Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = coronatine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3040 KB  
Article
Jasmonic Acid Enhances Rice Cadmium Tolerance by Suppressing Cadmium Uptake and Translocation
by Hao Zhang, Zhengkai Liu, Xinyu Li, Xiaodong Liu, Linzhi Fang, Rensen Zeng, Qiongli Wang, Yuanyuan Song and Daoqian Chen
Plants 2025, 14(7), 1068; https://doi.org/10.3390/plants14071068 - 31 Mar 2025
Cited by 3 | Viewed by 1012
Abstract
Worldwide, cadmium (Cd) contamination severely threatens rice production and public health. Jasmonic acid (JA) is recognized to be involved in rice Cd stress responses, but the underlying mechanism remains unclear. In this study, we show that JA positively regulates Cd tolerance in rice [...] Read more.
Worldwide, cadmium (Cd) contamination severely threatens rice production and public health. Jasmonic acid (JA) is recognized to be involved in rice Cd stress responses, but the underlying mechanism remains unclear. In this study, we show that JA positively regulates Cd tolerance in rice by repressing Cd uptake and root-to-shoot translocation. Cd exposure rapidly elevated the endogenous JA in rice roots, which was associated with increased expression of JA synthesis and JA-responsive genes. Moreover, silencing the expression of either allene oxide synthase (OsAOS; active in JA biosynthesis) or CORONATINE INSENSITIVE1 (OsCOI1; active in JA perception) resulted in aggravated Cd toxicity and increased Cd accumulation in both the roots and shoots, as well as increased translocation from the root to the shoots. A short-term uptake experiment revealed that silencing of OsAOS and OsCOI1 enhanced root Cd uptake ability. Furthermore, the elevated transcript levels of genes for Cd uptake (OsNramp5, OsNramp1, and OsIRT1) and root-to-shoot translocation (OsHMA2) were observed in OsAOS and OsCOI1 RNAi plants in comparison with wild-type plants. Taken together, our findings suggest that JA enhances rice cadmium tolerance by suppressing Cd uptake and translocation. Full article
Show Figures

Figure 1

30 pages, 5017 KB  
Article
Endogenous Hormone Levels and Transcriptomic Analysis Reveal the Mechanisms of Bulbil Initiation in Pinellia ternata
by Lan Mou, Lang Zhang, Yujie Qiu, Mingchen Liu, Lijuan Wu, Xu Mo, Ji Chen, Fan Liu, Rui Li, Chen Liu and Mengliang Tian
Int. J. Mol. Sci. 2024, 25(11), 6149; https://doi.org/10.3390/ijms25116149 - 3 Jun 2024
Cited by 6 | Viewed by 2733
Abstract
Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the [...] Read more.
Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 4617 KB  
Article
OsJAZ4 Fine-Tunes Rice Blast Resistance and Yield Traits
by Mingfeng Zhang, Xiao Luo, Wei He, Min Zhang, Zhirong Peng, Huafeng Deng and Junjie Xing
Plants 2024, 13(3), 348; https://doi.org/10.3390/plants13030348 - 24 Jan 2024
Cited by 7 | Viewed by 2913
Abstract
JAZ proteins function as transcriptional regulators that form a jasmonic acid–isoleucine (JA-Ile) receptor complex with coronatine insensitive 1 (COI1) and regulate plant growth and development. These proteins also act as key mediators in signal transduction pathways that activate the defense-related genes. Herein, the [...] Read more.
JAZ proteins function as transcriptional regulators that form a jasmonic acid–isoleucine (JA-Ile) receptor complex with coronatine insensitive 1 (COI1) and regulate plant growth and development. These proteins also act as key mediators in signal transduction pathways that activate the defense-related genes. Herein, the role of OsJAZ4 in rice blast resistance, a severe disease, was examined. The mutation of OsJAZ4 revealed its significance in Magnaporthe oryzae (M. oryzae) resistance and the seed setting rate in rice. In addition, weaker M. oryzae-induced ROS production and expression of the defense genes OsO4g10010, OsWRKY45, OsNAC4, and OsPR3 was observed in osjaz4 compared to Nipponbare (NPB); also, the jasmonic acid (JA) and gibberellin4 (GA4) content was significantly lower in osjaz4 than in NPB. Moreover, osjaz4 exhibited a phenotype featuring a reduced seed setting rate. These observations highlight the involvement of OsJAZ4 in the regulation of JA and GA4 content, playing a positive role in regulating the rice blast resistance and seed setting rate. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

