sin λ1x)
(8)

where λ1 = 4
√

k1b
4EI . When x tends to the left end of infinity, the deflection tends to 0; while

at the origin O, the bending moment is M = M0, and the shear force is Q = Q0, which is
obtained by introduction into the general solution of Equation (8):

c11 =
Q0 − λ1M0

2λ1
3EI

, c21 =
−M0

2λ1
2EI

, c31 = c41 = 0

By introducing Equation (8), the following equation is acquired:

w1 =
eλ1x

2λ1
3EI

[Q0 cos λ1x− λ1M0(cos λ1x + sin λ1x)] (9)

Therefore, the following is obtained: w1 = Q0−λ1 M0
2λ1

3EI , θ1 = Q0−2λ1 M0
2λ1

2EI .
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Similarly, the general solution of the beam at the right end of the foundation bed
coefficient k2 is:

w2 =
e−λ2x

2λ23EI
[(F−Q0) cos λ2x− λ2M0 cos λ2x + λ2M0 sin λ2x] (10)

w2 =
F−Q0 − λ2M0

2λ23EI
, θ2 =

Q0 − F + 2λ2M0

2λ22EI
.

Based on the fact that the deflection of the beam segment at the origin O is equal to
the rotation angle, the deflection of the beam segment at the origin is equal to the angle of
rotation.

F−Q0 − λ2M0

2λ23EI
=

Q0 − λ1M0

2λ1
3EI

,
Q0 − F + 2λ2M0

2λ22EI
=

Q0 − 2λ1M0

2λ1
2EI

Hence, it can be obtained that:

M0 =
λ1λ2F

λ1
3 + λ1λ22 + λ1

2λ2 + λ23 , Q0 =
λ1

2F
λ1

2 + λ22 (11)

2.2.2. The Applied Point of Concentrated Load Deviates from the Soil Boundary Point

The foundation soil layer under the beam is inhomogeneous, O is the coordinate
origin, k1 and k2 are, respectively, the left and right foundation bed coefficients, and the
concentrated load F acts on the right beam, with the distance L, as shown in Figure 4.
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For the beam model with a foundation bed coefficient k1 in the left section, the deflec-
tion curve equation of this section is acquired based on Equation (9), as follows:

w1 =
eλ1x

2λ1
3EI

[Q0 cos λ1x− λ1M0(cos λ1x + sin λ1x)] (12)

As for the beam model with the foundation bed coefficient k2 in the right section, the
deflection equation at the section x 6= L is obtained from Equation (7):

w21 =
F

8λ23EI
e−λ2|x−L|(cos λ2|x− L| + sin λ2|x− L| ) (13)

According to M = −EI d2w
dx2 and Q = dM

dx = −EI d3w
dx3 , the shear force and bending

moment on the section are calculated as:

ML =
F

4λ2
e−λ2L(cos λ2L− sin λ2L) (14)

QL =
F
2

e−λ2L cos λ2L (15)

However, the bending moment and shear value of the right beam section at the section
at point O are not the results of Equations (14) and (15), where the actual force couple is
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M0 −ML, and the applied force is QL −Q0. The flexural curve equation of the left beam is
obtained from Equation (10):

w22 =
e−λ2x

2λ23EI
[(QL −Q0) cos λ2x− λ2(M0 −ML) · (cos λ2x− sin λ2x)] (16)

The superposition of Equations (13) and (16) is the deflection curve equation of the
right beam under the actual condition:

w2 = w21 + w22 = F
8λ2

3EI e−λ2|x−L|(cos λ2|x− L| + sin λ2|x− L| )

+ e−λ2x

2λ2
3EI [(QL −Q0) cos λ2x− λ2(M0 −ML) · (cos λ2x− sin λ2x)]

(17)

Taking the derivative of this equation yields the corresponding deflection and angle
of rotation. Hence, the deflection at the origin of the left and right beam segments is,
respectively:

w1 =
Q0 − λ1M0

2λ1
3EI

, w2 =
e−λ2LF(sin λ2L + cos λ2L) + 4(QL −Q0)− 4λ2(M0 −ML)

8λ23EI

The angle of rotation at the origin of the left and right beam segments are, respectively:

θ1 =
Q0 − 2λ1M0

2λ1
2EI

, θ2 =
e−λ2LF sin λ2L + 2(Q0 −QL) + 4λ2(M0 −ML)

4λ22EI

The shear force Q0 and bending moment M0 at the section are obtained from the left
and right deflection and angle:

Q0 = Fλ1
2e−λ2 L [λ1(sin λ2L+cos λ2L)+λ2(cos λ2L−sin λ2L)]

λ1
3+λ1

2λ2+λ2
3+λ1λ2

2

M0 =
Fλ1e−λ2 L[λ2(λ1 sin λ2L+λ2 cos λ2L)−(λ1

2+λ2
2) sin λ2L]

λ1
3λ2+λ1

2λ2
2+λ2

4+λ1λ2
3

(18)

Similarly, a concentrated force F1 is applied at L1 from the left beam segment to the
foundation junction section, and a concentrated force F2 is applied at L2 from the right
beam segment to the foundation junction section, as shown in Figure 5.
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Figure 5. Foundation beam model and stress state under two concentrated loads.

