Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = cuprous ions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2761 KiB  
Article
Electrochemical Properties of Soluble CuCl·3TU Coordination Compound and Application in Electrolysis for Copper Foils
by Wancheng Zhao, Fangquan Xia and Dong Tian
Chemistry 2025, 7(4), 114; https://doi.org/10.3390/chemistry7040114 - 18 Jul 2025
Viewed by 273
Abstract
As the crucial current collector for lithium-ion batteries (LIBs), electrolytic copper foils are generally manufactured by electrodeposition in acidic copper sulfate solution. However, there are many disadvantages for traditional electrolytic copper foils, such as coarse grains, insufficient mechanical properties, and high energy consumption. [...] Read more.
As the crucial current collector for lithium-ion batteries (LIBs), electrolytic copper foils are generally manufactured by electrodeposition in acidic copper sulfate solution. However, there are many disadvantages for traditional electrolytic copper foils, such as coarse grains, insufficient mechanical properties, and high energy consumption. In order to improve the performances of electrolytic copper foil, a novel cuprous electrodeposition system was developed in this study. A soluble cuprous coordination compound was synthesized. In addition, XPS, FT-IR spectrum, as well as single-crystal X-ray diffraction illustrated that thiourea coordinated with Cu(I) through S atom and therefore stabilized Cu(I) by the formation of CuCl·3TU. Importantly, the corresponding electrochemical behaviors were investigated. In aqueous solution, two distinct reduction processes were demonstrated by linear sweep voltammetry (LSV) at rather negative potentials, including the reduction of adsorbed state and non-adsorbed state. Moreover, the observed inductive loops in electrochemical impedance spectroscopy further confirmed the adsorption phenomenon. More significantly, the designed cuprous electrodeposition system could contribute to low energy consumptions during electrolysis. and produce ultrathin nanocrystalline copper foils with appropriate roughness. Consequently, the electrolysis method based on CuCl·3TU could provide an improved approach for copper foils manufacturing in advanced LIBs fabrication. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

13 pages, 6235 KiB  
Article
Revisiting Mechanism of NaOH Dechlorination Treatments for Bronze Conservation in Quantitative Study
by Xin Yang, Wei Wu and Kunlong Chen
Materials 2024, 17(24), 6126; https://doi.org/10.3390/ma17246126 - 14 Dec 2024
Viewed by 814
Abstract
Dechlorination is a crucial strategy for archeological bronze stabilization to resist corrosion induced by cuprous chloride (CuCl). Conventional samples, either archeological or simulated ones, have deficiencies in revealing dechlorination mechanisms for their complex rust layers and difficulties in quantifying chlorine content. In this [...] Read more.
Dechlorination is a crucial strategy for archeological bronze stabilization to resist corrosion induced by cuprous chloride (CuCl). Conventional samples, either archeological or simulated ones, have deficiencies in revealing dechlorination mechanisms for their complex rust layers and difficulties in quantifying chlorine content. In this work, samples with fixed chlorine amounts were prepared by compressing method to solve overcomplicated and unquantifiable problems. Then, patina profiles and desalinization solutions were analyzed to revisit the dechlorination mechanism across varying solution concentrations and current densities after dechlorination treatments. Results indicate that the sodium hydroxide (NaOH) desalinization method is achieved by converting CuCl to trihydroxychloride (Cu2(OH)3Cl). However, this transformation leads to an expansion of the CuCl layer, nearly doubling the CuCl layer thickness at the current density of 25 μA/cm2. Dechlorination solution measurements provide information on quantifying chlorine removal and dechlorination progress. Theoretically, the endpoint (c0) for the NaOH dechlorination method is supposed to be a chloride ion concentration of 358.2 ppm. As the NaOH solution concentrations vary from 10−6 to 10−2, CuCl dechlorination progress (Et=24h) calculations are at about 3% to 6% at 24 h. Applying the current significantly improves the effectiveness of dechlorination at 2.5 μA/cm2. However, the chloride ion concentration in the solution starts to decrease after reaching a current density of 12.5 μA/cm2, even dropping to 12.07 ppm at 25 μA/cm2. According to a theoretical analysis, chlorine evolution during electrolytic processes would be responsible for this phenomenon. Full article
Show Figures