32 pages, 7303 KB  
Article
Coronatine-Induced Maize Defense against Gibberella Stalk Rot by Activating Antioxidants and Phytohormone Signaling
by Mei Liu, Yiping Sui, Chunxin Yu, Xuncheng Wang, Wei Zhang, Baomin Wang, Jiye Yan and Liusheng Duan
J. Fungi 2023, 9(12), 1155; https://doi.org/10.3390/jof9121155 - 30 Nov 2023
Cited by 11 | Viewed by 2779
Abstract
One of the most destructive diseases, Gibberella stalk rot (GSR), caused by Fusarium graminearum, reduces maize yields significantly. An induced resistance response is a potent and cost-effective plant defense against pathogen attack. The functional counterpart of JAs, coronatine (COR), has attracted a [...] Read more.
One of the most destructive diseases, Gibberella stalk rot (GSR), caused by Fusarium graminearum, reduces maize yields significantly. An induced resistance response is a potent and cost-effective plant defense against pathogen attack. The functional counterpart of JAs, coronatine (COR), has attracted a lot of interest recently due to its ability to control plant growth and stimulate secondary metabolism. Although several studies have focused on COR as a plant immune elicitor to improve plant resistance to pathogens, the effectiveness and underlying mechanisms of the suppressive ability against COR to F. graminearum in maize have been limited. We investigated the potential physiological and molecular mechanisms of COR in modulating maize resistance to F. graminearum. COR treatment strongly enhanced disease resistance and promoted stomatal closure with H2O2 accumulation, and 10 μg/mL was confirmed as the best concentration. COR treatment increased defense-related enzyme activity and decreased the malondialdehyde content with enhanced antioxidant enzyme activity. To identify candidate resistance genes and gain insight into the molecular mechanism of GSR resistance associated with COR, we integrated transcriptomic and metabolomic data to systemically explore the defense mechanisms of COR, and multiple hub genes were pinpointed using weighted gene correlation network analysis (WGCNA). We discovered 6 significant modules containing 10 candidate genes: WRKY transcription factor (LOC100279570), calcium-binding protein (LOC100382070), NBR1-like protein (LOC100275089), amino acid permease (LOC100382244), glutathione S-transferase (LOC541830), HXXXD-type acyl-transferase (LOC100191608), prolin-rich extensin-like receptor protein kinase (LOC100501564), AP2-like ethylene-responsive transcription factor (LOC100384380), basic leucine zipper (LOC100275351), and glycosyltransferase (LOC606486), which are highly correlated with the jasmonic acid–ethylene signaling pathway and antioxidants. In addition, a core set of metabolites, including alpha-linolenic acid metabolism and flavonoids biosynthesis linked to the hub genes, were identified. Taken together, our research revealed differentially expressed key genes and metabolites, as well as co-expression networks, associated with COR treatment of maize stems after F. graminearum infection. In addition, COR-treated maize had higher JA (JA-Ile and Me-JA) levels. We postulated that COR plays a positive role in maize resistance to F. graminearum by regulating antioxidant levels and the JA signaling pathway, and the flavonoid biosynthesis pathway is also involved in the resistance response against GSR. Full article
(This article belongs to the Special Issue Fusarium, Alternaria and Rhizoctonia: A Spotlight on Fungal Pathogens)
Show Figures

