Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = crystal soaking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1987 KiB  
Article
Dirhodium Tetraacetate Binding to Lysozyme at Body Temperature
by Gabriella Tito, Giarita Ferraro and Antonello Merlino
Int. J. Mol. Sci. 2025, 26(14), 6582; https://doi.org/10.3390/ijms26146582 - 9 Jul 2025
Viewed by 170
Abstract
Paddlewheel dirhodium complexes are cytotoxic compounds that are also used as catalysts and in the formation of Rh-based artificial metalloenzymes. Low-temperature structures of adducts formed by the model protein hen egg white lysozyme (HEWL) with dirhodium tetraacetate ([Rh2(μ-O2CCH3 [...] Read more.
Paddlewheel dirhodium complexes are cytotoxic compounds that are also used as catalysts and in the formation of Rh-based artificial metalloenzymes. Low-temperature structures of adducts formed by the model protein hen egg white lysozyme (HEWL) with dirhodium tetraacetate ([Rh2(μ-O2CCH3)4]) when crystals of the protein were treated with the metal compound at 20 °C demonstrated that [Rh2(μ-O2CCH3)4] in part breaks down upon reaction with HEWL; dimeric Rh-Rh units bind the side chains of Asp18 and the C-terminal carboxylate, and monometallic fragments coordinate the side chains of Arg14 and His15 in 20% ethylene glycol, 0.100 M sodium acetate at pH 4.5 and 0.600 M sodium nitrate, while dimeric Rh-Rh units bind the side chains of Asn93 and Lys96, the C-terminal carboxylate and Asp101, with monometallic fragments that bind the side chains of Lys33 and His15 in 0.010 M HEPES pH 7.5 and 2.00 M sodium formate. To verify whether the binding of this metallodrug to proteins also occurs at body temperature, crystals of HEWL were grown in 0.010 M HEPES pH 7.5 and 2.00 M sodium formate at 37 °C and soaked with [Rh2(μ-O2CCH3)4] at the same temperature. X-ray diffraction data collected on these crystals at 37 °C demonstrate that [Rh2(μ-O2CCH3)4] reacts with proteins at body temperature. The structures of the Rh/HEWL adduct formed at 20 °C (obtained from data collected at 100 K) and at 37 °C under the same experimental conditions are very similar, with metal binding sites that are conserved. However, metal-containing fragment occupancy is higher in the structure obtained at 37 °C, suggesting a role of temperature in defining the protein metalation process. Full article
(This article belongs to the Special Issue Peptide and Protein Metalation)
Show Figures

Figure 1

22 pages, 9538 KiB  
Article
Study on Stability and Applicability of Calcium Carbide Slag—Dealkalized Red Mud and Solid Waste Composite Materials in Road Materials
by Wentong Wang, Shuqian Wang, Yu Cheng, Meng Jia and Jianyang Gao
Materials 2025, 18(13), 3140; https://doi.org/10.3390/ma18133140 - 2 Jul 2025
Viewed by 407
Abstract
The storage of highly alkaline red mud (RM) consumes land and threatens the environment, making its reuse crucial. The study used calcium carbide slag to dealkalize it, and analyzed the changes in mineral particles in RM using a CT scan. It then evaluated [...] Read more.
The storage of highly alkaline red mud (RM) consumes land and threatens the environment, making its reuse crucial. The study used calcium carbide slag to dealkalize it, and analyzed the changes in mineral particles in RM using a CT scan. It then evaluated the stabilization effects of different materials and explored the mechanism of RM solidification through analysis of micro-mechanisms. The results showed that after dealkalization with CCS, RM particles form more agglomerates and the overall structure becomes more compact, and the Na+ content in RM decreased from 10.44 wt% to 0.86 wt%. After treatment with stabilization materials, the mechanical strength of low-alkalinity RM was greatly improved, and the stabilization effect of composite slag was the best. When the partial replacement ratio was 12%, the 28 d compressive strength was 4.51 MPa. After soaking in water for one day and night, the strength decreased by 24.3%, which had good stability. This study found that the strength gains were mainly due to crystal substances like Ca3Al2O6 and non-crystalline substances such as C-S-H filling pores and wrapping particles. This study provides a new method for RM stabilization and promotes the utilization of industrial by-products. Full article
Show Figures