Figure 1

12 pages, 3360 KiB  
Article
Solid-State Construction of CuO–Cu2O@C with Synergistic Effects of Pseudocapacity and Carbon Coating for Enhanced Electrochemical Lithium Storage
by Guifen Du, Piyu Gong, Chuansheng Cui, Lei Wang and Changhua An
Nanomaterials 2024, 14(17), 1378; https://doi.org/10.3390/nano14171378 - 23 Aug 2024
Cited by 5 | Viewed by 1384
Abstract
The pseudocapacitive effect can improve the electrochemical lithium storage capacity at high-rate current density. However, the cycle stability is still unsatisfactory. To overcome this issue, a multivalent oxide with a carbon coating represents a plausible technique. In this work, a CuO–Cu2O@C [...] Read more.
The pseudocapacitive effect can improve the electrochemical lithium storage capacity at high-rate current density. However, the cycle stability is still unsatisfactory. To overcome this issue, a multivalent oxide with a carbon coating represents a plausible technique. In this work, a CuO–Cu2O@C composite has been constructed by a one-step bilayer salt-baking process and utilized as anode material for lithium-ion batteries. At a current density of 2.0 A g−1, the as-prepared composite delivered a stable discharge capacity of 431.8 mA h g−1 even after 600 cycles. The synergistic effects of the multivalence, the pseudocapacitive contribution from copper, and the carbon coating contribute to the enhanced electrochemical lithium storage performance. Specifically, the existence of cuprous suboxide improves the electrochemical conductivity, the pseudocapacitive effect enhances the lithium storage capacity, and the presence of carbon ensures cycle stability. The testing results show that CuO–Cu2O@C composite has broad application prospects in portable energy storage devices. The present work provides an instructive precedent for the preparation of transition metal oxides with controllable electronic states and excellent electrochemical performance. Full article
(This article belongs to the Special Issue Advanced Nanosheets for Carbon Neutrality and Electronic Devices)
Show Figures

Figure 1

21 pages, 10198 KiB  
Article
Transformation of Cu2O into Metallic Copper within Matrix of Carboxylic Cation Exchangers: Synthesis and Thermogravimetric Studies of Novel Composite Materials
by Elżbieta Kociołek-Balawejder, Katarzyna Winiarska, Juliusz Winiarski and Igor Mucha
Materials 2024, 17(16), 3893; https://doi.org/10.3390/ma17163893 - 6 Aug 2024
Cited by 3 | Viewed by 1250
Abstract
In order to systematize and expand knowledge about copper-containing composite materials as hybrid ion exchangers, in this study, fine metallic copper particles were dispersed within the matrix of a carboxyl cation exchanger (CCE) with a macroporous and gel-type structure thanks to the reduction [...] Read more.
In order to systematize and expand knowledge about copper-containing composite materials as hybrid ion exchangers, in this study, fine metallic copper particles were dispersed within the matrix of a carboxyl cation exchanger (CCE) with a macroporous and gel-type structure thanks to the reduction of Cu2O particles precipitated within the matrix earlier. It was possible to introduce as much as 22.0 wt% Cu0 into a gel-type polymeric carrier (G/H#Cu) when an ascorbic acid solution was used to act as a reducer of Cu2O and a reagent transforming the functional groups from Na+ into the H+ form. The extremely high shrinkage of the porous skeleton containing –COOH groups (in a wet and also dry state) and its limited affinity for water protected the copper from oxidation without the use of special conditions. When macroporous CCE was used as a host material, the composite material (M/H#Cu) contained 18.5 wt% Cu, and copper particles were identified inside the resin beads, but not on their surface where Cu2+ ions appeared during drying. Thermal analysis in an air atmosphere and under N2 showed that dispersing metallic copper within the resin matrix accelerated its decomposition in both media, whereby M/H#Cu decomposed faster than G/H#Cu. It was found that G/H#Cu contained 6.0% bounded water, less than M/H#Cu (7.5%), and that the solid residue after combustion of G/H#Cu and M/H#Cu was CuO (26.28% and 22.80%), while after pyrolysis the solid residue (39.35% and 26.23%) was a mixture of carbon (50%) and metallic copper (50%). The presented composite materials thanks to the antimicrobial, catalytic, reducing, deoxygenating and hydrophobic properties of metallic copper can be used for point-of-use and column water/wastewater treatment systems. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Graphical abstract

