Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (190)

Search Parameters:
Keywords = coupled core fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3086 KiB  
Article
Single-Polarization Single-Mode Hollow-Core Anti-Resonant Fiber with Low Loss and Wide Bandwidth
by Yong You, Wei Liu, Shuo Zhang, Jianxiong Wu, Yuanjiang Li, Huimin Shi and Haokun Yang
Photonics 2025, 12(7), 686; https://doi.org/10.3390/photonics12070686 - 7 Jul 2025
Viewed by 420
Abstract
Stable generation and propagation of single-polarization single-mode (SPSM) beams in hollow-core fiber (HCF) has become an important research direction. However, their routine use is yet to become a reality, a major obstacle is to maintain the polarization state of light at a sufficiently [...] Read more.
Stable generation and propagation of single-polarization single-mode (SPSM) beams in hollow-core fiber (HCF) has become an important research direction. However, their routine use is yet to become a reality, a major obstacle is to maintain the polarization state of light at a sufficiently long transmission distance in a wide spectral range. In the paper, a hollow-core anti-resonant fiber (HC-ARF) that can support SPSM beam transmission with an average loss of 15 dB/km in wavelengths beyond 1000 nm is proposed. SPSM guidance is achieved by setting the cladding tubes in the orthogonal direction to have different structures and material properties. Different cladding tube structures break the degeneracy of polarization modes, and different cladding tube materials make the polarization modes experience enough loss difference. In the range of more than 600 nm, the y-polarization loss ≈ 9.3 dB/km, while the x-polarization is > 500 dB/km, and the birefringence is > 1.7 × 10−5. In addition, the SPSM optimization process and bending losses in different directions are also discussed in detail. Full article
(This article belongs to the Special Issue Applications and Development of Optical Fiber Sensors)
Show Figures

Figure 1

17 pages, 4135 KiB  
Article
Temperature Estimation Method on Optic–Electric Composite Submarine Power Cable Based on Optical Fiber Distributed Sensing
by Chao Luo, Zhitao Feng, Yihua Zhu, Yuyan Liu, Yi Zhang, Ying Zhou, Muning Zhang and Lijuan Zhao
Photonics 2025, 12(6), 622; https://doi.org/10.3390/photonics12060622 - 19 Jun 2025
Viewed by 263
Abstract
The status of an optic–electric composite high-voltage submarine cable (referred to as submarine cable) can be monitored based on optical fiber-distributed sensing technology, and at the same time, no additional sensor is needed in the monitoring system. Currently, this technology is widely used [...] Read more.
The status of an optic–electric composite high-voltage submarine cable (referred to as submarine cable) can be monitored based on optical fiber-distributed sensing technology, and at the same time, no additional sensor is needed in the monitoring system. Currently, this technology is widely used in submarine cable monitoring systems. To estimate the temperatures of conductor and XLPE (cross-linked polyethylene) insulation of the submarine cable based on the ambient temperature and optical fiber temperature, the thermoelectric coupling field model of the 110 kV single-core submarine cable is established and validated. The thermoelectric coupling field models of the submarine cable with different values of ambient temperature and ampacity are built, and the influence of ambient temperature and ampacity on the temperatures of conductor, insulation and optical fiber is investigated. Furthermore, the relationship between the temperatures of the conductor and insulation and the ambient temperature and optical fiber temperature is obtained. Then, estimation formulas for temperatures of conductor and insulation of submarine cable according to ambient temperature and optical fiber temperature are obtained and preliminarily validated. This work lays the foundation for condition evaluation of the submarine cable insulation, life expectancy and maximum allowable ampacity estimation. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