According to the results obtained in Equation (18), the deflection equations of the left
and right beams are acquired as follows:

w1 = w11 + w12 = F
8λ1

3EI e−λ1|x+L1|(cos λ1|x + L1| + sin λ1|x + L1| )

+ eλ1x

2λ1
3EI [(Q0 −QL) cos λ1x− λ1(M0 −ML) · (cos λ2x + sin λ2x)]

w2 = w21 + w22 = F
8λ2

3EI e−λ2|x−L2|(cos λ2|x− L2| + sin λ2|x− L2|)

+ e−λ2x

2λ2
3EI [(QL −Q0) cos λ2x− λ2(M0 −ML) · (cos λ2x− sin λ2x)]

(19)
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The deflection and angle of the left and right sections at the foundation boundary are
obtained by differentiating Equation (16). The equation of shear force and bending moment
at the boundary section of the inhomogeneous foundation is obtained based on the fact
that the deflection and angle of left and right are, respectively, equal.

2.3. Foundation Beam Model under Uniform Load

Based on Equation (19), the deflection curve equation is obtained:

w1 = w11 + w12 =
∫ L

0
q

8λ2
3EI e−λ2|x+y|(cos λ2|x + y| + sin λ2|x + y| )dy

+ eλ1x

2λ1
3EI [(Q0 + Q1) cos λ1x− λ1(M0 −M1) · (cos λ1x + sin λ1x)]

w2 = w21 + w22 =
∫ L

0
q

8λ2
3EI e−λ2|x−y|(cos λ2|x− y| + sin λ2|x− y| )dy

+ e−λ2x

2λ2
3EI [(Q2 −Q0) cos λ2x− λ2(M0 −M2) · (cos λ2x− sin λ2x)]

(20)

The shear force Q0 and bending moment M0 at the boundary section of the inhomo-
geneous foundation are acquired from the continuous equality of beam deflection and
rotation angle at the boundary section:

Q0 =
A

−λ1λ2(2λ1
2λ22 + 2λ1λ23 + 2λ1

3λ2 + λ1
4 + λ24)

(21)

M0 =
B

−λ1λ2(2λ1
2λ22 + 2λ1λ23 + 2λ1

3λ2 + λ1
4 + λ24)

(22)

where:

A = qλ1
4(λ1 + λ2)

[
e−λ2L(cos λ2L− sin λ2L)− 1

]
− 1

2 qλ2
3(λ1

2 − λ2
2)
[
1− e−λ1L(cos λ1L + sin λ1L)

]
+qλ1

3e−λ2L(λ1
2 − λ2

2) sin λ2L

B =
qλ2

2(λ1
3+λ2

3)[1−e−λ1 L(cos λ1L+sin λ1L)]
2λ1

+
qλ1

3(λ1
2−λ2

2)[1−e−λ2 L(cos λ2L−sin λ2L)]
2λ2

− qλ1
2e−λ2 L(λ1

3+λ2
3)e−λ1 L sin λ2L

λ2

2.4. The Method of Determining the Foundation Bed Coefficient k

The foundation bed coefficient k of the immersed tube tunnel foundation should be
taken as the average foundation bed coefficient of each soil layer, which is equal to the ratio
of the additional stress p of the foundation and the average settlement s of the bottom of
the immersed tube:

k =
p
s

(23)

It is defined that S1 is the settlement amount of the gravel cushion after the immersed
tube is backfilled, S2 is the settlement deformation amount corresponding to the clay layer,
and S3 is the settlement deformation amount corresponding to the sand layer. Afterwards,
the average foundation bed coefficient is expressed by the combination of the coefficient of
each soil layer. Due to the special structure of the immersed tube tunnel, the additional
stress of the base changes very little along the depth direction, so Equation (2) is expressed
as:

k =
p
s
=

p
S1 + S2 + S3

=
1

S1+S2+S3
p

=
1

1
k1
+ 1

k2
+ 1

k3

(24)

In this study, according to the field load plate test of the Hong Kong–Zhuhai–Macao
immersed tube tunnel, the values of the foundation bed coefficients of each soil type are
shown in Table 1.
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Table 1. Values of subgrade bed coefficient of each soil type.