16 pages, 4844 KiB  
Article
Effect of Copper Antifouling Paint on Marine Degradation of Polypropylene: Uneven Distribution of Microdebris between Nagasaki Port and Goto Island, Japan
by Hisayuki Nakatani, Kaito Yamashiro, Taishi Uchiyama, Suguru Motokucho, Anh Thi Ngoc Dao, Hee-Jin Kim, Mitsuharu Yagi and Yusaku Kyozuka
Molecules 2024, 29(5), 1173; https://doi.org/10.3390/molecules29051173 - 6 Mar 2024
Viewed by 1848
Abstract
Microplastics (MP) encompass not only plastic products but also paint particles. Marine microdebris, including MP, was retrieved from five sampling stations spanning Nagasaki-Goto island and was classified into six types, primarily consisting of MP (A), Si-based (B), and Cu-based (C) paint particles. Type-A [...] Read more.
Microplastics (MP) encompass not only plastic products but also paint particles. Marine microdebris, including MP, was retrieved from five sampling stations spanning Nagasaki-Goto island and was classified into six types, primarily consisting of MP (A), Si-based (B), and Cu-based (C) paint particles. Type-A particles, i.e., MP, were exceedingly small, with 74% of them having a long diameter of 25 µm or less. The vertical distribution of type C, containing cuprous oxide, exhibited no depth dependence, with its dominant size being less than 7 μm. It was considered that the presence of type C was associated with a natural phenomenon of MP loss. To clarify this, polypropylene (PP) samples containing cuprous oxide were prepared, and their accelerated degradation behavior was studied using a novel enhanced degradation method employing a sulfate ion radical as an initiator. Infrared spectroscopy revealed the formation of a copper soap compound in seawater. Scanning electron microscopy/energy-dispersive X-ray spectroscopy analysis indicated that the chemical reactions between Cl and cuprous oxide produced Cu+ ions. The acceleration of degradation induced by the copper soap formed was studied through the changes in the number of PP chain scissions, revealing that the presence of type-C accelerated MP degradation. Full article
Show Figures

Graphical abstract

11 pages, 3113 KiB  
Article
ZnS:Cu/PDMS Composite Coating for Combating Marine Biofouling
by Zhenze Liu, Yicong Zhang, Tianyi Wang, Wenbo Du and Huichao Jin
Coatings 2023, 13(12), 2083; https://doi.org/10.3390/coatings13122083 - 14 Dec 2023
Cited by 1 | Viewed by 2206
Abstract
Biofouling is a major concern in marine industries. The use of traditional toxic antifouling coatings is forbidden or severely restricted. This study aimed to provide a green and effective antifouling coating. The coating was prepared using a polydimethylsiloxane (PDMS) matrix and Cu-doped zinc [...] Read more.
Biofouling is a major concern in marine industries. The use of traditional toxic antifouling coatings is forbidden or severely restricted. This study aimed to provide a green and effective antifouling coating. The coating was prepared using a polydimethylsiloxane (PDMS) matrix and Cu-doped zinc sulfide (ZnS:Cu). Four samples with different ZnS:Cu contents (1, 10, 20, and 50 wt%) were prepared. Pristine PDMS (0 wt%) was used as the control. The results showed that all coatings had hydrophobic surfaces conducive to combating biofouling. In tests against B. Subtilis, the 1, 10, 20, and 50 wt% samples showed enhanced antifouling capabilities compared to the 0 wt% sample. In static and dynamic tests against Chlorella, the antifouling capability increased with increasing ZnS:Cu content and the 50 wt% sample showed the best antifouling capability. The possible antifouling mechanisms of these coatings include the release of ions (Zn2+ and Cu+), induction of deformation, and fluorescence emission. This study provides a reference for the application of Zn2+/Cu+ combinations to combat marine biofouling. Full article
Show Figures

