Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = curve reparameterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5014 KB  
Article
In Situ Electrochemical Detection of Silicon Anode Crystallization for Full-Cell Health Management
by Hyeon-Woo Jung, Ga-Eun Lee and Heon-Cheol Shin
Energies 2026, 19(1), 279; https://doi.org/10.3390/en19010279 - 5 Jan 2026
Viewed by 219
Abstract
In this study, we investigate the relationship between the progressive lowering of the silicon (Si) anode potential during lithiation and the accompanying crystallization reaction to enable in situ electrochemical detection in Si-based full cells. Si–Li half cells were first analyzed by differential capacity [...] Read more.
In this study, we investigate the relationship between the progressive lowering of the silicon (Si) anode potential during lithiation and the accompanying crystallization reaction to enable in situ electrochemical detection in Si-based full cells. Si–Li half cells were first analyzed by differential capacity (dQ/dV), revealing a crystallization feature near 0.05 V vs. Li+/Li, commonly associated with crystallization to Li15Si4. In the initial cycle, this signal was obscured by a dominant amorphization peak near 0.1 V; however, once amorphization was completed and the end-of-lithiation potential dropped below ~0.05 V in later cycles, a distinct crystallization peak became clearly resolvable. Under capacity-limited cycling that mimics full-cell operation, degradation-induced lowering of the Si-anode potential led to the appearance of the crystallization signal when the anode potential crossed this threshold. Based on these results, we extended the analysis to LiFePO4–Si three-electrode full cells and, by reparameterizing dQ/dV as a function of charge time, separated electrode-specific contributions and identified the Si crystallization feature within the full-cell response when N/P ≈ 1. A simple degradation-modeling scenario further showed that in cells initially designed with N/P > 1, loss of anode active material can reduce the effective N/P, drive the Si potential into the crystallization window, and introduce a new peak in the full-cell dQ/dV curve associated with Si crystallization. These combined experimental and modeling results indicate that degradation-driven lowering of the Si-anode potential triggers crystallization and that this process can be detected in full cells via dQ/dV analysis. Practically, the emergence of the Si-crystallization feature provides an in situ marker that the effective N/P has drifted toward unity due to anode-dominated aging and may inform charge cut-off strategies to mitigate further Si-anode degradation. Full article
(This article belongs to the Special Issue Advanced Electrochemical Energy Storage Materials)
Show Figures

Figure 1

34 pages, 15930 KB  
Article
Geometric Learning of Canonical Parameterizations of 2D-Curves
by Ioana Ciuclea, Giorgio Longari and Alice Barbora Tumpach
Entropy 2026, 28(1), 48; https://doi.org/10.3390/e28010048 - 30 Dec 2025
Viewed by 246
Abstract
Most datasets encountered in computer vision and medical applications present symmetries that should be taken into account in classification tasks. A typical example is the symmetry by rotation and/or scaling in object detection. A common way to build neural networks that learn the [...] Read more.
Most datasets encountered in computer vision and medical applications present symmetries that should be taken into account in classification tasks. A typical example is the symmetry by rotation and/or scaling in object detection. A common way to build neural networks that learn the symmetries is to use data augmentation. In order to avoid data augmentation and build more sustainable algorithms, we present an alternative method to mod out symmetries based on the notion of section of a principal fiber bundle. This framework allows to use simple metrics on the space of objects in order to measure dissimilarities between orbits of objects under the symmetry group. Moreover, the section used can be optimized to maximize separation of classes. We illustrate this methodology on a dataset of contours of objects for the groups of translations, rotations, scalings and reparameterizations. In particular, we present a 2-parameter family of canonical parameterizations of curves, containing the constant-speed parameterization as a special case, which we believe is interesting in its own right. We hope that this simple application will serve to convey the geometric concepts underlying this method, which have a wide range of possible applications. Full article
(This article belongs to the Special Issue Lie Group Machine Learning)
Show Figures