12 pages, 16116 KiB  
Article
All-Fiber LITES Sensor Based on Hollow-Core Anti-Resonant Fiber and Self-Designed Low-Frequency Quartz Tuning Fork
by Xiaorong Sun, Weipeng Chen, Ying He, Haiyue Sun, Shunda Qiao and Yufei Ma
Sensors 2025, 25(9), 2933; https://doi.org/10.3390/s25092933 - 6 May 2025
Viewed by 502
Abstract
In this paper, an all-fiber light-induced thermoelastic spectroscopy (LITES) sensor based on hollow-core anti-resonant fiber (HC-ARF) and self-designed low-frequency quartz tuning fork (QTF) is reported for the first time. By utilizing HC-ARF as both the transmission medium and gas chamber, the laser tail [...] Read more.
In this paper, an all-fiber light-induced thermoelastic spectroscopy (LITES) sensor based on hollow-core anti-resonant fiber (HC-ARF) and self-designed low-frequency quartz tuning fork (QTF) is reported for the first time. By utilizing HC-ARF as both the transmission medium and gas chamber, the laser tail fiber was spatially coupled with the HC-ARF, and the end of the HC-ARF was directly guided onto the QTF surface, resulting in an all-fiber structure. This design eliminated the need for lens combinations, thereby enhancing system stability and reducing cost and size. Additionally, a self-designed rectangular-tip QTF with a low resonant frequency of 8.69 kHz was employed to improve the sensor’s detection performance. Acetylene (C2H2), with an absorption line at 6534.37 cm−1 (1.53 μm), was chosen as the target gas. Experimental results clearly demonstrated that the detection performance of the rectangular-tip QTF system was 2.9-fold higher than that of a standard commercial QTF system. Moreover, it exhibited an outstanding linear response to varying C2H2 concentrations, indicating its high sensitivity and reliability in detecting C2H2. The Allan deviation analysis was used to assess the system’s stability, and the results indicated that the system exhibits excellent long-term stability. Full article
Show Figures

Figure 1

22 pages, 4727 KiB  
Review
Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics
by Sujoy Saha, Sabita Acharya, Ying Liu, Peng Zhou, Michael R. Page and Gopalan Srinivasan
Appl. Sci. 2025, 15(9), 5162; https://doi.org/10.3390/app15095162 - 6 May 2025
Viewed by 557
Abstract
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a [...] Read more.
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review. Full article
(This article belongs to the Special Issue Applied Electronics and Functional Materials)
Show Figures

Figure 1

16 pages, 1742 KiB  
Article
Modeling and Analysis of the Transverse Surface Roughness in Hollow-Core Fibers
by Federico Melli, Kostiantyn Vasko, Lorenzo Rosa, Fetah Benabid and Luca Vincetti
Fibers 2025, 13(4), 36; https://doi.org/10.3390/fib13040036 - 27 Mar 2025
Viewed by 697
Abstract
The corrugation of the interfaces of the cross-section of hollow core fibers based on the inhibited coupling waveguiding mechanism is modeled and the impact on propagation loss analyzed. The proposed model is based on a combined use of coupled-mode theory and Azimuthal Fourier [...] Read more.
The corrugation of the interfaces of the cross-section of hollow core fibers based on the inhibited coupling waveguiding mechanism is modeled and the impact on propagation loss analyzed. The proposed model is based on a combined use of coupled-mode theory and Azimuthal Fourier Decomposition. It shows that such transverse roughness causes coupling between the core modes and the dielectric modes of the cladding and consequently an increase of the fiber loss. The model is validated by comparing theoretical and numerical results obtained by applying both deterministic and stochastic corrugations to tubular lattice and nested fibers. Scaling laws and impact of the fibers’ parameters are discussed. The model shows that the loss increase is not directly correlated to the root mean square of the stochastic roughness but only to the value of the power spectral density in specific spatial frequency ranges. In particular, the spectral components characterized by a periodicity lower than 101 of the tube circumference must have a power spectral density value lower than 0.2 nm2 to ensure a negligible effect of the transverse roughness on fibers with losses lower than 0.1 dB/Km. Full article
(This article belongs to the Special Issue Characterization and Applications of Specialty Optical Fibers)
Show Figures

