Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = crude tall oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4069 KiB  
Article
Influence of Petroleum-Based and Bio-Derived Recycling Agents on High-RAP Asphalt Mixtures Performance
by Ibrahim Elnaml, Louay N. Mohammad, Gaylon L. Baumgardner, Jun Liu, Samuel Cooper and Samuel Cooper
Buildings 2024, 14(3), 567; https://doi.org/10.3390/buildings14030567 - 20 Feb 2024
Cited by 5 | Viewed by 1785
Abstract
Reclaimed asphalt pavement (RAP) has been utilized as a potential partial substitute for virgin asphalt binder in asphalt mixtures. However, a primary concern with increasing RAP content in asphalt mixtures is the cracking potential, attributed to the aged RAP asphalt binder (RAP-binder). To [...] Read more.
Reclaimed asphalt pavement (RAP) has been utilized as a potential partial substitute for virgin asphalt binder in asphalt mixtures. However, a primary concern with increasing RAP content in asphalt mixtures is the cracking potential, attributed to the aged RAP asphalt binder (RAP-binder). To address this, the use of petroleum-based and bio-derived recycling agents (RAs) in enhancing the cracking resistance of high-RAP asphalt mixtures has been explored. The objective of this study is to ascertain the effectiveness of six RAs in mitigating cracking in high-RAP asphalt mixtures. The RAs considered include petroleum-crude-oil-derived aromatic oil, soy oil, and four types of tall-oil-derived phytosterol (industrial by-product, intermediate, purified, and fatty acid-based). The RAs’ dosages were optimized, based on RAP-binder and unmodified asphalt binder properties, to produce target PG 70-22 asphalt binder when incorporated in asphalt mixtures containing 30% RAP. To assess the engineering performance of these 30%-RAP asphalt mixtures for each RA, a conventional asphalt mixture incorporating styrene-butadiene-styrene (SBS)-modified PG 70-22 asphalt binder without RAP or RAs was benchmarked for comparison. Mechanical tests performed included Hamburg wheel-track testing (HWTT), intermediate-temperature fracture tests (semi-circular bend, Illinois flexibility index, and IDEAL cracking tolerance), and thermal stress-restrained specimen tensile strength test to evaluate permanent deformation, intermediate-temperature cracking resistance, and low-temperature cracking resistance, respectively. Results showed that petroleum-crude-oil-derived aromatic oil and tall-oil-derived fatty-acid-based oil RAs were able to rejuvenate RAP-binder as measured by the cracking tests performed. Further, the use of these RAs did not adversely impact the asphalt mixtures’ permanent deformation performance. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

17 pages, 3593 KiB  
Article
Performance Assessment of Reclaimed Asphalt Pavement (RAP) in Road Surface Mixtures
by Vítor Antunes, José Neves and Ana Cristina Freire
Recycling 2021, 6(2), 32; https://doi.org/10.3390/recycling6020032 - 13 May 2021
Cited by 30 | Viewed by 6795
Abstract
Considerable amounts of Reclaimed Asphalt Pavement (RAP) are produced every year, as the road network requires maintenance to ensure the safety and comfort of its users. RAP is a 100% recyclable material and a useful fit to be re-introduced into another cycle without [...] Read more.
Considerable amounts of Reclaimed Asphalt Pavement (RAP) are produced every year, as the road network requires maintenance to ensure the safety and comfort of its users. RAP is a 100% recyclable material and a useful fit to be re-introduced into another cycle without downgrading its functionality. Despite the current knowledge about the benefits associated with RAP use, it is not yet largely applied in several countries. This paper aims to validate, on the basis of both short- and long-term mechanical behaviours, the application of a bituminous mixture with a high RAP incorporation rate (75%) in road pavement wearing courses. A crude tall oil rejuvenator was used. Both short- and long-term oven ageing procedures were employed to simulate the ageing that occurs during mixture production and in-service life, respectively. The tests for validating the RAP mixture as an alternative solution comprised stiffness, resistance to fatigue, permanent deformation, and determination of the water sensitivity. Furthermore, the RAP bitumen mobilisation degree was evaluated and a mixing protocol was established. In comparison with virgin bituminous mixtures, it was found that, in general, the high RAP mixtures presented similar or better behaviour. The ageing process had a hardening effect namely in terms of stiffness and resistance to permanent deformation, without significant effects on the resistance to fatigue and water damage. Full article
Show Figures

Figure 1

20 pages, 5900 KiB  
Article
Biodiesel from Crude Tall Oil and Its NOx and Aldehydes Emissions in a Diesel Engine Fueled by Biodiesel-Diesel Blends with Water Emulsions
by Murari Mohon Roy, Md Shariful Islam and Md Nur Alam
Processes 2021, 9(1), 126; https://doi.org/10.3390/pr9010126 - 8 Jan 2021
Cited by 14 | Viewed by 3456
Abstract
Using biodiesel in diesel engines is beneficial for reducing emissions of carbon monoxide (CO), hydrocarbons (HC) and particulate matters (PM). Biodiesel is usually produced from vegetable oils or animal fats. When produced from plant oil or woody plant sources, biodiesel can reduce a [...] Read more.
Using biodiesel in diesel engines is beneficial for reducing emissions of carbon monoxide (CO), hydrocarbons (HC) and particulate matters (PM). Biodiesel is usually produced from vegetable oils or animal fats. When produced from plant oil or woody plant sources, biodiesel can reduce a significant amount of carbon dioxide on a life cycle basis. The objective of this study is to produce biodiesel from a non-conventional woody plant source that is, crude tall oil, which is a dark brown viscous liquid extracted and processed in wood pulping plants. It contains a high percentage of fatty acids. From raw crude tall oil, tall oil fatty acids were separated and were successfully used for the production of biodiesel in this study. Although biodiesel produces lower CO, HC and PM than petroleum diesel fuel, it produces higher oxides of nitrogen (NOx) emissions in diesel engines. Water emulsifications of diesel-biodiesel blends are investigated in a direct injection (DI) diesel engine in this work to understand their potential for NOx reduction. When using 10% water in the emulsions, NOx was reduced by nearly 15%. In aldehyde emissions, B100 showed 35% lower aldehydes and B100 with 10% water emulsion produced nearly 90% lower aldehydes than diesel fuel—a substantial reduction. Therefore, this study accomplished the desired goal of producing biodiesel from a non-conventional source, which satisfies ASTM biodiesel standard and results in lower NOx and aldehydes emissions with water emulsifications of diesel-biodiesel blends in a diesel engine compared to that of diesel fuel. Full article
Show Figures

