Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = copper nanorods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1901 KiB  
Article
The Fabrication and Characterization of Self-Powered P-I-N Perovskite Photodetectors Using Yttrium-Doped Cuprous Thiocyanate
by Jai-Hao Wang, Bo-Chun Chen and Sheng-Yuan Chu
Micromachines 2025, 16(6), 666; https://doi.org/10.3390/mi16060666 - 31 May 2025
Cited by 1 | Viewed by 636
Abstract
In the first part of this study, Y2O3-doped copper thiocyanate (CuSCN) with different x wt% (named CuSCN-xY, x = 0, 1, 2, and 3) films were synthesized onto ITO substrates using the spin coating method. UV-vis, SEM, AFM, EDS, [...] Read more.
In the first part of this study, Y2O3-doped copper thiocyanate (CuSCN) with different x wt% (named CuSCN-xY, x = 0, 1, 2, and 3) films were synthesized onto ITO substrates using the spin coating method. UV-vis, SEM, AFM, EDS, and cyclic voltammetry were used to investigate the material properties of the proposed films. The conductivity and carrier mobility of the films increased with additional yttrium doping. It was found that the films with 2% Y2O3 (CuSCN-2Y) have the smallest valence band edges (5.28 eV). Meanwhile, CuSCN-2Y films demonstrated the densest surface morphology and the smallest surface roughness (22.8 nm), along with the highest conductivity value of 764 S cm−1. Then, P-I-N self-powered UV photodetectors (PDs) were fabricated using the ITO substrate/ZnO seed layer/ZnO nanorod/CsPbBr3/CuSCN-xY/Ag structure, and the characteristics of the devices were measured. In terms of response time, the rise time and fall time were reduced from 26 ms/22 ms to 9 ms/5 ms; the responsivity was increased from 243 mA/W to 534 mA/W, and the on/off ratio was increased to 2.47 × 106. The results showed that Y2O3 doping also helped improve the P-I-N photodetector’s device performance, and the mechanisms were investigated. Compared with other published P-I-N self-powered photodetectors, our proposed devices show a fairly high on/off ratio, quick response times, and high responsivity and detectivity. Full article
Show Figures

Figure 1

13 pages, 2516 KiB  
Article
Nanorod Heterodimer-Shaped CuS/ZnxCd1−xS Heteronanocrystals with Z-Scheme Mechanism for Enhanced Photocatalysis
by Lei Yang, Lihui Wang, Han Xiao, Di Luo, Jiangzhi Zi, Guisheng Li and Zichao Lian
Catalysts 2025, 15(3), 266; https://doi.org/10.3390/catal15030266 - 12 Mar 2025
Viewed by 865
Abstract
The efficient separation of photo-generated electrons and holes is significantly importance for enhancing photocatalytic performance. However, there are few reports on precisely constructing interfaces within a single nanocrystal to investigate the mechanism of photoinduced carrier transfer. In this study, nanorod heterodimer-structured CuS/Znx [...] Read more.
The efficient separation of photo-generated electrons and holes is significantly importance for enhancing photocatalytic performance. However, there are few reports on precisely constructing interfaces within a single nanocrystal to investigate the mechanism of photoinduced carrier transfer. In this study, nanorod heterodimer-structured CuS/ZnxCd1−xS heteronanocrystals (CuS/ZnCdS HNCs) were successfully synthesized as a typical model to explore the photoinduced carrier dynamics in the photocatalytic hydrogen evolution reaction (HER). The CuS/ZnCdS HNCs exhibited a photocatalytic hydrogen evolution activity of 146 mmol h⁻1 g⁻1 under visible light irradiation, which is higher than most reported values. Moreover, after 15 h of hydrogen production cycling tests, we found that the material maintained high hydrogen production performance, indicating excellent stability. The CuS/ZnCdS HNCs achieved an apparent quantum yield (AQY) of 69.2% at 380 nm, which is the highest value reported so far for ZnCdS- or CuS-based photocatalysts. The remarkable activity and stability of the CuS/ZnCdS HNCs were attributed to the strong internal electric field (IEF) and Z-scheme mechanism, which facilitate efficient charge separation, as demonstrated by in situ X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analyses. This discovery provides a new approach for constructing Z-scheme heterogeneous copper-based nanocomposites within nanocrystals and offers guidance for improving photocatalytic activity. Full article
(This article belongs to the Special Issue Photocatalysis: Past, Present, and Future Outlook)
Show Figures