Figure 1

16 pages, 3209 KiB  
Article
Side-Illuminating Optical Fiber for High-Power-Density-Mediated Intraluminal Photoacoustic Imaging
by Nidhi Singh, Carlos-Felipe Roa, Emmanuel Chérin, Lothar Lilge and Christine E. M. Demore
Appl. Sci. 2025, 15(7), 3639; https://doi.org/10.3390/app15073639 - 26 Mar 2025
Viewed by 1055
Abstract
Intraluminal photoacoustic (PA) imaging has the potential for providing physiological and functional information in wide-ranging clinical applications. Along with endoluminal ultrasound transducers, these applications require compact light delivery devices which can deliver high-energy ns-pulsed laser to the target region. In this work, we [...] Read more.
Intraluminal photoacoustic (PA) imaging has the potential for providing physiological and functional information in wide-ranging clinical applications. Along with endoluminal ultrasound transducers, these applications require compact light delivery devices which can deliver high-energy ns-pulsed laser to the target region. In this work, we describe the design, method of fabrication and characterization of a new compact, side-fire optical fiber that can deliver high-energy laser pulses for PA imaging. Side-fire illuminators were fabricated using UV laser ablation to create windows on the side of a 1.5 mm diameter single core, multi-mode optical fiber with a reflective silver coating and a beveled end. Devices with 10 mm, 20 mm, and 30 mm window lengths were fabricated and their beam profiles characterized. Elongated side-fire fibers with −6 dB beam size up to 30.79 mm × 5.5 mm were developed. A side-fire to total output ratio of up to 0.69 and a side fire efficiency of up to 40%, relative to a standard front-fire fiber, were achieved. We evaluated the effects of high-energy ns-pulsed light propagation on the fiber by coupling the fiber to 18 mJ or 100 MW/cm2 (at 750 nm) beam from a Q-switched laser. The PA imaging with the fiber was demonstrated by detecting India ink targets embedded in chicken breast tissue over the full length of a 20 mm illumination window and over a 100° angle and by visualizing in vivo the rat ear vasculature. Full article
(This article belongs to the Special Issue Advanced Optical-Fiber-Related Technologies)
Show Figures

Figure 1

8 pages, 3054 KiB  
Communication
Performance Limitations Due to Intra-Core Crosstalk and Nonlinear Interference Noise in Weakly Coupled Multi-Core Fiber Transmission Systems
by Wencheng Li, Lian Xiang and Xiaoliu Li
Photonics 2025, 12(3), 186; https://doi.org/10.3390/photonics12030186 - 24 Feb 2025
Viewed by 586
Abstract
Multi-core fiber (MCF) is expected to be a good candidate to overcome the capacity limit of single-mode single-core fiber. However, only linear inter-crosstalk was considered in the performance of MCF. In this study, the performance of the transmission channel in terms of the [...] Read more.
Multi-core fiber (MCF) is expected to be a good candidate to overcome the capacity limit of single-mode single-core fiber. However, only linear inter-crosstalk was considered in the performance of MCF. In this study, the performance of the transmission channel in terms of the signal-to-noise ratio (SNR) in weakly coupled MCF transmission systems is investigated by taking into account the effect of intra-core nonlinear interference noise (NLIN) and nonlinear inter-core crosstalk (NICXT). The SNR is calculated with various MCF system parameters to assess corresponding transmission performance. The results show that the SNR cannot always be improved by increasing the transmitted power in both the SCF and MCF systems. NICXT can deteriorate the performance of the MCF system, obviously, especially when the transmitted power is smaller than the threshold power. Furthermore, this influence is more marked with a small coupling coefficient. Full article
(This article belongs to the Special Issue Optical Fiber Communication: Challenges and Opportunities)
Show Figures