Figure 1

26 pages, 13346 KiB  
Article
Mechanical Characteristics of Soft Clay Solidified by Incorporating Granulated Blast Furnace Slag, Magnesium Oxide, and Building Gypsum
by Henggang Ji, Xiang Fan and Fan Ding
Materials 2025, 18(8), 1757; https://doi.org/10.3390/ma18081757 - 11 Apr 2025
Viewed by 438
Abstract
Super sulfate cement (SSC) serves as a sustainable alternative to ordinary Portland cement, offering lower carbon emissions and superior performance. Magnesium oxide (MgO) and building gypsum (BG) were utilized as activators for granulated blast furnace slag (GBFS), and together they formed SSC, which [...] Read more.
Super sulfate cement (SSC) serves as a sustainable alternative to ordinary Portland cement, offering lower carbon emissions and superior performance. Magnesium oxide (MgO) and building gypsum (BG) were utilized as activators for granulated blast furnace slag (GBFS), and together they formed SSC, which was employed to stabilize the waste soft clay (SC). The mechanical strength development characteristics of solidified clay and the types of its hydration products were investigated through mechanical experiments, including unconfined compressive strength (UCS) tests as well as microscopic experiments, such as X-ray diffraction tests and scanning electron microscopy tests. The mass ratios of GBFS, MgO, and BG were 8:2:0 (A2) and 6:2:2 (B1), respectively; these ratios were employed to stabilize the clay, resulting in solidified clay samples designated as S-A2 and S-B1. The UCS of S-B1 increased by 36.5% to 49.3% compared to S-A2 at the curing time from 7 to 91 days. The strength residual coefficients were 34.5% and 39.1% for S-A2 and S-B1, respectively, after ten wet–dry cycles. After soaking in sodium sulfate solution, the UCS of S-A2 and S-B1 decreased by 49.1% and 29.8%, respectively, compared to the unsoaked condition. The results of microscopic tests showed that the hydration products of S-B1 mainly included needle-like calcium silicate hydrate (C-S-H) gel, flaky hydrothermal gel, and ettringite (AFt) crystals. BG promoted the formation of AFt, while MgO facilitated the generation of C-S-H gel. In this study, SSC was used to stabilize the waste clay, which provided a way for the application of waste SC and SSC. Full article
(This article belongs to the Special Issue Alkali-Activated Binders: Properties and Applications in Construction)
Show Figures

Figure 1

14 pages, 3070 KiB  
Article
Zero-Dimensional Organic Amine-Copper Bromide Hybrid Crystal with Highly Efficient Yellow Emission
by Yanxi Chen, Ye Tian, Tao Huang, Shangfei Yao, Hui Peng and Bingsuo Zou
Crystals 2025, 15(4), 312; https://doi.org/10.3390/cryst15040312 - 27 Mar 2025
Viewed by 491
Abstract
Recently, Cu(I)-based metal halides have attracted tremendous attention owing to their remarkable photophysical properties. However, most of them can only be excited by near ultraviolet (UV) light at a wavelength (generally less than 350 nm) with a wide bandgap, which undoubtedly limits their [...] Read more.
Recently, Cu(I)-based metal halides have attracted tremendous attention owing to their remarkable photophysical properties. However, most of them can only be excited by near ultraviolet (UV) light at a wavelength (generally less than 350 nm) with a wide bandgap, which undoubtedly limits their application in solid-state lighting due to the low excitation efficiency at about 400 nm in devices. Here, we report a new zero-dimensional organic cuprous bromide of (C13H30N)2Cu5Br7 single crystals, which can be excited by visible light (390–400 nm) and give a bright yellow and broad self-trapped exciton emission band with the photoluminescence quantum yield (PLQY) of 92.3% at room temperature. The experimental and theoretical results show that the existence of Cu-Br-Cu metal bonds in a Cu5Br7 cluster package produces three components of self-trapped excitons (STE) that emit at room temperature but merge into one at 80 K. This occurs because of the anomalously enhanced electron–phonon coupling and electron–electron coupling in the coupled clusters in this system. These effects cause the excitation near visible light and emission broader at higher temperature. Additionally, their remarkable anti-water emission stability was demonstrated even after soaking in water for 6 h. Finally, a highly efficient white-light-emitting diode (WLED) based on (C13H30N)2Cu5Br7 was fabricated. Full article
(This article belongs to the Special Issue Synthesis, Structure and Application of Metal Halides)
Show Figures