Figure 1

15 pages, 3511 KiB  
Article
Cu-Doped MnO2 Catalysts for Effective Fruit Preservation via Ozone Synergistic Catalytic Oxidation
by Jianguo Huang, Rashid Khan, Chunhui Zhai, Xianting Ding, Li-Sha Zhang, Jin-Ming Wu and Zhizhen Ye
Foods 2024, 13(24), 4127; https://doi.org/10.3390/foods13244127 - 20 Dec 2024
Viewed by 1220
Abstract
Developing and implementing technologies that can significantly reduce food loss during storage and transport are of paramount importance. Ozone synergistic catalytic oxidation (OSCO) technology has been developed, which sterilizes bacteria and viruses on the surface of food and degrades ethylene released during fruit [...] Read more.
Developing and implementing technologies that can significantly reduce food loss during storage and transport are of paramount importance. Ozone synergistic catalytic oxidation (OSCO) technology has been developed, which sterilizes bacteria and viruses on the surface of food and degrades ethylene released during fruit storage through the active oxygen produced by the catalytic decomposition of ozone. Herein, we report the hydrothermal synthesis of MnO2 with distinct phase compositions and nanostructures through simply varying the reaction temperatures. Optimized copper-doped α-MnO2 nanorods exhibited remarkable efficacy in activating ozone at a concentration of 40 ppb, and this activation resulted in the complete eradication of indicator bacteria on food surfaces within a 24 h period. Moreover, these nanorods demonstrated high effectiveness in decomposing more than 80% of the ethylene molecules emitted by apples and bananas during the preservation period. The high concentration of surface oxygen vacancies is believed to contribute to the enhanced catalytic activity of the Cu-doped α-MnO2 catalyst in the OSCO procedure by reducing ethylene production and maintaining the fruit quality during the preservation period. Full article
Show Figures

Figure 1

15 pages, 47897 KiB  
Article
Copper Sulfide Nanorod-Embedded Urinary Catheter with Hydrophobicity and Photothermal Sterilization
by Muhammad Saukani, Chien-Hung Lai, Chinmaya Mutalik, Dyah Ika Krisnawati, Hsiu-Yi Chu and Tsung-Rong Kuo
Int. J. Mol. Sci. 2024, 25(21), 11440; https://doi.org/10.3390/ijms252111440 - 24 Oct 2024
Cited by 2 | Viewed by 8087
Abstract
The high prevalence of catheter-associated urinary tract infections (CAUTIs) is causing significant concern in healthcare systems. Antibacterial urinary catheters have been developed to prevent CAUTIs in clinical application. In this work, a copper sulfide nanorod (CuS NR)-embedded urinary catheter (CuS/UC) was designed as [...] Read more.
The high prevalence of catheter-associated urinary tract infections (CAUTIs) is causing significant concern in healthcare systems. Antibacterial urinary catheters have been developed to prevent CAUTIs in clinical application. In this work, a copper sulfide nanorod (CuS NR)-embedded urinary catheter (CuS/UC) was designed as an antibacterial urinary catheter with photothermal sterilization. The CuS NRs with low cytotoxicity were synthesized via the hydrothermal method. The CuS NRs were embedded into urinary catheters at different weight percentages. The CuS/UC exhibited homogenous surface roughness, low wettability, hydrophobicity, and low adhesiveness, promoting minimal interaction with bacteria and healthy cells. Under near-infrared (NIR) laser irradiation, the 0.8 weight percentage of CuS NRs in the urinary catheter (0.8CuS/UC) reached a temperature of 67.4 °C, demonstrating its photothermal antibacterial activity and suitability for catheter sterilization. Agar plate test verified that CuS/UCs exhibited a superior photothermal antibacterial activity against both Gram-negative Escherichia coli (E. coli) and Gram-positive Streptococcus aureus (S. aureus). Moreover, the 0.8CuS/UC exhibited excellent biocompatibility and anti-cell adhesion properties. The 0.8CuS/UC with photothermal performance, excellent biocompatibility, and anti-cell adhesion properties demonstrated its potential as a photothermal antibacterial catheter for clinical applications. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