Figure 1

18 pages, 9435 KiB  
Article
Leaching of Copper Concentrates with Iodized Salts in a Saline Acid Medium: Part 2—Effect on Chloride Concentration and an Aerated System
by César I. Castellón and María E. Taboada
Materials 2023, 16(17), 5940; https://doi.org/10.3390/ma16175940 - 30 Aug 2023
Cited by 2 | Viewed by 1490
Abstract
To enhance the leaching of chalcopyrite concentrates, this study evaluated a new process for extracting copper using iodized solutions and sulfuric acid diluted in seawater without pressure or high temperatures. The work involved a leaching test carried out under various conditions by varying [...] Read more.
To enhance the leaching of chalcopyrite concentrates, this study evaluated a new process for extracting copper using iodized solutions and sulfuric acid diluted in seawater without pressure or high temperatures. The work involved a leaching test carried out under various conditions by varying the concentrations of chloride ions, H2SO4, and an evenly distributed oxygen supply in an aeration system. It was demonstrated that Cl ion addition could promote the chalcopyrite-leaching process. The leaching efficiency of copper reached 70% after 96 h. However, a chloride ion dosage excess can have the opposite effect on extraction, reducing copper recovery. XRD and SEM-EDS results showed that cuprous chloride (CuCl) was formed at high dosages (>0.5 M); meanwhile, at a lower dosage, elemental sulfur (S) was formed in the presence of sulfuric acid solution and seawater medium. In contrast, in an aerated system, surface roughness markedly increased due to continuous oxidation on the surface of the ore. This change in morphology and the high value of the redox potential, given by the aerated system and the acidic environment, allowed copper recovery of up to 70% after 96 h. The results showed that an aerated system is the most effective factor in chalcopyrite concentrate leaching. Full article
(This article belongs to the Topic Recent Advances in Metallurgical Extractive Processes)
Show Figures

Figure 1

12 pages, 2824 KiB  
Article
An Electrochemical Sensor Based on a Porous Biochar/Cuprous Oxide (BC/Cu2O) Composite for the Determination of Hg(II)
by Jin Zou, Jiawei Liu, Guanwei Peng, Haiyan Huang, Linyu Wang, Limin Lu, Yansha Gao, Dongnan Hu and Shangxing Chen
Molecules 2023, 28(14), 5352; https://doi.org/10.3390/molecules28145352 - 12 Jul 2023
Cited by 13 | Viewed by 1896
Abstract
Mercuric ion (Hg2+) in aqueous media is extremely toxic to the environment and organisms. Therefore, the ultra-trace electrochemical determination of Hg2+ in the environment is of critical importance. In this work, a new electrochemical Hg2+ sensing platform based on [...] Read more.
Mercuric ion (Hg2+) in aqueous media is extremely toxic to the environment and organisms. Therefore, the ultra-trace electrochemical determination of Hg2+ in the environment is of critical importance. In this work, a new electrochemical Hg2+ sensing platform based on porous activated carbon (BC/Cu2O) modified with cuprous oxide was developed using a simple impregnation pyrolysis method. Differential pulse anodic stripping voltammetry (DPASV) was used to investigate the sensing capability of the BC/Cu2O electrode towards Hg2+. Due to the excellent conductivity and large specific surface area of BC, and the excellent catalytic activity of Cu2O nanoparticles, the prepared BC/Cu2O electrode exhibited excellent electrochemical activity. The high sensitivity of the proposed system resulted in a low detection limit of 0.3 ng·L−1 and a wide linear response in the ranges from 1.0 ng·L−1 to 1.0 mg·L−1. In addition, this sensor was found to have good accuracy, acceptable precision, and reproducibility. All of these results show that the BC/Cu2O composite is a promising material for Hg2+ electrochemical detection. Full article
(This article belongs to the Special Issue Application of Functional Materials in Analysis and Detection)
Show Figures