Classification and Characteristics of
Soil Layers k (104 kN/m3)

Classification and Characteristics of
Soil Layers k (104 kN/m3)

Mucky soil 0.1~0.5 Dense sand or loose gravel 2.5~4.0
Soft clay 0.5~1.0 Dense gravel 4.0~10

Clay and silty clay (soft plastic) 1.0~2.0 Soft or moderately strong weathered hard rock 20~100
Clay and silty clay (plastic) 2.0~4.0 Hard rock 100~150

Clay and silty clay (hard plastic) 4.0~10 Block stone 500~600
Loose sand 1.0~1.5 Concrete, reinforced concrete 800~1500

Medium dense sand or loose gravel 1.5~2.5 / /

Due to the influence of the foundation’s size and buried depth, the foundation bed
coefficient k needs to be modified to some extent. Assuming that the foundation width is D
and the foundation length is L, the corrected foundation bed coefficient k′ is:

Sandy soil: k′ = k · D+0.305
2D ; Clayey soil; k′ = k · 0.305

D ; Affected by length: k′ = k · 2L+D
3L .

3. Method of Settlement Control Calculation

The deflection and shear force of the beam model are solved using the elastic founda-
tion beam theory under the concentrated force of shear force (18), and the influence line of
shear along the longitudinal stiffness of the beam is drawn, as shown in Figure 6.
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The distances between the two intersection points and the origin are equal in Figure 6,
and the calculation formula is:

L =
π

2
4

√
4EI

k
(25)

where k is the average value of the foundation bed stiffness in the range of [−L, L], k =

1
r

r
∑

i=1
ki; EI denotes the flexural stiffness.

According to the foundation stiffness distribution diagram (Figure 7), there are multi-
ple variation modes in the foundation bed stiffness distribution of the natural foundation,
under the condition of no construction deviation. The abrupt foundation bed stiffness
distribution mode is the most unfavorable working condition, while the abrupt foundation
bed stiffness is the most unfavorable stress position of the immersed tube structure.

Therefore, the average values k1 and k2 of the foundation bed stiffness of the left and
right beam sections are, respectively, taken in its scope:

k1 =
1
m

m

∑
i=1

ki, k2 =
1
n

n

∑
i=1

ki (26)

Thus, the distribution diagram of foundation stiffness variation is drawn, as shown in
Figure 8.
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The overlying distributed load remains unchanged, and the beam model on uniform
foundation stiffness produces a uniform settlement s under the action of the uniform
distributed load, based on the previous assumptions. The graph multiplication calculation
is carried out between Figures 6 and 8, and the relationship of the change rate between the
allowable joint shear force and allowable foundation bed stiffness is obtained as follows:

[a] =
6[Q]

(1 + λ + λ2) · k · s · L · κ
(27)

where [Q] is the allowable shear value of the shear key; [a] represents the amplitude
of the foundation stiffness change rate; λ denotes the change factor of the distribution
pattern; κ is the centroid equivalent factor; s denotes the settlement value with average
foundation stiffness.

The left and right stiffnesses of the beam segment within 2L are:

k1 = (1 + [a]) · k, k2 = (1− [a]) · k (28)

The left and right settlements of the beam section within 2L are:

s1 =
s

1 + [a]
, s2 =

s
1− [a]

(29)

Therefore, the allowable average differential settlement per unit length of the longitu-
dinal beam is:

[∆] =
S2 − S1

2L
=

S
2L
·
(

1
1− [a]

− 1
1 + [a]

)
(30)

Since the change in foundation stiffness is abrupt, λ = 1, substituting Equation (27)
and λ = 1 into Equation (30), the following equation is obtained:

[∆] =
2[Q]ks2κ(

ksLκ
)2
− 4[Q]2

(31)
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According to the result of graph multiplication, the centroid equivalent factor is

acquired: κ = 2× 1+e−
π
2

π = 0.77.
The settlement si at the junction of each segment composed of n segments and the dif-

ferential settlement along the longitudinal unit length between any two adjacent segments
are:

∆i =
|si+1 − si|

Li
(32)

The maximum differential settlement in the whole section is obtained by calculating
the average differential settlement per unit length between adjacent n sections:

max∆i = max

∣∣si − sj
∣∣

Lij
(33)

When max∆i ≤ [∆], the calculated longitudinal differential settlement meets the
requirements of joint shear force.