Figure 1

13 pages, 2881 KiB  
Article
Effect of Water Content in Semidry Grinding on the Quality of Glutinous Rice Flour
by Tao Huang, Dan Ouyang, Shangyuan Sang, Caiming Li, Xiaosan Wang, Xiao Wang, Jiali Xing and Xiaohu Luo
Foods 2024, 13(20), 3216; https://doi.org/10.3390/foods13203216 - 10 Oct 2024
Cited by 2 | Viewed by 1321
Abstract
The grinding process is one of the key factors affecting the quality of glutinous rice flour (GRF). As an emerging grinding method, semidry grinding aims to solve the problems of the high yield of wastewater in traditional wet grinding and the high content [...] Read more.
The grinding process is one of the key factors affecting the quality of glutinous rice flour (GRF). As an emerging grinding method, semidry grinding aims to solve the problems of the high yield of wastewater in traditional wet grinding and the high content of damaged starch in dry grinding, in which the water content has a great influence on the quality of GRF. However, semidry grinding has not yet been formally put into production due to limitations such as the long time required to adjust the water content of rice grains. Therefore, this work was carried out to shorten the soaking time of glutinous rice (GR) by hot air pretreatment, and to conduct a systematic and in-depth study of the effect of water content on the quality of GRF, including water distribution, water hydration properties, thermal properties, rheological properties, and microstructure. The results showed that the GRF with higher water content had lower water solubility and higher enthalpy of pasting, which were due to the low content of damaged starch and the high degree of crystallization. The particle size of the GRF became smaller as the interaction between water and starch was enhanced and the GR was softened. In addition, the viscosity and elasticity of the GRF were also improved with an increase in water content. This work provides theoretical guidance for the improvement of semidry grinding to a certain extent. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

12 pages, 2971 KiB  
Article
Single-Atom Iron Catalysts with Core-Shell Structure for Peroxymonosulfate Oxidation
by Jielei Fan, Ruoxue Wang, Xiaodong Zheng, Hancheng Jiang and Xiuli Hu
Molecules 2024, 29(15), 3508; https://doi.org/10.3390/molecules29153508 - 26 Jul 2024
Cited by 1 | Viewed by 1781
Abstract
The chemical tolerance of ketoenamine covalent organic frameworks (COFs) is excellent; however, the tight crystal structure and low surface area limit their applications in the field of catalysis. In this work, a porous single-atom iron catalyst (FeSAC) with a core–shell structure and high [...] Read more.
The chemical tolerance of ketoenamine covalent organic frameworks (COFs) is excellent; however, the tight crystal structure and low surface area limit their applications in the field of catalysis. In this work, a porous single-atom iron catalyst (FeSAC) with a core–shell structure and high surface area was synthesized by using Schiff base COF nanospheres as the core and ketoenamine COF nanosheets growth on the surfaces. Surface defects were created using sodium cyanoborohydride etching treatment to increase specific surface area. The dye degradation experiments by peroxymonosulfate (PMS) catalyzed by the FeSAC proved that methylene blue can be degraded with a degradation rate constant of 0.125 min−1 under the conditions of 0.1 g L−1 catalyst dosage and 0.05 g L−1 peroxymonosulfate. The FeSAC/PMS system effectively degrades various pollutants in the pH range of 4–10 with over 80% efficiency for four cycles and can be recovered by soaking in iron salt solution. Free radical quenching experiments confirmed that singlet oxygen and superoxide radicals are the main active species for catalysis. Full article
Show Figures