Figure 1

13 pages, 3618 KiB  
Article
An ESIPT-Based Fluorescent Probe for Aqueous Cu+ Detection through Strip, Nanofiber and Living Cells
by Zhao Cheng, Xilang Jin, Yinggang Liu, Lei Zheng and Hao He
Molecules 2023, 28(9), 3725; https://doi.org/10.3390/molecules28093725 - 26 Apr 2023
Cited by 10 | Viewed by 2079
Abstract
Constructed on the benzothiazole-oxanthracene structure, a fluorescent probe RBg for Cu+ was designed under the ESIPT mechanism and synthesized by incorporating amide bonds as the connecting group and glyoxal as the identifying group. Optical properties revealed a good sensitivity and a good [...] Read more.
Constructed on the benzothiazole-oxanthracene structure, a fluorescent probe RBg for Cu+ was designed under the ESIPT mechanism and synthesized by incorporating amide bonds as the connecting group and glyoxal as the identifying group. Optical properties revealed a good sensitivity and a good linear relationship of the probe RBg with Cu+ in the concentration range of [Cu+] = 0–5.0 μmol L−1. Ion competition and fluorescence-pH/time stability experiments offered further possibilities for dynamic Cu+ detection in an aqueous environment. HRMS analysis revealed a possible 1:1 combination of RBg and Cu+. In addition, colorimetric Cu+ detection and lysosome-targeted properties of the probe RBg were analyzed through RBg-doped PVDF nanofiber/test strips and RBg-Mito/Lyso trackers that were co-stained in living HeLa cells, enabling the probe’s future applications as real-time detection methods for dynamic Cu+ tracking in the lysosomes and Cu+ detection under diversified conditions. Full article
Show Figures

Figure 1

12 pages, 2459 KiB  
Article
Efficient Iodine Removal by Porous Biochar-Confined Nano-Cu2O/Cu0: Rapid and Selective Adsorption of Iodide and Iodate Ions
by Jiaqi Li, Mengzhou Wang, Xu Zhao, Zitong Li, Yihui Niu, Sufeng Wang and Qina Sun
Nanomaterials 2023, 13(3), 576; https://doi.org/10.3390/nano13030576 - 31 Jan 2023
Cited by 13 | Viewed by 3132
Abstract
Iodine is a nuclide of crucial concern in radioactive waste management. Nanomaterials selectively adsorb iodine from water; however, the efficient application of nanomaterials in engineering still needs to be developed for radioactive wastewater deiodination. Artemia egg shells possess large surface groups and connecting [...] Read more.
Iodine is a nuclide of crucial concern in radioactive waste management. Nanomaterials selectively adsorb iodine from water; however, the efficient application of nanomaterials in engineering still needs to be developed for radioactive wastewater deiodination. Artemia egg shells possess large surface groups and connecting pores, providing a new biomaterial to remove contaminants. Based on the Artemia egg shell-derived biochar (AES biochar) and in situ precipitation and reduction of cuprous, we synthesized a novel nanocomposite, namely porous biochar-confined nano-Cu2O/Cu0 (C-Cu). The characterization of C-Cu confirmed that the nano-Cu2O/Cu0 was dispersed in the pores of AES biochar, serving in the efficient and selective adsorption of iodide and iodate ions from water. The iodide ion removal by C-Cu when equilibrated for 40 min exhibited high removal efficiency over the wide pH range of 4 to 10. Remarkable selectivity towards both iodide and iodate ions of C-Cu was permitted against competing anions (Cl/NO3/SO42−) at high concentrations. The applicability of C-Cu was demonstrated by a packed column test with treated effluents of 1279 BV. The rapid and selective removal of iodide and iodate ions from water is attributed to nanoparticles confined on the AES biochar and pore-facilitated mass transfer. Combining the advantages of the porous biochar and nano-Cu2O/Cu0, the use of C-Cu offers a promising method of iodine removal from water in engineering applications. Full article
Show Figures