Figure 1

15 pages, 2355 KB  
Article
ITPK1 Regulates Jasmonate-Controlled Root Development in Arabidopsis thaliana
by Naga Jyothi Pullagurla, Supritam Shome, Ranjana Yadav and Debabrata Laha
Biomolecules 2023, 13(9), 1368; https://doi.org/10.3390/biom13091368 - 9 Sep 2023
Cited by 12 | Viewed by 3003
Abstract
Jasmonic acid (JA) is a plant hormone that regulates a plethora of physiological processes including immunity and development and is perceived by the F-Box protein, Coronatine-insensitive protein 1 (COI1). The discovery of inositol phosphates (InsPs) in the COI1 receptor complex highlights their role [...] Read more.
Jasmonic acid (JA) is a plant hormone that regulates a plethora of physiological processes including immunity and development and is perceived by the F-Box protein, Coronatine-insensitive protein 1 (COI1). The discovery of inositol phosphates (InsPs) in the COI1 receptor complex highlights their role in JAperception. InsPs are phosphate-rich signaling molecules that control many aspects of plant physiology. Inositol pyrophosphates (PP-InsPs) are diphosphate containing InsP species, of which InsP7 and InsP8 are the best characterized ones. Different InsP and PP-InsP species are linked with JA-related plant immunity. However, role of PP-InsP species in regulating JA-dependent developmental processes are poorly understood. Recent identification of ITPK1 kinase, responsible for the production of 5-InsP7 from InsP6 in planta, provides a platform to investigate the possible involvement of ITPK-derived InsP species in JA-related plant development. Here, in this study, we report that ITPK1-defective plants exhibit increased root growth inhibition to bioactive JA treatment. The itpk1 plants also show increased lateral root density when treated with JA. Notably, JA treatment does not increase ITPK1 protein levels. Gene expression analyses revealed that JA-biosynthetic genes are not differentially expressed in ITPK1-deficient plants. We further demonstrate that genes encoding different JAZ repressor proteins are severely down-regulated in ITPK1-defective plants. Taken together, our study highlights the role of ITPK1 in regulating JA-dependent root architecture development through controlling the expression of different JAZ repressor proteins. Full article
Show Figures

Figure 1

18 pages, 1756 KB  
Article
Exploring the Interplay between Metabolic Pathways and Taxane Production in Elicited Taxus baccata Cell Suspensions
by Edgar Perez-Matas, Pascual Garcia-Perez, Begoña Miras-Moreno, Luigi Lucini, Mercedes Bonfill, Javier Palazon and Diego Hidalgo-Martinez
Plants 2023, 12(14), 2696; https://doi.org/10.3390/plants12142696 - 19 Jul 2023
Cited by 9 | Viewed by 2488
Abstract
Taxus cell cultures are a reliable biotechnological source of the anticancer drug paclitaxel. However, the interplay between taxane production and other metabolic pathways during elicitation remains poorly understood. In this study, we combined untargeted metabolomics and elicited Taxus baccata cell cultures to investigate [...] Read more.
Taxus cell cultures are a reliable biotechnological source of the anticancer drug paclitaxel. However, the interplay between taxane production and other metabolic pathways during elicitation remains poorly understood. In this study, we combined untargeted metabolomics and elicited Taxus baccata cell cultures to investigate variations in taxane-associated metabolism under the influence of 1 µM coronatine (COR) and 150 µM salicylic acid (SA). Our results demonstrated pleiotropic effects induced by both COR and SA elicitors, leading to differential changes in cell growth, taxane content, and secondary metabolism. Metabolite annotation revealed significant effects on N-containing compounds, phenylpropanoids, and terpenoids. Multivariate analysis showed that the metabolomic profiles of control and COR-treated samples are closer to each other than to SA-elicited samples at different time points (8, 16, and 24 days). The highest level of paclitaxel content was detected on day 8 under SA elicitation, exhibiting a negative correlation with the biomarkers kauralexin A2 and taxusin. Our study provides valuable insights into the intricate metabolic changes associated with paclitaxel production, aiding its potential optimization through untargeted metabolomics and an evaluation of COR/SA elicitor effects. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Figure 1

18 pages, 2906 KB  
Article
Impact of Elicitation on Plant Antioxidants Production in Taxus Cell Cultures
by Edgar Perez-Matas, Pascual Garcia-Perez, Mercedes Bonfill, Luigi Lucini, Diego Hidalgo-Martinez and Javier Palazon
Antioxidants 2023, 12(4), 887; https://doi.org/10.3390/antiox12040887 - 5 Apr 2023
Cited by 12 | Viewed by 3115
Abstract
Elicited cell cultures of Taxus spp. are successfully used as sustainable biotechnological production systems of the anticancer drug paclitaxel, but the effect of the induced metabolomic changes on the synthesis of other bioactive compounds by elicitation has been scarcely studied. In this work, [...] Read more.
Elicited cell cultures of Taxus spp. are successfully used as sustainable biotechnological production systems of the anticancer drug paclitaxel, but the effect of the induced metabolomic changes on the synthesis of other bioactive compounds by elicitation has been scarcely studied. In this work, a powerful combinatorial approach based on elicitation and untargeted metabolomics was applied to unravel and characterize the effects of the elicitors 1 µM of coronatine (COR) or 150 µM of salicylic acid (SA) on phenolic biosynthesis in Taxus baccata cell suspensions. Differential effects on cell growth and the phenylpropanoid biosynthetic pathway were observed. Untargeted metabolomics analysis revealed a total of 83 phenolic compounds, mainly flavonoids, phenolic acids, lignans, and stilbenes. The application of multivariate statistics identified the metabolite markers attributed to elicitation over time: up to 34 compounds at 8 days, 41 for 16 days, and 36 after 24 days of culture. The most notable metabolic changes in phenolic metabolism occurred after 8 days of COR and 16 days of SA elicitation. Besides demonstrating the significant and differential impact of elicitation treatments on the metabolic fingerprint of T. baccata cell suspensions, the results indicate that Taxus ssp. biofactories may potentially supply not only taxanes but also valuable phenolic antioxidants, in an efficient optimization of resources. Full article
(This article belongs to the Special Issue Biological Potential of Antioxidant Compounds from Vegetable Sources)
Show Figures