Figure 1

21 pages, 7078 KiB  
Article
Study on the Axial Compressive Behavior of Steel Fiber Reinforced Concrete Confined with High-Strength Rectangular Spiral Stirrup
by Huajing Zhao, Weitong Liu, Penghui Yang and Can Song
Materials 2025, 18(3), 669; https://doi.org/10.3390/ma18030669 - 3 Feb 2025
Viewed by 770
Abstract
Monotonic axial compression tests were carried out on 16 steel fiber-reinforced concrete (SFRC) columns confined by rectangular spiral stirrups. The impacts of stirrup spacing, stirrup strength, concrete strength, and cross-sectional aspect ratio on the peak load, ductility, and failure mode of these columns [...] Read more.
Monotonic axial compression tests were carried out on 16 steel fiber-reinforced concrete (SFRC) columns confined by rectangular spiral stirrups. The impacts of stirrup spacing, stirrup strength, concrete strength, and cross-sectional aspect ratio on the peak load, ductility, and failure mode of these columns were analyzed. The test results demonstrate that steel fibers significantly mitigate the spalling of the concrete column’s protective layer through their bridging effect. Small spacing and high-strength spiral stirrups effectively confine the core concrete, enhancing the bearing capacity and ductility of concrete columns. Concrete strength exhibits a positive correlation with the confinement effect. However, as concrete strength increases, the rate of improvement in the confinement effect decreases. At peak compressive stress, the high-strength stirrup may not reach its yield state. Based on the test results, a method for calculating stirrup stress under the peak stress of confined concrete is proposed. A “coupling restraint coefficient” is proposed, and a constitutive model for HRSS confined steel fiber reinforced concrete is developed, considering the coupled effect of effective confinement forces in different directions. Comparative analysis shows that the constitutive model established in this paper agrees well with the experimental results and demonstrates good applicability. Full article
Show Figures

Figure 1

10 pages, 2038 KiB  
Article
Room-Temperature Fiber-Coupled Single-Photon Source from CdTeSeS Core Quantum Dots
by Surasak Chiangga
Photonics 2025, 12(1), 52; https://doi.org/10.3390/photonics12010052 - 9 Jan 2025
Viewed by 1137
Abstract
Single-photon sources with photon antibunching characteristics are essential for quantum information technologies. This paper investigates the potential of quaternary-alloy CdTeSeS colloidal core quantum dots (cQDs) as compact, room-temperature, and fiber-integrated single-photon sources. Single-photon emission from CdTeSeS cQDs was verified by measuring the second-order [...] Read more.
Single-photon sources with photon antibunching characteristics are essential for quantum information technologies. This paper investigates the potential of quaternary-alloy CdTeSeS colloidal core quantum dots (cQDs) as compact, room-temperature, and fiber-integrated single-photon sources. Single-photon emission from CdTeSeS cQDs was verified by measuring the second-order correlation function, g2τ, using a Hanbury-Brown and Twiss setup. A novel method to determine zero-time delay through afterpulsing analysis is presented. The results demonstrate strong photon antibunching with g20=0.13, confirming that the photoemission from the CdTeSeS cQDs function as a single-photon source. This work highlights the potential of CdTeSeS cQDs as reliable and efficient single-photon sources for practical use in fiber-based quantum information technologies. Full article
(This article belongs to the Special Issue Recent Progress in Single-Photon Generation and Detection)
Show Figures