Figure 1

14 pages, 8667 KiB  
Article
Improvement of X-ray Photoelectric Conversion Performance of MAPbI3 Perovskite Crystals by Ionic Liquid Treatment
by Xueqiong Su, Ruimin Wang, Huimin Yu, Jin Wang, Ruixiang Chen, He Ma and Li Wang
Coatings 2024, 14(5), 633; https://doi.org/10.3390/coatings14050633 - 16 May 2024
Viewed by 1329
Abstract
Although perovskite has great potential in optoelectronic devices, the simultaneous satisfaction of material stability and high performance is still an issue that needs to be solved. Most perovskite optoelectronic devices use quantum dot spin coating or the gas-phase growth of perovskite thin films [...] Read more.
Although perovskite has great potential in optoelectronic devices, the simultaneous satisfaction of material stability and high performance is still an issue that needs to be solved. Most perovskite optoelectronic devices use quantum dot spin coating or the gas-phase growth of perovskite thin films as the photoelectric conversion layer. Due to stability limitations, these materials often experience a significant decrease in photoelectric conversion efficiency when encountering liquid reagents. The self-assembled growth of hybrid perovskite crystals determines superior lattice ordering and stability. There are three types of ionic liquids—[Emim]BF4, EMIMNTF2, and HMITFSI—that can effectively enhance the X-ray photoelectric conversion performance of hybrid perovskite crystal CH3NH3PbI3 (MAPbI3), and the enhancement in the photocurrent leads to an improvement in the sensitivity of X-ray detectors. We soak the perovskite crystals in an ionic liquid and perform two treatment methods: electrification and dilution with ETOH solution. It is interesting to find that MAPbI3 perovskite single crystal materials choose the same optimized ionic liquid species in X-ray detection and photovoltaic power generation applications, and the effect is quite the opposite. Compared with untreated MAPbI3 crystals, the average photocurrent density of Electrify-HMITFSI MAPbI3 increased by 826.85% under X-ray excitation and the sensitivity of X-ray detectors made from these treated MAPbI3 crystals significantly increased by 72.6%, but the intensity of the PL spectrum decreased to 90% of the untreated intensity. Full article
Show Figures

Figure 1

20 pages, 12655 KiB  
Article
Study on Reducing Water Absorption of Recycled Aggregates (RAs) by Microbial Mineralization
by Minglei Li, Haihe Yi and Yilin Su
Materials 2024, 17(7), 1612; https://doi.org/10.3390/ma17071612 - 1 Apr 2024
Cited by 4 | Viewed by 1392
Abstract
Crushing waste concrete and using it directly as RAs has the disadvantages of high porosity and high water absorption. To achieve the reuse of resources, the researchers use microbial mineralization methods to further reinforce RAs. In this paper, the effect of the microbial [...] Read more.
Crushing waste concrete and using it directly as RAs has the disadvantages of high porosity and high water absorption. To achieve the reuse of resources, the researchers use microbial mineralization methods to further reinforce RAs. In this paper, the effect of the microbial carbonic anhydrase mineralization method on the water absorption of RAs was investigated, and the macroscopic analysis was performed by determining the indexes of water absorption and apparent density of RAs before and after the modification, and the microscopic analysis of RAs by using the methods of SEM, XRD, DSC, and EDS as well. According to the microscopic analysis, the mineralization products of microorganisms are calcium carbonate crystals, and with the increase in microbial liquid concentration, the water absorption rate of RAs shows a trend of decreasing and then increasing, and it can be found through the microscopic morphology that abundant mineralization products attached to the surface of the aggregate lead to the surface of the aggregate becoming rougher and more porous. The method of soaking the RAs in 3% bacterial solution and 0.1 mol/L calcium acetate solution followed by carbonation with 20% CO2 resulted in a 4.85% reduction in water absorption. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 5195 KiB  
Article
Preparation of Ordered Macroporous ZIF-8-Derived Magnetic Carbon Materials and Its Application for Lipase Immobilization
by Yongheng Shi, Hao Zhou, Lingmei Dai, Dehua Liu and Wei Du
Catalysts 2024, 14(1), 55; https://doi.org/10.3390/catal14010055 - 12 Jan 2024
Cited by 10 | Viewed by 2283
Abstract
Metal–organic framework materials (MOFs) and their derivatives are considered ideal immobilization carrier materials because of their large specific surface area, high porosity and excellent structural designability. Among them, ZIF-8 has great potential for immobilization of enzymes due to mild synthesis conditions, and good [...] Read more.
Metal–organic framework materials (MOFs) and their derivatives are considered ideal immobilization carrier materials because of their large specific surface area, high porosity and excellent structural designability. Among them, ZIF-8 has great potential for immobilization of enzymes due to mild synthesis conditions, and good biocompatibility. However, conventional ZIF-8 crystals have poor separation and recovery efficiency due to their small pore size and poor acid stability, greatly limiting their application in enzyme immobilization and further application. Although the carbonization of ZIF-8 by pyrolysis has been shown to be one of the approaches that can enhance its chemical stability, this still does not effectively solve the problem of the difficulty of recycling. Herein, we developed a strategy of pre-carbonization immersion (immersion in aqueous FeSO4 solution before carbonization) to synthesize ordered macroporous ZIF-8-derived carbon materials with stable ferromagnetism (denoted as CZ-x-M-y, where x denotes the carbonization temperature and y denotes the concentration of the impregnated FeSO4 solution) and used them to immobilize lipases for biodiesel production. XRD analysis showed that the magnetic properties in the materials came from Fe3C species. We found that the magnetic carbon materials obtained by carbonization at 600 °C showed the best immobilization effect, where CZ-600-M-0.3 (using 0.3 mol·L−1 FeSO4 aqueous solution to soak ZIF-8 and carbonized at 600 °C) had the highest enzyme loading of 183.04 mg·g−1, which was 49.7% higher than that of the non-magnetic CZ-600. In addition, CZ-600-M-0.5 maintained the highest enzyme activity, which was 81.9% of the initial activity, after five batches of reuse. The stable magnetic support materials reported in this study have promising potential for the industrial application of immobilized lipase. Full article
Show Figures