Figure 1

9 pages, 1390 KiB  
Communication
Naringin’s Prooxidant Effect on Tumor Cells: Copper’s Role and Therapeutic Implications
by Mohd Farhan
Pharmaceuticals 2022, 15(11), 1431; https://doi.org/10.3390/ph15111431 - 19 Nov 2022
Cited by 8 | Viewed by 2300
Abstract
Plant-derived polyphenolic chemicals are important components of human nutrition and have been found to have chemotherapeutic effects against a variety of cancers. Several studies in animal models have proven polyphenols’ potential to promote apoptosis and tumor regression. However, the method by which polyphenols [...] Read more.
Plant-derived polyphenolic chemicals are important components of human nutrition and have been found to have chemotherapeutic effects against a variety of cancers. Several studies in animal models have proven polyphenols’ potential to promote apoptosis and tumor regression. However, the method by which polyphenols show their anticancer effects on malignant cells is not well understood. It is generally known that cellular copper rises within malignant cells and in the serum of cancer patients. In this communication, investigations reveal that naringin (a polyphenol found in citrus fruits) can strongly suppress cell proliferation and trigger apoptosis in various cancer cell lines in the presence of copper ions. The cuprous chelator neocuproine, which confirms copper-mediated DNA damage, prevents such cell death to a large extent. The studies further show that the cellular copper transporters CTR1 and ATP7A have a role in the survival dynamics of malignant cells after naringin exposure. The findings emphasize the crucial function of copper dynamics and mobilization in cancer cells and pave the path for a better understanding of polyphenols as nutraceutical supplements for cancer prevention and treatment. Full article
(This article belongs to the Special Issue Design of Small Molecules to Target Metastatic Cancer Cells)
Show Figures

Graphical abstract

12 pages, 1800 KiB  
Article
Mechanism and Efficacy of Cu2O-Treated Fabric
by Zachary Benmamoun, Trent Wyhopen, You Li and William A. Ducker
Antibiotics 2022, 11(11), 1633; https://doi.org/10.3390/antibiotics11111633 - 16 Nov 2022
Cited by 8 | Viewed by 2245
Abstract
Pathogenic bacteria can remain viable on fabrics for several days and therefore are a source of infection. Antimicrobial fabrics are a potential method of reducing such infections, and advances in antimicrobial fabrics can be enhanced by knowledge of how the fabric kills bacteria. [...] Read more.
Pathogenic bacteria can remain viable on fabrics for several days and therefore are a source of infection. Antimicrobial fabrics are a potential method of reducing such infections, and advances in antimicrobial fabrics can be enhanced by knowledge of how the fabric kills bacteria. Metal oxides have been considered and used as antimicrobial ingredients in self-sanitizing surfaces, including in clinical settings. In this work, we examine how the addition of cuprous oxide (Cu2O) particles to polypropylene fibers kills bacteria. First, we show that the addition of the Cu2O particles reduces the viability of common hospital pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae, by 99.9% after 30 min of contact with the treated polypropylene. Then, we demonstrate that the main killing effect is due to the drying of the bacteria onto the cuprous oxide particles. There is also a weaker effect due to free Cu+ ions that dissolve into the liquid. Other dissolved species were unimportant. Chelation of these Cu+ ions in soluble form or precipitation removes their antimicrobial activity. Full article
Show Figures

Graphical abstract

15 pages, 2963 KiB  
Article
Interactions of Isoquinoline Alkaloids with Transition Metals Iron and Copper
by Mst Shamima Parvin, Jakub Chlebek, Anna Hošťálková, Maria Carmen Catapano, Zuzana Lomozová, Kateřina Macáková and Přemysl Mladěnka
Molecules 2022, 27(19), 6429; https://doi.org/10.3390/molecules27196429 - 29 Sep 2022
Cited by 7 | Viewed by 2555
Abstract
Data on alkaloid interactions with the physiologically important transition metals, iron and copper, are mostly lacking in the literature. However, these interactions can have important consequences in the treatment of both Alzheimer’s disease and cancer. As isoquinoline alkaloids include galanthamine, an approved drug [...] Read more.
Data on alkaloid interactions with the physiologically important transition metals, iron and copper, are mostly lacking in the literature. However, these interactions can have important consequences in the treatment of both Alzheimer’s disease and cancer. As isoquinoline alkaloids include galanthamine, an approved drug for Alzheimer’s disease, as well as some potentially useful compounds with cytostatic potential, 28 members from this category of alkaloids were selected for a complex screening of interactions with iron and copper at four pathophysiologically relevant pH and in non-buffered conditions (dimethyl sulfoxide) by spectrophotometric methods in vitro. With the exception of the salts, all the alkaloids were able to chelate ferrous and ferric ions in non-buffered conditions, but only five of them (galanthine, glaucine, corydine, corydaline and tetrahydropalmatine) evoked some significant chelation at pH 7.5 and only the first two were also active at pH 6.8. By contrast, none of the tested alkaloids chelated cuprous or cupric ions. All the alkaloids, with the exception of the protopines, significantly reduced the ferric and cupric ions, with stronger effects on the latter. These effects were mostly dependent on the number of free aromatic hydroxyls, but not other hydroxyl groups. The most potent reductant was boldine. As most of the alkaloids chelated and reduced the ferric ions, additional experimental studies are needed to elucidate the biological relevance of these results, as chelation is expected to block reactive oxygen species formation, while reduction could have the opposite effect. Full article
Show Figures