Figure 1

15 pages, 7173 KB  
Article
The Bacterial Volatile Organic Compound N,N-Dimethylhexadecylamine Induces Long-Lasting Developmental and Immune Responses throughout the Life Cycle of Arabidopsis thaliana
by Christian Hernández-Soberano, José López-Bucio and Eduardo Valencia-Cantero
Plants 2023, 12(7), 1540; https://doi.org/10.3390/plants12071540 - 3 Apr 2023
Viewed by 2429
Abstract
N,N-dimethylhexadecylamine (DMHDA) is a bacterial volatile organic compound that affects plant growth and morphogenesis and is considered a cross-kingdom signal molecule. Its bioactivity involves crosstalk with the cytokinin and jasmonic acid (JA) pathways to control stem cell niches and induce iron deficiency [...] Read more.
N,N-dimethylhexadecylamine (DMHDA) is a bacterial volatile organic compound that affects plant growth and morphogenesis and is considered a cross-kingdom signal molecule. Its bioactivity involves crosstalk with the cytokinin and jasmonic acid (JA) pathways to control stem cell niches and induce iron deficiency adaptation and plant defense. In this study, through genetic analysis, we show that the DMHDA-JA-Ethylene (ET) relations determine the magnitude of the defensive response mounted during the infestation of Arabidopsis plants by the pathogenic fungus Botrytis cinerea. The Arabidopsis mutants defective in the JA receptor CORONATINE INSENSITIVE 1 (coi1-1) showed a more severe infestation when compared to wild-type plants (Col-0) that were partially restored by DMHDA supplements. Moreover, the oversensitivity manifested by ETHYLENE INSENSITIVE 2 (ein2) by B. cinerea infestation could not be reverted by the volatile, suggesting a role for this gene in DMHDA reinforcement of immunity. Growth of Col-0 plants was inhibited by DMHDA, but ein2 did not. Noteworthy, Arabidopsis seeds treated with DMHDA produced more vigorous plants throughout their life cycle. These data are supportive of a scenario where plant perception of a bacterial volatile influences the resistance to a fungal phytopathogen while modulating plant growth. Full article
(This article belongs to the Special Issue Effects of Microbial Volatile Compounds on Plant Growth)
Show Figures

Figure 1

21 pages, 1108 KB  
Review
Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi
by Violetta Katarzyna Macioszek, Tomasz Jęcz, Iwona Ciereszko and Andrzej Kiejstut Kononowicz
Cells 2023, 12(7), 1027; https://doi.org/10.3390/cells12071027 - 27 Mar 2023
Cited by 71 | Viewed by 7611
Abstract
Jasmonic acid (JA) and its derivatives, all named jasmonates, are the simplest phytohormones which regulate multifarious plant physiological processes including development, growth and defense responses to various abiotic and biotic stress factors. Moreover, jasmonate plays an important mediator’s role during plant interactions with [...] Read more.
Jasmonic acid (JA) and its derivatives, all named jasmonates, are the simplest phytohormones which regulate multifarious plant physiological processes including development, growth and defense responses to various abiotic and biotic stress factors. Moreover, jasmonate plays an important mediator’s role during plant interactions with necrotrophic oomycetes and fungi. Over the last 20 years of research on physiology and genetics of plant JA-dependent responses to pathogens and herbivorous insects, beginning from the discovery of the JA co-receptor CORONATINE INSENSITIVE1 (COI1), research has speeded up in gathering new knowledge on the complexity of plant innate immunity signaling. It has been observed that biosynthesis and accumulation of jasmonates are induced specifically in plants resistant to necrotrophic fungi (and also hemibiotrophs) such as mostly investigated model ones, i.e., Botrytis cinerea, Alternaria brassicicola or Sclerotinia sclerotiorum. However, it has to be emphasized that the activation of JA-dependent responses takes place also during susceptible interactions of plants with necrotrophic fungi. Nevertheless, many steps of JA function and signaling in plant resistance and susceptibility to necrotrophs still remain obscure. The purpose of this review is to highlight and summarize the main findings on selected steps of JA biosynthesis, perception and regulation in the context of plant defense responses to necrotrophic fungal pathogens. Full article
Show Figures