Graphical abstract

17 pages, 4062 KiB  
Article
Discovery and Exploration of Protein Kinase CK2 Binding Sites Using CK2α′Cys336Ser as an Exquisite Crystallographic Tool
by Christian Werner, Dirk Lindenblatt, Kaido Viht, Asko Uri and Karsten Niefind
Kinases Phosphatases 2023, 1(4), 306-322; https://doi.org/10.3390/kinasesphosphatases1040018 - 25 Nov 2023
Cited by 4 | Viewed by 2318
Abstract
The structural knowledge about protein kinase CK2 is dominated by crystal structures of human CK2α, the catalytic subunit of human CK2, and the product of the CSNK2A1 gene. In contrast, far fewer structures of CK2α′, its paralogous isoform and the product of the [...] Read more.
The structural knowledge about protein kinase CK2 is dominated by crystal structures of human CK2α, the catalytic subunit of human CK2, and the product of the CSNK2A1 gene. In contrast, far fewer structures of CK2α′, its paralogous isoform and the product of the CSNK2A2 gene, have been published. However, according to a PDB survey, CK2α′ is the superior alternative for crystallographic studies because of the inherent potential of the single mutant CK2α′Cys336Ser to provide crystal structures with atomic resolution. In particular, a triclinic crystal form of CK2α′Cys336Ser is a robust tool to determine high-quality enzyme-ligand complex structures via soaking. In this work, further high-resolution CK2α′Cys336Ser structures in complex with selected ligands emphasizing this trend are described. In one of these structures, the “N-terminal segment site”, a small-molecule binding region never found in any eukaryotic protein kinase and holding the potential for the development of highly selective substrate-competitive CK2 inhibitors, was discovered. In order to also address the binding site for the non-catalytic subunit CK2β, which is inaccessible in these triclinic CK2α′Cys336Ser crystals for small molecules, a reliable path to a promising monoclinic crystal form of CK2α′Cys336Ser is presented. In summary, the quality of CK2α′Cys336Ser as an exquisite crystallographic tool is solidified. Full article
(This article belongs to the Special Issue Past, Present and Future of Protein Kinase CK2 Research)
Show Figures

Figure 1

27 pages, 6772 KiB  
Article
Tri-Component Hydrogel as Template for Nanocrystalline Hydroxyapatite Deposition Using Alternate Soaking Method for Bone Tissue Engineering Applications
by Irina Mihaela Pelin, Irina Popescu, Manuela Calin, Daniela Rebleanu, Geanina Voicu, Daniela Ionita, Marius-Mihai Zaharia, Marieta Constantin and Gheorghe Fundueanu
Gels 2023, 9(11), 905; https://doi.org/10.3390/gels9110905 - 16 Nov 2023
Cited by 5 | Viewed by 2600
Abstract
Composite hydrogels containing apatite-like particles can act as scaffolds for osteoblast proliferation, with applications in bone tissue engineering. In this respect, porous biocompatible hydrogels were obtained from chitosan, oxidized pullulan, and PVA in different ratios. The stability of the hydrogels was ensured both [...] Read more.
Composite hydrogels containing apatite-like particles can act as scaffolds for osteoblast proliferation, with applications in bone tissue engineering. In this respect, porous biocompatible hydrogels were obtained from chitosan, oxidized pullulan, and PVA in different ratios. The stability of the hydrogels was ensured both by covalent bonds between aldehyde groups of oxidized pullulan and free amino groups of chitosan, and by physical bonds formed during freeze–thaw cycles and lyophilization. The deposition of calcium phosphates was performed by alternate soaking of the porous hydrogels into solutions with calcium and phosphate ions, assuring a basic pH required for hydroxyapatite formation. The mineralized hydrogels were characterized using FTIR spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, showing that inorganic particles containing between 80 and 92% hydroxyapatite were deposited in a high amount on the pore walls of the polymeric matrix. The composition of the organic matrix influenced the crystallization of calcium phosphates and the mechanical properties of the composite hydrogels. In vitro biological tests showed that mineralized hydrogels support the proliferation of MG-63 osteoblast-like cells to a greater extent compared to pristine hydrogels. Full article
(This article belongs to the Special Issue Innovative Biopolymer-Based Hydrogels (2nd Edition))
Show Figures