Figure 1

17 pages, 2455 KiB  
Review
A Review of Wood Biomass-Based Fatty Acids and Rosin Acids Use in Polymeric Materials
by Laima Vevere, Anda Fridrihsone, Mikelis Kirpluks and Ugis Cabulis
Polymers 2020, 12(11), 2706; https://doi.org/10.3390/polym12112706 - 16 Nov 2020
Cited by 58 | Viewed by 6655
Abstract
In recent decades, vegetable oils as a potential replacement for petrochemical materials have been extensively studied. Tall oil (crude tall oil, distilled tall oil, tall oil fatty acids, and rosin acids) is a good source to be turned into polymeric materials. Unlike vegetable [...] Read more.
In recent decades, vegetable oils as a potential replacement for petrochemical materials have been extensively studied. Tall oil (crude tall oil, distilled tall oil, tall oil fatty acids, and rosin acids) is a good source to be turned into polymeric materials. Unlike vegetable oils, tall oil is considered as lignocellulosic plant biomass waste and is considered to be the second-generation raw material, thus it is not competing with the food and feed chain. The main purpose of this review article is to identify in what kind of polymeric materials wood biomass-based fatty acids and rosin acids have been applied and their impact on the properties. Full article
(This article belongs to the Special Issue Sustainable Polymers from Biomass)
Show Figures

Graphical abstract

11 pages, 1803 KiB  
Article
Separation and Purification of ω-6 Linoleic Acid from Crude Tall Oil
by Md Shariful Islam, Lew P. Christopher and Md Nur Alam
Separations 2020, 7(1), 9; https://doi.org/10.3390/separations7010009 - 2 Feb 2020
Cited by 14 | Viewed by 13646
Abstract
Crude tall oil (CTO) is the third largest by-product at kraft pulp and paper mills. Due the large presence of value-added fatty and resin acids, CTO has a huge valorization potential as a biobased, readily available, non-food, and low-cost biorefinery feedstock. The objective [...] Read more.
Crude tall oil (CTO) is the third largest by-product at kraft pulp and paper mills. Due the large presence of value-added fatty and resin acids, CTO has a huge valorization potential as a biobased, readily available, non-food, and low-cost biorefinery feedstock. The objective of this work was to present a method for the isolation of high-value linoleic acid (LA), an omega (ω)-6 essential fatty acid, from CTO using a combination of pretreatment, fractionation, and purification techniques. Following the distillation of CTO to separate the tall oil fatty acids (TOFAs) from CTO, LA was isolated and purified from TOFAs by urea complexation (UC) and low-temperature crystallization (LTC) in the temperature range between −7 and −15 °C. The crystallization yield of LA from CTO in that range was 7.8 w/w at 95.2% purity, with 3.8% w/w of ω-6 γ-linolenic acid (GLA) and 1.0% w/w of ω-3 α-linolenic (ALA) present as contaminants. This is the first report on the isolation of LA from CTO. The approach presented here can be applied to recover other valuable fatty acids. Furthermore, once the targeted fatty acid(s) are isolated, the rest of the TOFAs can be utilized for the production of biodiesel, biobased surfactants, or other valuable bioproducts. Full article
Show Figures

Graphical abstract

12 pages, 1526 KiB  
Article
Thermal and Rheological Properties of Crude Tall Oil for Use in Biodiesel Production
by Peter Adewale and Lew P. Christopher
Processes 2017, 5(4), 59; https://doi.org/10.3390/pr5040059 - 15 Oct 2017
Cited by 11 | Viewed by 10724
Abstract
The primary objective of this work was to investigate the thermal and rheological properties of crude tall oil (CTO), a low-cost by-product from the Kraft pulping process, as a potential feedstock for biodiesel production. Adequate knowledge of CTO properties is a prerequisite for [...] Read more.
The primary objective of this work was to investigate the thermal and rheological properties of crude tall oil (CTO), a low-cost by-product from the Kraft pulping process, as a potential feedstock for biodiesel production. Adequate knowledge of CTO properties is a prerequisite for the optimal design of a cost-effective biodiesel process and related processing equipment. The study revealed the correlation between the physicochemical properties, thermal, and rheological behavior of CTO. It was established that the trans/esterification temperature for CTO was greater than the temperature at which viscosity of CTO entered a steady-state. This information is useful in the selection of appropriate agitation conditions for optimal biodiesel production from CTO. The point of interception of storage modulus (G′) and loss modulus (G′′) determined the glass transition temperature (40 °C) of CTO that strongly correlated with its melting point (35.3 °C). The flow pattern of CTO was modeled as a non-Newtonian fluid. Furthermore, due to the high content of fatty acids (FA) in CTO, it is recommended to first reduce the FA level by acid catalyzed methanolysis prior to alkali treatment, or alternatively apply a one-step heterogeneous or enzymatic trans/esterification of CTO for high-yield biodiesel production. Full article
Show Figures

Figure 1

Back to TopTop