14 pages, 7338 KiB  
Article
pH-Dependent Morphology of Copper (II) Oxide in Hydrothermal Process and Their Photoelectrochemical Application for Non-Enzymatic Glucose Biosensor
by Trung Tin Tran, Anh Hao Huynh Vo, Thien Trang Nguyen, Anh Duong Nguyen, My Hoa Huynh Tran, Viet Cuong Tran and Trung Nghia Tran
Appl. Sci. 2024, 14(13), 5688; https://doi.org/10.3390/app14135688 - 29 Jun 2024
Cited by 2 | Viewed by 2449
Abstract
In this study, we investigated the influence of pH on the hydrothermal synthesis of copper (II) oxide CuO nanostructures with the aim of tuning their morphology. By varying the pH of the reaction medium, we successfully produced CuO nanostructures with three distinct morphologies [...] Read more.
In this study, we investigated the influence of pH on the hydrothermal synthesis of copper (II) oxide CuO nanostructures with the aim of tuning their morphology. By varying the pH of the reaction medium, we successfully produced CuO nanostructures with three distinct morphologies including nanoparticles, nanorods, and nanosheets according to the pH levels of 4, 7, and 12, respectively. The observed variations in surface morphology are attributed to fluctuations in growth rates across different crystal facets, which are influenced by the presence of intermediate species within the reaction. This report also compared the structural and optical properties of the synthesized CuO nanostructures and explored their potential for photoelectrochemical glucose sensing. Notably, CuO nanoparticles and nanorods displayed exceptional performance with calculated limits of detection of 0.69 nM and 0.61 nM, respectively. Both of these morphologies exhibited a linear response to glucose within their corresponding concentration ranges (3–20 nM and 20–150 nM). As a result, CuO nanorods appear to be a more favorable photoelectrochemical sensing method because of the large surface area as well as the lowest solution resistance in electroimpedance analysis compared to CuO nanoparticles and nanosheets forms. These findings strongly suggest the promising application of hydrothermal-synthesized CuO nanostructures for ultrasensitive photoelectrochemical glucose biosensors. Full article
Show Figures

Figure 1

16 pages, 14572 KiB  
Article
P-EcStat: A Versatile Design of Photoelectrochemical and Electrochemical Sensing System with Smartphone Interface via Bluetooth Low Energy
by Anh Hao Huynh Vo, Viet Cuong Tran, Trung Tin Tran, Thien Trang Nguyen, Anh Duong Nguyen, My Hoa Huynh Tran and Trung Nghia Tran
Appl. Sci. 2024, 14(13), 5420; https://doi.org/10.3390/app14135420 - 22 Jun 2024
Cited by 1 | Viewed by 1622
Abstract
Electrochemical and photoelectrochemical sensors are a rapidly developing field in analytical chemistry. However, commercial systems often lack versatility and affordability, hindering wider adoption. Additionally, the absence of integrated excitation light sources limits their application in photoelectrochemical sensing. Here, we present a highly precise, [...] Read more.
Electrochemical and photoelectrochemical sensors are a rapidly developing field in analytical chemistry. However, commercial systems often lack versatility and affordability, hindering wider adoption. Additionally, the absence of integrated excitation light sources limits their application in photoelectrochemical sensing. Here, we present a highly precise, versatile, affordable measurement system for both electrochemical and photoelectrochemical sensing applications. The system incorporates a three-electrode potentiostat with a synchronized excitation light source. This design enables the system to perform conventional electrochemical measurements like cyclic voltammetry, chronoamperometry, and photoelectrochemical amperometric measurements with controlled light excitation. The developed measurement system operates within a voltage range suitable for a measurable current range of 1 nA to 18 mA, with a high precision of 99%. The excitation source is a monochromatic LED system offering seven distinct wavelengths with digitally controlled intensity via a digital-to-analog converter. Furthermore, an Android-based user interface allows wireless system control via Bluetooth Low Energy. The report also details the construction of a photoelectrochemical experiment using copper (II) oxide nanorods synthesized by the hydrothermal process as the photoactive material employed to test the experiment on a potassium ferricyanide/potassium ferrocyanide solution. This user-friendly system allows broader exploration of electrochemical and photoelectrochemical sensing applications. Full article
Show Figures