Graphical abstract

19 pages, 6686 KiB  
Article
Investigation of the Degradation Mechanism of the Tensile Mechanical Properties of Sandstone under the Corrosion of Various pH Solutions
by Luyi Huang, Hang Lin, Ping Cao, Qingxiong Zhao, Yongkang Pang and Weixun Yong
Materials 2023, 16(19), 6536; https://doi.org/10.3390/ma16196536 - 2 Oct 2023
Cited by 3 | Viewed by 1405
Abstract
The research aimed to examine the impact of different pH solutions on the tensile mechanical properties of saturated and natural sandstone specimens. The study utilized the WHY-300/10 microcomputer-controlled pressure testing machine to conduct Brazil splitting tests and employed acoustic emission and local dynamic [...] Read more.
The research aimed to examine the impact of different pH solutions on the tensile mechanical properties of saturated and natural sandstone specimens. The study utilized the WHY-300/10 microcomputer-controlled pressure testing machine to conduct Brazil splitting tests and employed acoustic emission and local dynamic strain testing techniques. The results indicated the tensile strength and split tensile modulus of the sandstone specimens gradually decreased with the polarisation of the solution pH, and the acoustic emission signal ring number monitoring values showed an increasing trend. The pH of the soaking solution followed an exponential decay pattern over time, eventually tending towards weak alkalinity. A new damage variable based on the cumulative ring count after chemical corrosion was defined to indirectly analyze the degree of corrosion degradation. It was discovered that in acidic or alkaline environments, the internal crystals of the rock are dissolved, weakening the mineral interconnections and causing a deterioration in tensile stress and strength. These findings can provide valuable insights for ensuring the safety and stability of the Denglou Mountain Tunnel in Yunnan Province. Full article
Show Figures

Figure 1

17 pages, 4553 KiB  
Article
Restorative Dental Resin Functionalized with Calcium Methacrylate with a Hydroxyapatite Remineralization Capacity
by Xin Zhang, Yuxuan Zhang, Ying Li, Xiaoming Wang and Xueqin Zhang
Materials 2023, 16(19), 6497; https://doi.org/10.3390/ma16196497 - 29 Sep 2023
Cited by 1 | Viewed by 1946
Abstract
The ability of dental materials to induce the mineralization of enamel like hydroxyapatite (HA) is of great importance. In this article, a novel kind of dental restorative material characterized by a mineralization ability was fabricated by photopolymerization. Calcium methacrylate (CMA) was introduced into [...] Read more.
The ability of dental materials to induce the mineralization of enamel like hydroxyapatite (HA) is of great importance. In this article, a novel kind of dental restorative material characterized by a mineralization ability was fabricated by photopolymerization. Calcium methacrylate (CMA) was introduced into the classical bisphenol A-glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) dental resin formulation. This functional dental resin (BTCM) was calcium-rich and can be prepared simply by one-step photopolymerization. The influence of CMA on the photopolymerization kinetics, the dental resin’s mechanical properties, and its capacity to induce dynamic in situ HA mineralization were examined. Real-time FTIR, compression modulus, scanning electron microscopy, X-ray spectroscopy, MTT assay, and cell attachment test were carried out. The obtained data were analyzed for statistical significance using analysis of variance (ANOVA). Double bond conversion could be completed in less than 300 s, while the compression modulus of BTCM decreased with the increase in CMA content (30 wt%, 40 wt%, and 50 wt%). After being soaked in Ca(NO3)2 and Na2HPO4 solutions alternatively, dense HA crystals were found on the surface of the dental resin which contained CMA. The amount of HA increased with the increase in CMA content. The MTT results indicated that BTCM possesses good biocompatibility, while the cell adhesion and proliferation investigation demonstrated that L929 cells can adhere and proliferate well on the surface of BTM. Thus, our approach provides a straightforward, cost-effective, and environmentally friendly solution that has the potential for immediate clinical use. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application)
Show Figures