Figure 1

13 pages, 1746 KiB  
Article
Selective Ozone-Assisted Acid Leaching of Copper from Copper Smelter Slag by Using Isopropanol as a Solvent
by Rashid Nadirov and Galymzhan Karamyrzayev
Minerals 2022, 12(8), 1047; https://doi.org/10.3390/min12081047 - 19 Aug 2022
Cited by 7 | Viewed by 2497
Abstract
Copper content in copper smelter slag exceeds that in copper ores, which has attracted increasing interest to recover copper from this by-product of pyrometallurgical copper production. The isopropanol-sulfuric acid-ozone system has been tested under different conditions to extract this metal from copper smelter [...] Read more.
Copper content in copper smelter slag exceeds that in copper ores, which has attracted increasing interest to recover copper from this by-product of pyrometallurgical copper production. The isopropanol-sulfuric acid-ozone system has been tested under different conditions to extract this metal from copper smelter slag containing chalcopyrite as a copper mineral. Isopropanol as a solvent played a key role in increasing the copper recovery to 87% after 5 h of leaching, while the use of an aqueous solution of sulfuric acid allowed only 13% of copper to be recovered. Iron extraction under these conditions was only 10%. The role of ozone was spectroscopically proven to oxidize ferrous ions to form ferric ions, which are effective oxidizers of chalcopyrite. The presence of copper in solution in the form of cuprous (Cu+) ions was proven electrochemically. The increased copper extraction in the solution was caused by the stabilization of cuprous ions by isopropanol. The limiting stage of the process was the chemical reaction on the chalcopyrite surface with the activation energy of 73.4 kJ mol−1. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 5148 KiB  
Article
Cuprous Oxide Thin Films Implanted with Chromium Ions—Optical and Physical Properties Studies
by Katarzyna Ungeheuer, Konstanty W. Marszalek, Marzena Mitura-Nowak, Piotr Jelen, Marcin Perzanowski, Marta Marszalek and Maciej Sitarz
Int. J. Mol. Sci. 2022, 23(15), 8358; https://doi.org/10.3390/ijms23158358 - 28 Jul 2022
Cited by 7 | Viewed by 2745
Abstract
Cuprous oxide is a semiconductor with potential for use in photocatalysis, sensors, and photovoltaics. We used ion implantation to modify the properties of Cu2O oxide. Thin films of Cu2O were deposited with magnetron sputtering and implanted with low-energy Cr [...] Read more.
Cuprous oxide is a semiconductor with potential for use in photocatalysis, sensors, and photovoltaics. We used ion implantation to modify the properties of Cu2O oxide. Thin films of Cu2O were deposited with magnetron sputtering and implanted with low-energy Cr ions of different dosages. The X-ray diffraction method was used to determine the structure and composition of deposited and implanted films. The optical properties of the material before and after implantation were studied using spectrophotometry and spectroscopic ellipsometry. The investigation of surface topography was performed with atomic force microscopy. The implantation had little influence on the atomic lattice constant of the oxide structure, and no clear dependence of microstrain or crystalline size on the dose of implantation was found. The appearance of phase change was observed, which could have been caused by the implantation. Ellipsometry measurements showed an increase in the total thickness of the sample with an increase in the amount of implanted Cr ions, which indicates the influence of implantation on the properties of the surface and subsurface region. The refractive index n, extinction coefficient k, and absorption coefficient optical parameters show different energy dependences related to implantation dose. Full article
(This article belongs to the Special Issue Feature Papers in Physical Chemistry and Chemical Physics 2022)
Show Figures

Graphical abstract

Back to TopTop