Figure 1

19 pages, 9204 KiB  
Article
Study on the Vibration Isolation Mechanism of Loofah Sponge
by Weijun Tian, Xu Li, Xiaoli Wu, Linghua Kong, Naijing Wang and Shasha Cao
Biomimetics 2025, 10(1), 5; https://doi.org/10.3390/biomimetics10010005 - 26 Dec 2024
Viewed by 1248
Abstract
The loofah sponge has a complex, three-dimensional, porous mesh fiber structure characterized by markedly low density and excellent vibration isolation properties. In this study, loofah sponges made from dried Luffa cylindrica were divided into two components: the core unit and the shell unit, [...] Read more.
The loofah sponge has a complex, three-dimensional, porous mesh fiber structure characterized by markedly low density and excellent vibration isolation properties. In this study, loofah sponges made from dried Luffa cylindrica were divided into two components: the core unit and the shell unit, which were further subdivided into five regions. Static compression performance tests and vibration isolation analysis were conducted on the loofah sponge and its individual parts. Scanning models of the loofah sponge were generated using the RX Solutions nano-CT system in France, and finite element analysis was performed using the ANSYS Workbench. This study focused on the vibration isolation performance of the loofah sponge, examining energy absorption and isolation, as well as the vibrational strength of its isolation performance. The goal was to explore the functions and vibration isolation mechanisms of its different components. The results demonstrated that the loofah sponge structure exhibits rigid–flexible coupling, with the coordinated action of multiple parts producing highly effective energy absorption and isolation of the vibration intensity effect. Specifically, the core unit of the loofah sponge provides the best isolation effect of axial vibration intensity, with an acceleration vibration transfer of −60 dB at 300 Hz. Furthermore, both the core and shell unit structures combine to provide multidirectional low-frequency vibration isolation. This study of the loofah sponge’s vibration isolation mechanism provides a theoretical foundation and new insights for the design of bionic low-frequency vibration isolation devices. Full article
Show Figures

Figure 1

19 pages, 4040 KiB  
Article
Fractional Solitons in Optical Twin-Core Couplers with Kerr Law Nonlinearity and Local M-Derivative Using Modified Extended Mapping Method
by Noorah Mshary, Hamdy M. Ahmed and Wafaa B. Rabie
Fractal Fract. 2024, 8(12), 755; https://doi.org/10.3390/fractalfract8120755 - 23 Dec 2024
Cited by 1 | Viewed by 925
Abstract
This study focuses on optical twin-core couplers, which facilitate light transmission between two closely aligned optical fibers. These couplers operate based on the principle of coupling, allowing signals in one core to interact with those in the other. The Kerr effect, which describes [...] Read more.
This study focuses on optical twin-core couplers, which facilitate light transmission between two closely aligned optical fibers. These couplers operate based on the principle of coupling, allowing signals in one core to interact with those in the other. The Kerr effect, which describes how a material’s refractive index changes in response to the intensity of light, induces the nonlinear behavior essential for generating solitons—self-sustaining wave packets that preserve their shape and speed. In our research, we employ fractional derivatives to investigate how fractional-order variations influence wave propagation and soliton dynamics. By utilizing the modified extended mapping method (MEMM), we derive solitary wave solutions for the equations governing the behavior of optical twin-core couplers under Kerr nonlinearity. This methodology produces novel fractional traveling wave solutions, including dark, bright, singular, and combined bright–dark solitons, as well as hyperbolic, Jacobi elliptic function (JEF), periodic, and singular periodic solutions. To enhance understanding, we present physical interpretations through contour plots and include both 2D and 3D graphical representations of the results. Full article
Show Figures