Figure 1

15 pages, 1584 KB  
Article
Curvature-Constrained Motion Planning Method for Differential-Drive Mobile Robot Platforms
by Rudolf Krecht and Áron Ballagi
Appl. Sci. 2026, 16(1), 322; https://doi.org/10.3390/app16010322 - 28 Dec 2025
Viewed by 378
Abstract
Compact heavy-duty skid-steer robots are increasingly used for city logistics and intralogistics tasks where high payload capacity and stability are required. However, their limited maneuverability and non-negligible turning radius challenge conventional waypoint-tracking controllers that assume unconstrained motion. This paper proposes a curvature-constrained trajectory [...] Read more.
Compact heavy-duty skid-steer robots are increasingly used for city logistics and intralogistics tasks where high payload capacity and stability are required. However, their limited maneuverability and non-negligible turning radius challenge conventional waypoint-tracking controllers that assume unconstrained motion. This paper proposes a curvature-constrained trajectory planning and control framework that guarantees geometrically feasible motion for such platforms. The controller integrates an explicit curvature limit into a finite-state machine, ensuring smooth heading transitions without in-place rotation. The overall architecture integrates GNSS-RTK and IMU localization, modular ROS 2 nodes for trajectory execution, and a supervisory interface developed in Foxglove Studio for intuitive mission planning. Field trials on a custom four-wheel-drive skid-steer platform demonstrate centimeter-scale waypoint accuracy on straight and curved trajectories, with stable curvature compliance across all tested scenarios. The proposed method achieves the smoothness required by most applications while maintaining the computational simplicity of geometric followers. Computational simplicity is reflected in the absence of online optimization or trajectory reparameterization; the controller executes a constant-time geometric update per cycle, independent of waypoint count. The results confirm that curvature-aware control enables reliable navigation of compact heavy-duty robots in semi-structured outdoor environments and provides a practical foundation for future extensions. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

22 pages, 48973 KB  
Article
Parametric Blending with Geodesic Curves on Triangular Meshes
by Seong-Hyeon Kweon, Seung-Yong Lee and Seung-Hyun Yoon
Mathematics 2025, 13(19), 3184; https://doi.org/10.3390/math13193184 - 4 Oct 2025
Viewed by 529
Abstract
This paper presents an effective method for generating blending meshes by leveraging geodesic curves on triangular meshes. Depending on whether the input meshes intersect, the blending regions are automatically initialized using either minimum-distance points or intersection curves, while allowing users to intuitively adjust [...] Read more.
This paper presents an effective method for generating blending meshes by leveraging geodesic curves on triangular meshes. Depending on whether the input meshes intersect, the blending regions are automatically initialized using either minimum-distance points or intersection curves, while allowing users to intuitively adjust boundary curves directly on the mesh. Each blending region is parameterized via geodesic linear interpolation, and a reparameterization strategy is employed to establish optimal correspondences between boundary curves, ensuring smooth, twist-free connections. The resulting blending mesh is merged with the input meshes through subdivision, trimming, and co-refinement along the boundaries. The proposed method is applicable to both intersecting and non-intersecting meshes and offers flexible control over the shape and curvature of the blending region through various user-defined parameters, such as boundary radius, scaling factor, and blending function parameters. Experimental results demonstrate that the method produces stable and smooth transitions even for complex geometries, highlighting its robustness and practical applicability in diverse domains including digital fabrication, mechanical design, and 3D object modeling. Full article
(This article belongs to the Special Issue Mathematical Applications in Computer Graphics)
Show Figures

Figure 1

16 pages, 1868 KB  
Article
Hermite Quartic Splines for Smoothing and Sampling a Roughing Curvilinear Spiral Toolpath
by Cédric Leroy, Sylvain Lavernhe and Édouard Rivière-Lorphèvre
Appl. Sci. 2024, 14(17), 7492; https://doi.org/10.3390/app14177492 - 24 Aug 2024
Cited by 1 | Viewed by 1787
Abstract
From an industrial point of view, the milling of 2.5D cavities is a frequent operation, consuming time and presenting optimization potential, especially through a judicious choice of the tool trajectory. Among the different types of trajectories, some have a general spiral-like aspect [...] Read more.
From an industrial point of view, the milling of 2.5D cavities is a frequent operation, consuming time and presenting optimization potential, especially through a judicious choice of the tool trajectory. Among the different types of trajectories, some have a general spiral-like aspect and can potentially offer a reduced machining time. They are called curvilinear trajectories and are obtained by interpolation between structure curves, which are the numerical solutions of a partial differential equation. In this case, the machine tool will connect points, and the trajectory will be made up of small segments. While these trajectories exhibit all the necessary qualities on a macroscopic level for rapid tool movement, the tangential discontinuities at a microscopic scale, inherent in the discretization, significantly increase the machining time. This article proposes a method to reparameterize the structure curves of the curvilinear spiral with a set of C2 connected Hermit quartic spline patches. This creates a smooth toolpath that can be machined at an average feedrate closer to the programmed one and will, de facto, reduce the machining time. This article shows that the proposed method increases on two representative geometries of cavities and toolpath quality indicators, and reduces the milling time from 10% to 18% as compared to the PDE curvilinear spiral generation method proposed by Bieterman and Sandström. In addition, the proposed method is suitable for any non-convex pocket, with or without island(s). Full article
(This article belongs to the Special Issue Machine Tools, Advanced Manufacturing and Precision Manufacturing)
Show Figures