Figure 1

13 pages, 4403 KiB  
Article
Effect of the Sintering Mechanism on the Crystallization Kinetics of Geopolymer-Based Ceramics
by Nur Bahijah Mustapa, Romisuhani Ahmad, Mohd Mustafa Al Bakri Abdullah, Wan Mastura Wan Ibrahim, Andrei Victor Sandu, Ovidiu Nemes, Petrica Vizureanu, Christina W. Kartikowati and Puput Risdanareni
Materials 2023, 16(17), 5853; https://doi.org/10.3390/ma16175853 - 26 Aug 2023
Cited by 4 | Viewed by 1861
Abstract
This research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with [...] Read more.
This research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with a heating rate of 5 °C/min. The geopolymer is made up of kaolin and sodium silicate as the precursor and an alkali activator, respectively. Characterization of the nepheline produced was carried out using XRF to observe the chemical composition of the geopolymer ceramics. The microstructures and the phase characterization were determined by using SEM and XRD, respectively. The SEM micrograph showed the microstructural development of the geopolymer ceramics as well as identifying reacted/unreacted regions, porosity, and cracks. The maximum flexural strength of 78.92 MPa was achieved by geopolymer sintered at 1200 °C while the minimum was at 200 °C; 7.18 MPa. The result indicates that the flexural strength increased alongside the increment in the sintering temperature of the geopolymer ceramics. This result is supported by the data from the SEM micrograph, where at the temperature of 1000 °C, the matrix structure of geopolymer-based ceramics starts to become dense with the appearance of pores. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume IV)
Show Figures

Figure 1

22 pages, 9314 KiB  
Article
Strength and Mechanism of Granite Residual Soil Strengthened by Microbial-Induced Calcite Precipitation Technology
by Rong Wang, Huawei Li, Zichuang Chen, Fang Liu, Muwang Wei, Feiyu Liu, Qian Wang and Changbin Hu
Appl. Sci. 2023, 13(15), 8863; https://doi.org/10.3390/app13158863 - 1 Aug 2023
Cited by 5 | Viewed by 1882
Abstract
High rainfall environmental conditions can easily cause erosion or collapse of the granite residual soil slope. However, traditional slope reinforcement methods have drawbacks such as poor landscape effect, high energy consumption of raw materials, and environmental pollution. This study studied the application of [...] Read more.
High rainfall environmental conditions can easily cause erosion or collapse of the granite residual soil slope. However, traditional slope reinforcement methods have drawbacks such as poor landscape effect, high energy consumption of raw materials, and environmental pollution. This study studied the application of microbial-induced calcite precipitation (MICP) in the reinforcement of granite residual soil. The consolidation effect of various methods was investigated, and the influence of cementing liquid concentration and pH value on consolidation under optimal curing conditions was explored. The results showed that the bacteria concentration reached OD600 = 3.0 and urease activity was 31.64 mM/min, which positively impact the production of calcium carbonate and the stability of crystal morphology. In addition, the soaking method was found to have the most effective consolidation effect on the surface soil samples, with the lowest disintegration rate. On the other hand, the peristaltic pump grouting method is the most effective in strengthening depth. This method resulted in a 513.65% increase in unconfined compressive strength (UCS), a 297.98% increase in cohesion, and a 101.75% increase in internal friction angle. This study also found that after seven rounds of grouting, the highest UCS was achieved in consolidated soil samples with a 0.5 mol/L cementing solution concentration, reaching 1.602 MPa. The UCS of soil samples increases as the pH value of the cementing fluid increases within the range of 6–8. As the pH value reaches 8–9, the strength increases and stabilizes gradually. These research findings can serve as an experimental basis for strengthening granite residual soil slopes and a guide for improving microbial geotechnical strengthening methods. Full article
Show Figures

Figure 1

Back to TopTop