Figure 1

16 pages, 10770 KiB  
Article
A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on a Curvature Mach–Zehnder Interferometer Filter Using Thin-Core Fiber
by Christian Perezcampos-Mayoral, Jaime Gutiérrez-Gutiérrez, José Luis Cano-Pérez, Marciano Vargas-Treviño, Lorenzo Tepech-Carrillo, Erick Israel Guerra-Hernández, Itandehui Belem Gallegos-Velasco, Pedro Antonio Hernández-Cruz, Eeduardo Pérez-Campos-Mayoral, Victor Hugo Ojeda-Meixueiro, Julián Moisés Estudillo-Ayala, Juan Manuel Sierra-Hernandez and Roberto Rojas-Laguna
Appl. Sci. 2024, 14(24), 11578; https://doi.org/10.3390/app142411578 - 11 Dec 2024
Cited by 2 | Viewed by 1259
Abstract
We propose and demonstrate a tunable and switchable multi-wavelength fiber ring laser configuration based on a Mach–Zehnder interferometer (MZI) filter. The MZI was fabricated using a core-offset splicing technique, with a 2 cm piece of thin-core erbium-doped fiber (TCEDF), with a core diameter [...] Read more.
We propose and demonstrate a tunable and switchable multi-wavelength fiber ring laser configuration based on a Mach–Zehnder interferometer (MZI) filter. The MZI was fabricated using a core-offset splicing technique, with a 2 cm piece of thin-core erbium-doped fiber (TCEDF), with a core diameter of 2.90 µm, coupled in the central region of the MZI between two segments of single-mode fiber (SMF). By applying curvature to the MZI filter, we generated lasing single-, double-, triple-, and quadruple-emission lines with a curvature range from 2.3452 m−1 to 6.0495 m−1. A single-emission lasing line can be tuned from 1556.63 nm to 1564.25 nm with a tuning span of 7.62 nm and an SMSR of 49.80 dB. The laser emission can be switched to quadruple- and triple-emission lasing signals, with SMSR values of 39.96 dB and 36.83 dB, respectively. The dual-narrow emission lasing signal can be tuned from 1564.56 nm to 1561.34 nm, with an SMSR of 40.46 dB. Another lasing dual-emission signal can be tuned from 1585.69 nm to 1576.89 nm, producing an 8.8 nm tuning range, and from 1572.53 nm to 1563.66 nm, producing an 8.87 nm range, with the best SMSR of 42.35 dB. Full article
(This article belongs to the Special Issue Recent Trends in Fiber Optic Sensor: Technology and Applications)
Show Figures

Figure 1

13 pages, 4299 KiB  
Article
Design of a Nested Hollow-Core Anti-Resonant Fiber Sensor for Simultaneous Measurement of Temperature and Strain
by Yueyu Xiao and Jiayao Cheng
Sensors 2024, 24(23), 7805; https://doi.org/10.3390/s24237805 - 6 Dec 2024
Cited by 4 | Viewed by 1009
Abstract
A highly sensitive sensor, which can detect the temperature and strain simultaneously, is proposed using a hollow-core anti-resonant fiber with composite nested tubes. The sensing fiber contains two kinds of nested tubes, and two different sensing mechanisms, the resonance coupling effect and the [...] Read more.
A highly sensitive sensor, which can detect the temperature and strain simultaneously, is proposed using a hollow-core anti-resonant fiber with composite nested tubes. The sensing fiber contains two kinds of nested tubes, and two different sensing mechanisms, the resonance coupling effect and the intermodal interference, are realized in the same section of a hollow-core anti-resonant fiber fully filled with ethanol. Five conjoined nested anti-resonant tubes are introduced to suppress the confinement loss of the higher-order mode LP02. One hybrid conjoined nested tube, which consists of a half-circular anti-resonant tube and a half-circular resonant tube, is introduced to induce a resonant coupling between the LP02 mode in the core and the dielectric mode in the nested resonant tubes. Numerical investigations demonstrate the shifts of the feature wavelengths of the resonance coupling effect, and the intermodal interference shows different velocities with temperature and strain, while a simultaneous measurement of temperature and strain can be realized with high sensitivities (3.36 nm/°C and −0.003 nm/με to temperature and strain, respectively). Since the sensor can be fabricated by full infiltration with liquid into the large-size core and cladding tubes of hollow-core anti-resonant fibers, and special post-processing, such as selective infiltration or coating, is notneeded. The proposed sensors based on hollow-core anti-resonant fibers with functional liquid infiltration provide a more efficient and versatile platform for the temperature and strain sensing. Full article
Show Figures