Figure 1

16 pages, 4686 KB  
Article
Ultra-Short-Term Power Prediction of Large Offshore Wind Farms Based on Spatiotemporal Adaptation of Wind Turbines
by Yuzheng An, Yongjun Zhang, Jianxi Lin, Yang Yi, Wei Fan and Zihan Cai
Processes 2024, 12(4), 696; https://doi.org/10.3390/pr12040696 - 29 Mar 2024
Cited by 6 | Viewed by 1635
Abstract
Accurately predicting the active power output of offshore wind power is of great significance for reducing the uncertainty in new power systems. By utilizing the spatiotemporal correlation characteristics among wind turbine unit outputs, this paper embeds the Diffusion Convolutional Neural Network (DCNN) into [...] Read more.
Accurately predicting the active power output of offshore wind power is of great significance for reducing the uncertainty in new power systems. By utilizing the spatiotemporal correlation characteristics among wind turbine unit outputs, this paper embeds the Diffusion Convolutional Neural Network (DCNN) into the Gated Recurrent Unit (GRU) for the feature extraction of spatiotemporal correlations in wind turbine unit outputs. It also combines graph structure learning to propose a sequence-to-sequence model for ultra-short-term power prediction in large offshore wind farms. Firstly, the electrical connection graph within the wind farm is used to preliminarily determine the reference adjacency matrix for the wind turbine units within the farm, injecting prior knowledge of the adjacency matrix into the model. Secondly, a convolutional neural network is utilized to convolve the historical curves of units within the farm along the time dimension, outputting a unit connection probability vector. The Gumbel–softmax reparameterization method is then used to make the probability vector differentiable, thereby generating an optimal adjacency matrix for the prediction task based on the probability vector. At the same time, the difference between the two adjacency matrices is added as a regularization term to the loss function to reduce model overfitting. The simulation of actual cases shows that the proposed model has good predictive performance in ultra-short-term power prediction for large offshore wind farms. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 1589 KB  
Article
A Novel Regression Model for Fractiles: Formulation, Computational Aspects, and Applications to Medical Data
by Víctor Leiva, Josmar Mazucheli and Bruna Alves
Fractal Fract. 2023, 7(2), 169; https://doi.org/10.3390/fractalfract7020169 - 7 Feb 2023
Cited by 8 | Viewed by 2532
Abstract
Covariate-related response variables that are measured on the unit interval frequently arise in diverse studies when index and proportion data are of interest. A regression on the mean is commonly used to model this relationship. Instead of relying on the mean, which is [...] Read more.
Covariate-related response variables that are measured on the unit interval frequently arise in diverse studies when index and proportion data are of interest. A regression on the mean is commonly used to model this relationship. Instead of relying on the mean, which is sensitive to atypical data and less general, we can estimate such a relation using fractile regression. A fractile is a point on a probability density curve such that the area under the curve between that point and the origin is equal to a specified fraction. Fractile or quantile regression modeling has been considered for some statistical distributions. Our objective in the present article is to formulate a novel quantile regression model which is based on a parametric distribution. Our fractile regression is developed reparameterizing the initial distribution. Then, we introduce a functional form based on regression through a link function. The main features of the new distribution, as well as the density, distribution, and quantile functions, are obtained. We consider a brand-new distribution to model the fractiles of a continuous dependent variable (response) bounded to the interval (0, 1). We discuss an R package with random number generators and functions for probability density, cumulative distribution, and quantile, in addition to estimation and model checking. Instead of the original distribution-free quantile regression, parametric fractile regression has lately been employed in several investigations. We use the R package to fit the model and apply it to two case studies using COVID-19 and medical data from Brazil and the United States for illustration. Full article
Show Figures

Figure 1

Back to TopTop