Figure 1

22 pages, 6161 KiB  
Article
Tailored Nanoscale Architectures for White Light Photoelectrochemistry: Zinc Oxide Nanorod-Based Copper Oxide Heterostructures
by Yu-Chih Fu, Yu-Che Chen, Chieh-Ming Wu and Vincent K. S. Hsiao
Coatings 2023, 13(12), 2051; https://doi.org/10.3390/coatings13122051 - 6 Dec 2023
Cited by 2 | Viewed by 1866
Abstract
This study investigates the morphological evolution, optical properties, and photoelectrochemical (PEC) performance of copper-oxide-coated ZnO nanorods under different annealing conditions. Distinct effects of annealing temperature and atmosphere on Cu2O and CuO growth on ZnO nanorods were observed. SEM images revealed the [...] Read more.
This study investigates the morphological evolution, optical properties, and photoelectrochemical (PEC) performance of copper-oxide-coated ZnO nanorods under different annealing conditions. Distinct effects of annealing temperature and atmosphere on Cu2O and CuO growth on ZnO nanorods were observed. SEM images revealed the transformation of Cu2O from silk-like to mushroom-like structures, while CuO formed interconnecting nanomaterials. XRD and XPS analyses showed peak shifts and binding energy changes, highlighting structural and electronic modifications induced by annealing. Moreover, PEC measurements demonstrated the superior photoresponse of CuO-coated ZnO nanorods, especially under negative bias, attributed to favorable band structure, charge carrier separation, and annealing stability compared to Cu2O-coated ones. A noteworthy discovery is that ZnO nanorods coated with CuO nanostructures, prepared under air conditions at 400 °C annealing temperature, exhibit exceptional photocurrents. Applying a 0.4 V voltage increases the photocurrent by approximately 10 mA/cm2. The findings provide valuable insights into tailoring metal oxide semiconductor nanostructures for potential applications in diverse areas, including photoelectrochemistry. This study offers practical guidance on modulating nanostructure growth through annealing to enhance performance. The results hold significance for PEC water splitting and have far-reaching impacts on photocatalysis, environmental remediation, and solar cells. Full article
Show Figures

Figure 1

10 pages, 2529 KiB  
Article
Study on Nanomaterials with Inhibitory Effects on the Growth of Aspergillus niger
by Ziqi Qin, Yiyuan Peng, Yiting Pu, Tao Liu, Kun Qian and Huan Tang
Polymers 2023, 15(18), 3820; https://doi.org/10.3390/polym15183820 - 19 Sep 2023
Cited by 4 | Viewed by 1561
Abstract
In this paper, the inhibitory effect of various nanomaterials on the growth of Aspergillus niger was studied. Among them, copper nanorods had the most obvious inhibitory effect on the growth of Aspergillus niger. The phase of copper nanorods was modified by chitosan, [...] Read more.
In this paper, the inhibitory effect of various nanomaterials on the growth of Aspergillus niger was studied. Among them, copper nanorods had the most obvious inhibitory effect on the growth of Aspergillus niger. The phase of copper nanorods was modified by chitosan, and its inhibitory effect on the expansion of Aspergillus niger was measured. 1. Preparation of copper nanorods and chitosan@copper nanorods: Copper nanorods with a diameter of about 300–350 nm and a length of about 100–800 nm were prepared by the liquid-phase reduction method. The chitosan solution was prepared by using the characteristics of chitosan dissolved in dilute acid to prepare chitosan@copper nanorods and modify the phase of copper nanorods. 2. Determination of the inhibitory effect of various copper nanomaterials on the growth of Aspergillus niger, including Cuprous Oxide nanoparticles, copper nanorods, nano copper oxide, and copper hydroxide, which have certain inhibitory effects on the growth of Aspergillus niger. Among them, copper nanorods have a better effect. On this basis, chitosan@copper nanorods are obtained by modifying the phase of copper nanorods with chitosan. The measured antibacterial effect is that the EC50 value is 344 mg/L. Full article
(This article belongs to the Special Issue Polymeric Materials for Drug Delivery II)
Show Figures