Figure 1

13 pages, 2806 KB  
Article
Coronatine-Based Gene Expression Changes Impart Partial Resistance to Fall Armyworm (Spodoptera frugiperda) in Seedling Maize
by Yuxuan Lou, Xiaoxiao Jin, Zhiguo Jia, Yuqi Sun, Yiming Xu, Zihan Liu, Shuqian Tan, Fei Yi and Liusheng Duan
Genes 2023, 14(3), 735; https://doi.org/10.3390/genes14030735 - 16 Mar 2023
Viewed by 2842
Abstract
In recent years, Spodoptera frugiperda (S. frugiperda, Smith) has invaded China, seriously threatening maize production. To explore an effective method to curb the further expansion of the harm of the S. frugiperda, this experiment used maize seedlings of the [...] Read more.
In recent years, Spodoptera frugiperda (S. frugiperda, Smith) has invaded China, seriously threatening maize production. To explore an effective method to curb the further expansion of the harm of the S. frugiperda, this experiment used maize seedlings of the Zhengdan 958 three-leaf stage (V3) of maize as the material to study the effect of coronatine (COR) on the ability of maize to resist insects (S. frugiperda) at the seedling stage. The results showed that when maize was sprayed with 0.05 μM COR, the newly incubated larvae of S. frugiperda had the least leaf feeding. It was found that 0.05 μM COR significantly increased the contents of abscisic acid (ABA) and jasmonate (JA) in maize leaves through the determination of hormone content. Moreover, transcriptome sequencing revealed that the expression of six genes (ZmBX1, ZmBX2, ZmBX3, ZmBX4, ZmBX5 and ZmBX6), which are associated with the synthesis of benzoxazinoid, were upregulated. Nine genes (ZmZIM3, ZmZIM4, ZmZIM10, ZmZIM13, ZmZIM18, ZmZIM23, ZmZIM27, ZmZIM28 and ZmZIM38) of JA-Zim Domain (JAZ) protein in the JA signal pathway, and seven genes (ZmPRH19, ZmPRH18, Zm00001d024732, Zm00001d034109, Zm00001d026269, Zm00001d028574 and Zm00001d013220) of ABA downstream response protein Group A Type 2C Protein Phosphatase (PP2C) were downregulated. These results demonstrated that COR could induce anti-insect factors and significantly improve insect resistance in seedling maize, which laid a theoretical foundation for further study of the mechanism of COR improving insect resistance in seedling maize, and provided data references for the use of COR as an environmentally friendly pest control method. Full article
(This article belongs to the Special Issue Maize Molecular Genetics and Functional Genomics)
Show Figures

Figure 1

15 pages, 7744 KB  
Article
Molecular Genetic Mechanisms of Heterosis in Sugarcane Cultivars Using a Comparative Transcriptome Analysis of Hybrids and Ancestral Parents
by Mengfan Feng, Jihan Zhao, Sicheng Li, Ni Wei, Bowen Kuang and Xiping Yang
Agronomy 2023, 13(2), 348; https://doi.org/10.3390/agronomy13020348 - 25 Jan 2023
Cited by 3 | Viewed by 2866
Abstract
Modern sugarcane cultivars (Saccharum spp. hybrids) are the major contributors to sucrose and bioenergy in the world. The global changes in gene expression and the molecular mechanism of heterosis between modern sugarcane hybrids and their parents remain to be elucidated. In this [...] Read more.
Modern sugarcane cultivars (Saccharum spp. hybrids) are the major contributors to sucrose and bioenergy in the world. The global changes in gene expression and the molecular mechanism of heterosis between modern sugarcane hybrids and their parents remain to be elucidated. In this study, we performed a comparative transcriptome analysis between hybrids and their parents using the Illumina RNA-Seq method to understand the differences in transcript expression after hybridization. The results show that (1) introduction of the S. spontaneum lineage resulted in significant upregulation of biotic and abiotic stress resistance genes in S. hybrids, including hexokinase (HXK) genes, pathogenesis-related protein (PR1) genes, coronatine-insensitive protein (COI-1), jasmonate ZIM domain-containing protein (JAZ) genes, and serine/threonine protein kinase 2 (SnRK2) genes. (2) Transgressive genes in hybrids were mainly concentrated in the synthesis pathways of biotin and vitamin B6, helping establish advantages in terms of stress resistance, antioxidant activity, and growth. (3) Glutathione-S-transferase (GST) was likely to enhance stress resistance in hybrids, and corresponding genes were key positive selection genes in processes, including round-robin selection and other adaptations. In this study, we propose explanations for heterosis in sugarcane hybrids from a transcriptomic perspective, in addition to identifying candidate genes to aid in the improvement of sugarcane cultivars. Full article
Show Figures