When the overlying load in the study section changes slightly along the longitudinal
direction, the calculation model is the non-uniform foundation stiffness model under a
uniform load. The shear force calculated by Equation (21) meets the requirements when
Q ≤ [Q] is satisfied.

4. Case

The cross-section width of the Zhuhai immersed tube tunnel is 37.95 m, the height is
11.4 m, and the bending stiffness is EI = 9.7× 1010kN ·m2. The length of each pipe section
is 180 m, which is composed of eight C55 concrete sections connected by joints, and the
length of each section is 22.5 m. According to the natural foundation stiffness distribution
diagram of the Zhuhai Bridge (Figure 7), the section with abrupt foundation stiffness is
selected as a calculation example, and the settlement control calculation method deduced
in this study is adopted to analyze the settlement control calculation.

(1) According to the existing calculation results of the Zhuhai immersed tube tunnel,
combined with the characteristics of the immersed tube shear bond and structural size, the
allowable shear value at the joint is calculated to be [Q] = 1.6× 104kN.

(2) The longitudinal distribution of the average load and settlement of the pipe bottom
is shown in Figures 9 and 10. The foundation stiffness corresponding to each segment is
calculated according to Equation (23), as shown in Table 2.
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Figure 10. Foundation settlement within calculation scope. 

Table 2. Stiffness solution table.
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Foundation stiffness 4 210 kN/ m  7.772 7.831 7.752 7.824 9.796 9.871 9.793 9.826 8.808 
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settlement is along the longitudinal unit length are represented as follows: 

max max 0.68 mm/mi j
i

ij

s s
L
−

Δ = =

Satisfy [ ]max iΔ ≤ Δ . 
(6) The uniform load on the longitudinal beam is 151.475 kPa, and the left and right 

foundation stiffnesses are: 

4 2
1

1

1 7.79475 10  kN / m
m

i
i

k k
m =

= = ×
, 

4 2
2

1

1 9.8215 10  kN / m
n

i
i

k k
n =

= = ×

Thus: 
14

1 0.052547
4
k b
EI

λ = =
; 

24
2 0.055672

4
k b
EI

λ = =

It can be obtained by introducing Equation (21):

2 1

2

4 3 2 2
1 1 2 2 2 2 1 2 1 1

3 2 2
1 1 2 2

1( ) (cos sin ) 1

0.0

( ) 1 (cos sin )
2

( )si 0 2n 0 1

L L

L

A q e L L q e L L

q e L

λ λ

λ

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ

− −

−

   = + − − − − − +

=

  

+ −

Figure 10. Foundation settlement within calculation scope.

Table 2. Stiffness solution table.

Section No 1 2 3 4 5 6 7 8 Average

Average load kPa 155.2 154.8 153.3 152.1 150.9 149.5 148.6 147.4 151.475
Average settlement m 0.0758 0.0750 0.0750 0.0738 0.0585 0.0575 0.0576 0.0569 0.0663

Foundation stiffness 104 kN/m2 7.772 7.831 7.752 7.824 9.796 9.871 9.793 9.826 8.808

(3) The specific longitudinal length interval affected by the joint shear force is acquired
from Equation (25):

L =
π

2
4

√
4EI

k
= 71.98 m

(4) The average allowable differential settlement per unit length of the immersed tube
in the range of length 2L is calculated by Equation (31):

[∆] =
2[Q]ks2κ(

ksLκ
)2
− 4[Q]2

= 0.9197 mm/m

(5) After checking the calculation, the actual settlement si at any two points on the
left and right ends of the joint section and the maximum value max∆i of the difference
settlement si along the longitudinal unit length are represented as follows:

max∆i = max

∣∣si − sj
∣∣

Lij
= 0.68 mm/m

Satisfy max∆i ≤ [∆].
(6) The uniform load on the longitudinal beam is 151.475 kPa, and the left and right

foundation stiffnesses are:

k1 =
1
m

m

∑
i=1

ki = 7.79475× 104 kN/m2, k2 =
1
n

n

∑
i=1

ki = 9.8215× 104 kN/m2

Thus: λ1 = 4
√

k1b
4EI = 0.052547; λ2 = 4

√
k2b
4EI = 0.055672

It can be obtained by introducing Equation (21):

A = qλ1
4(λ1 + λ2)

[
e−λ2L(cos λ2L− sin λ2L)− 1

]
− 1

2 qλ2
3(λ1

2 − λ2
2)
[
1− e−λ1L(cos λ1L + sin λ1L)

]
+qλ1

3e−λ2L(λ1
2 − λ2

2) sin λ2L = 0.00012
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Q0 =5976.548 kN, Q ≤ [Q] meets the requirements.