Figure 1

18 pages, 3739 KiB  
Article
An MIP-Based PFAS Sensor Exploiting Nanolayers on Plastic Optical Fibers for Ultra-Wide and Ultra-Low Detection Ranges—A Case Study of PFAS Detection in River Water
by Rosalba Pitruzzella, Alessandro Chiodi, Riccardo Rovida, Francesco Arcadio, Giovanni Porto, Simone Moretti, Gianfranco Brambilla, Luigi Zeni and Nunzio Cennamo
Nanomaterials 2024, 14(21), 1764; https://doi.org/10.3390/nano14211764 - 3 Nov 2024
Cited by 3 | Viewed by 3058
Abstract
In this work, a novel optical–chemical sensor for the detection of per- and polyfluorinated substances (PFASs) in a real scenario is presented. The proposed sensing approach exploits the multimode characteristics of plastic optical fibers (POFs) to achieve unconventional sensors via surface plasmon resonance [...] Read more.
In this work, a novel optical–chemical sensor for the detection of per- and polyfluorinated substances (PFASs) in a real scenario is presented. The proposed sensing approach exploits the multimode characteristics of plastic optical fibers (POFs) to achieve unconventional sensors via surface plasmon resonance (SPR) phenomena. The sensor is realized by the coupling of an SPR-POF platform with a novel chemical chip based on different polymeric nanolayers over the core of a D-shaped POF, one made up of an optical adhesive and one of a molecularly imprinted polymer (MIP) for PFAS. The chemical chip is used to launch the light into the SPR D-shaped POF platform, so the interaction between the analyte and the MIP’s sites can be used to modulate the propagated light in the POFs and the SPR phenomena. Selectivity tests and dose–response curves by standard PFOA water solutions were carried out to characterize the detection range sensor response, obtaining a wide PFAS response range, from 1 ppt to 1000 ppt. Then, tests performed on river water samples collected from the Bormida river paved the way for the applicability of the proposed approach to a real scenario. Full article
Show Figures

Figure 1

10 pages, 3759 KiB  
Communication
From Fiber Layout to the Sensor: Preparation Methods as Key Factors for High-Quality Coupled-Core-Fiber Sensors
by F. Lindner, J. Bierlich, M. Alonso-Murias, D. Maldonado-Hurtado, J. A. Flores-Bravo, S. Sales, J. Villatoro and K. Wondraczek
Sensors 2024, 24(21), 6999; https://doi.org/10.3390/s24216999 - 30 Oct 2024
Cited by 1 | Viewed by 1126
Abstract
During recent years, the optical-fiber-based simultaneous sensing of strain and temperature has attracted increased interest for different applications, e.g., in medicine, architecture, and aerospace. Specialized fiber layouts further enlarge the field of applications at much lower costs and with easier handling. Today, the [...] Read more.
During recent years, the optical-fiber-based simultaneous sensing of strain and temperature has attracted increased interest for different applications, e.g., in medicine, architecture, and aerospace. Specialized fiber layouts further enlarge the field of applications at much lower costs and with easier handling. Today, the performance of many sensors fabricated from conventional fibers suffers from cross-sensitivity (temperature and strain) and relatively high interrogation costs. In contrast, customized fiber architectures would make it possible to circumvent such sensor drawbacks. Here, we report on the development of a high-quality coupled-core fiber and its performance for sensors—from the initial fiber layout via elaboration of the preform and fiber up to the sensor evaluation. A compact, high-speed, and cost-effective interrogation unit using such a specialized coupled-core fiber has been designed to monitor reflectivity changes while even being able to distinguish the direction of the force or impact. Several fiber core material techniques and approaches were investigated, which made it possible to obtain a sufficient volume of material for the required fiber core number and a specialized fiber core geometry in terms of core distances and radial refractive index profile, whilst handling the non-symmetrical fiber architectures of such modeled, complex structures and balancing resources and efforts. Full article
(This article belongs to the Special Issue Advanced Optics and Photonics Technologies for Sensing Applications)
Show Figures

Figure 1

Back to TopTop