Figure 1

20 pages, 4479 KB  
Article
Coronatine Enhances Chilling Tolerance of Tomato Plants by Inducing Chilling-Related Epigenetic Adaptations and Transcriptional Reprogramming
by Ziyan Liu, Zhuoyang Li, Shifeng Wu, Chunxin Yu, Xi Wang, Ye Wang, Zhen Peng, Yuerong Gao, Runzhi Li, Yuanyue Shen and Liusheng Duan
Int. J. Mol. Sci. 2022, 23(17), 10049; https://doi.org/10.3390/ijms231710049 - 2 Sep 2022
Cited by 10 | Viewed by 3089
Abstract
Low temperature is an important environmental factor limiting the widespread planting of tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of Jasmonic acid (JA), is an effective approach to enhancing crop’s resistance to chilling stress and other [...] Read more.
Low temperature is an important environmental factor limiting the widespread planting of tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of Jasmonic acid (JA), is an effective approach to enhancing crop’s resistance to chilling stress and other abiotic stresses. However, the function and mechanism of coronatine in promoting chilling resistance of tomato is unknown. In this study, coronatine treatment was demonstrated to significantly increase tomato chilling tolerance. Coronatine increases H3K4me3 modifications to make greater chromatin accessibility in multiple chilling-activated genes. Corresponding to that, the expression of CBFs, other chilling-responsive transcription factor (TF) genes, and JA-responsive genes is significantly induced by coronatine to trigger an extensive transcriptional reprogramming, thus resulting in a comprehensive chilling adaptation. These results indicate that coronatine enhances the chilling tolerance of tomato plants by inducing epigenetic adaptations and transcriptional reprogramming. Full article
(This article belongs to the Special Issue New Advances in Plant Abiotic Stress)
Show Figures

Figure 1

17 pages, 4233 KB  
Review
Overcoming Metabolic Constraints in the MEP-Pathway Enrich Salvia sclarea Hairy Roots in Therapeutic Abietane Diterpenes
by Mariaevelina Alfieri, Alfredo Ambrosone, Mariacarmela Vaccaro, Nunziatina De Tommasi and Antonietta Leone
Appl. Sci. 2022, 12(14), 7116; https://doi.org/10.3390/app12147116 - 14 Jul 2022
Cited by 4 | Viewed by 2544
Abstract
Abietane diterpenoids (e.g., carnosic acid, aethiopinone, 1-oxoaethiopinone, salvipisone, and ferruginol) synthesized in the roots of several Salvia species have proved to have promising biological activities, but their use on a large scale is limited by the very low content extracted from in vivo [...] Read more.
Abietane diterpenoids (e.g., carnosic acid, aethiopinone, 1-oxoaethiopinone, salvipisone, and ferruginol) synthesized in the roots of several Salvia species have proved to have promising biological activities, but their use on a large scale is limited by the very low content extracted from in vivo roots. In this review, we summarized our efforts and the achieved results aimed at optimizing the synthesis of these diterpenes in Salvia sclarea hairy roots by either elicitation or by modifying the expression of genes encoding enzymes of the MEP-pathway, the biosynthetic route from which they derive. Stable S. sclarea hairy roots (HRs) were treated with methyl jasmonate or coronatine, or genetically engineered, by tuning the expression of genes controlling enzymatic rate-limiting steps (DXS, DXR, GGPPS, CPPS alone or in combination), by silencing of the Ent-CPPS gene, encoding an enzyme acting at gibberellin lateral competitive route or by coordinate up-regulation of biosynthetic genes mediated by transcription factors (WRKY and MYC2). Altogether, these different approaches successfully increased the amount of abietane diterpenes in S. sclarea HRs from to 2 to 30 times over the content found in the control HR line. Full article
Show Figures