5. Analysis of Differential Settlement Factors

It can be seen from Figure 7 that the foundation stiffness of the natural foundation is
mostly of the mutant type, which better reflects the change in natural strata. Therefore,
this model is selected as the basis for the calculation of settlement control standards. The
average load at the bottom of the tunnel pipe is calculated via Equation (30):

k · s = q (34)

Consequently:

L =
π

2
4

√
4EI

k
=

π

2
4

√
4EIs

q
(35)

By bringing Equations (34) and (35) and κ = 0.77 into Equation (31), the allowable
average differential settlement of the longitudinal unit length [∆] is acquired:

[∆] =
2[Q]ks2κ(

ksLκ
)2
− 4[Q]2

=
2[Q]qsκ

(qLκ)2 − 4[Q]2
=

1.54[Q]qs

0.29645π2q
√

EIsq− 4[Q]2
(36)

The width of the immersed tube is 37.95 m, its height is 11.4 m, the EI is 9.7× 1010 kN ·m2,
and the [Q] is 1.6× 104 kN. The relationship between [∆]A and s under different tube
bottom loads is studied, and the calculation results are shown in Figure 11.
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Figure 11. Relationship between allowable differential settlement and average settlement. 
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As can be seen from Figure 11, when the allowable shear stress at the joint is fixed,
under the action of a specific tube bottom load, [∆] basically increases linearly with s in the
range of 2L. The larger the tube bottom s is, the smaller the foundation stiffness is and the
larger [∆] is. Under different tube bottom loads, the linear relation curve between [∆] and s
is a parallel line, and the correlation growth ratio is approximately stable. Therefore, the
large foundation stiffness is not conducive to the control of the differential settlement. If s
is equal, the larger the tube bottom load is, the smaller [∆] is, and the decreasing rate of [∆]
gradually decreases with the increase in the tube bottom load. Therefore, reducing certain
additional stress has a certain control effect on the differential settlement.

The tube bottom load is selected as 150 kPa, and the relationship between [Q] and
[∆] is discussed when the tube bottom s is different. The calculation results are shown in
Figure 12.
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sequently, the shear force, bending moment value, and deflection equation of the tunnel 
at a certain position in the inhomogeneous soil layer were calculated. 
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results values of different positions were determined based on the field load plate test 
results. 

3. Combined with the inhomogeneous soil layer of computational mechanics of the 
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It can be seen from Figure 12 that when s in the study section 2L is a constant value,
[∆] increases with the increase in [Q]; that is, the larger [Q] is, the larger [∆] is. When [Q] is
a constant value, the larger s is, that is, the smaller the foundation length is, the larger [∆]
is, which is consistent with the conclusion in Figure 11.

6. Conclusions

This study conducted research on the control standards for settlement of the founda-
tion of immersed tunnels, providing beneficial suggestions for optimizing the foundation
scheme, improving construction processes, and ensuring the safety of the structural stress
to the greatest extent. The main conclusions are as follows:

1. Based on Winkel’s elastic foundation beam theory, a computational mechanics
model of an elastic foundation beam considering the inhomogeneous soil layer was es-
tablished, and the longitudinal displacement curve equation of the tunnel was obtained.
Subsequently, the shear force, bending moment value, and deflection equation of the tunnel
at a certain position in the inhomogeneous soil layer were calculated.

2. The infinite-length elastic foundation beam was used to simulate the immersed
tube tunnel structure, and the calculation mechanics model of the elastic foundation beam
considering the inhomogeneous soil layer was established. The calculation formula of the
comprehensive foundation bed coefficient of layered soil foundation was derived, and
the results values of different positions were determined based on the field load plate test
results.

3. Combined with the inhomogeneous soil layer of computational mechanics of the
elastic foundation beam model, the immersed tube longitudinal allowable differential
settlement formula of unit length was deduced, which was applied to the Zhuhai immersed
tube tunnel, and the relationship between the settlement control index and the related
affecting factors was analyzed. Furthermore, a set of calculation methods applicable to
the settlement control standard of the segmental immersed tube tunnel foundation were
obtained that provide conditions for the optimization of the foundation scheme design and
the improvement of construction technology.

4. The limitations of the Winkler foundation beam model include that it is only
applicable to minor deformation situations and cannot provide accurate analysis results
for large deformation scenarios. Moreover, the immersed tube tunnel research results
presented in this study are based on the marine soils in the Hong Kong–Zhuhai–Macao
region, and further verification is needed to determine whether the model is applicable to
soils in other regions.
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