Figure 1

13 pages, 7555 KB  
Article
Genome-Wide Identification and Expression Analysis of MYC Transcription Factor Family Genes in Rubber Tree (Hevea brasiliensis Muell. Arg.)
by Shi-Xin Zhang, Shao-Hua Wu, Jin-Quan Chao, Shu-Guang Yang, Jie Bao and Wei-Min Tian
Forests 2022, 13(4), 531; https://doi.org/10.3390/f13040531 - 30 Mar 2022
Cited by 8 | Viewed by 3452
Abstract
Myelocytomatosis (MYC) transcription factors play a core regulator in the jasmonic acid signaling pathway, which regulates the secondary laticifer differentiation and rubber biosynthesis in rubber tree (Hevea brasiliensis). However, there are currently no reports on the MYC gene family in rubber [...] Read more.
Myelocytomatosis (MYC) transcription factors play a core regulator in the jasmonic acid signaling pathway, which regulates the secondary laticifer differentiation and rubber biosynthesis in rubber tree (Hevea brasiliensis). However, there are currently no reports on the MYC gene family in rubber trees, an important industrial raw material crop worldwide. In the present study, 32 HblMYCs were isolated and identified. The diversity in gene structure and presence of various cis-regulatory elements in promotors suggest that HblMYCs participate in various biological processes. Based on the expression patterns in the cambium region and laticifer in, respectively, response to coronatine (COR) and tapping, and the phylogenetic relationship with the MYCs that have been functionally identified in other plants, the HblMYC24 and HblMYC30 may be related to laticifer differentiation while the HblMYC6, HblMYC11 and HblMYC15, as well as HblMYC16 and HblMYC21, may positively regulate rubber biosynthesis. The results provide a foundation for understanding the molecular mechanism of jasmonate signaling in regulating laticifer differentiation and rubber biosynthesis in rubber tree. Full article
Show Figures

Figure 1

19 pages, 3672 KB  
Article
Using Transcriptome Analysis to Explore Gray Mold Resistance-Related Genes in Onion (Alliumcepa L.)
by Hyun-Min Lee, Jee-Soo Park, So-Jeong Kim, Seung-Gyu Kim and Young-Doo Park
Genes 2022, 13(3), 542; https://doi.org/10.3390/genes13030542 - 18 Mar 2022
Cited by 11 | Viewed by 3730
Abstract
Gray mold disease caused by Botrytis in onions (Allium cepa L.) during growth and storage negatively affects their yield and quality. Exploring the genes related to gray mold resistance in onion and their application to the breeding of resistant onion lines will [...] Read more.
Gray mold disease caused by Botrytis in onions (Allium cepa L.) during growth and storage negatively affects their yield and quality. Exploring the genes related to gray mold resistance in onion and their application to the breeding of resistant onion lines will support effective and ecological control methods of the disease. Here, the genetic relationship of 54 onion lines based on random amplified polymorphic DNA (RAPD) and in vitro-cultured onion lines infected with gray mold were used for screening resistance and susceptibility traits. Two genetically related onion lines were selected, one with a resistant and one with a susceptible phenotype. In vitro gray mold infection was repeated with these two lines, and leaf samples were collected for gene expression studies in time series. Transcript sequences obtained by RNA sequencing were subjected to DEG analysis, variant analysis, and KEGG mapping. Among the KEGG pathways, ‘α-linoleic acid metabolism’ was selected because the comparison of the time series expression pattern of Jasmonate resistant 1 (JAR1), Coronatine-insensitive protein 1 (COI 1), and transcription factor MYC2 (MYC2) genes between the resistant and susceptible lines revealed its significant relationship with gray-mold-resistant phenotypes. Expression pattern and SNP of the selected genes were verified by quantitative real-time PCR and high-resolution melting (HRM) analysis, respectively. The results of this study will be useful for the development of molecular marker and finally breeding of gray-mold-resistant onions. Full article
(This article belongs to the Special Issue Genetic Research and Plant Breeding)
Show Figures

Figure 1

Back to TopTop