Figure 1

14 pages, 3546 KiB  
Article
The Facile Microwave-Assisted Coprecipitation Route to Obtain Polyoxoniobate (Na7(H3O)Nb6O19·14H2O) Nanorods Modified with Copper for CO2 Photoreduction
by Joelma R. C. Souza, Juliana A. Torres, Lucas S. Ribeiro, Jose B. G. Filho, Fabiana L. Santos, Nicholas Malgioglio, Luiz Fernando Gorup, Alexandre H. Pinto and André E. Nogueira
AppliedChem 2023, 3(2), 320-333; https://doi.org/10.3390/appliedchem3020020 - 12 Jun 2023
Cited by 1 | Viewed by 2180
Abstract
The CO2 reduction by solar means has been discussed as an alternative to emission abatement, a fundamental topic for sustainable, carbon-free production in the future. However, the choice of efficient systems, starting with the catalysts, is still a critical issue, especially due [...] Read more.
The CO2 reduction by solar means has been discussed as an alternative to emission abatement, a fundamental topic for sustainable, carbon-free production in the future. However, the choice of efficient systems, starting with the catalysts, is still a critical issue, especially due to the poor activity of available options. Polyoxometalates have been extensively studied as promising photocatalysts due to their semiconducting properties. Nevertheless, the synthetic conditions of polyoxoniobate are stringent due to the low reaction activity of Nb species, the lack of soluble precursors, and the narrow pH range. Unlike the literature, in the present study, we report a simple polyoxoniobate synthesis method. This synthesis method has some remarkable features, such as low processing time and temperature and good activity and selectivity in the CO2 photoreduction process. The results revealed an outstanding efficiency for the CO2 reduction reaction with a high selectivity of CO2 to CO conversion (92.5%). Furthermore, C2 compounds (e.g., acetate) were produced in the liquid phase of the reaction system. Our findings are significant for indicating the potential of polyoxoniobate for CO2 photoreduction, which opens a way to control competitive reactions with synthesis, leading to higher selectivity. Full article
(This article belongs to the Special Issue Nanomaterials for Energy and Environment Applications)
Show Figures

Figure 1

13 pages, 727 KiB  
Article
Differential Analysis of Three Copper-Based Nanomaterials with Different Morphologies to Suppress Alternaria alternata and Safety Evaluation
by Zitong Yuan, Yiwei Li, Yuke He, Kun Qian and Yongqiang Zhang
Int. J. Mol. Sci. 2023, 24(11), 9673; https://doi.org/10.3390/ijms24119673 - 2 Jun 2023
Cited by 7 | Viewed by 2065
Abstract
The overuse of copper-based fertilizers and pesticides over the last few decades has resulted in detrimental risks to our environment. Nano-enabled agrichemicals with a high effective utilization ratio have shown great potential for maintaining or minimizing environmental issues in agriculture. Copper-based nanomaterials (Cu-based [...] Read more.
The overuse of copper-based fertilizers and pesticides over the last few decades has resulted in detrimental risks to our environment. Nano-enabled agrichemicals with a high effective utilization ratio have shown great potential for maintaining or minimizing environmental issues in agriculture. Copper-based nanomaterials (Cu-based NMs) serve as a promising alternative to fungicides. Three types of Cu-based NMs with different morphologies were analyzed for their different antifungal effects on Alternaria alternata in this current study. Compared to commercial copper hydroxide water power (Cu(OH)2 WP), all tested Cu-based NMs, including cuprous oxide nanoparticles (Cu2O NPs), copper nanorods (Cu NRs) and copper nanowires (Cu NWs), especially Cu2O NPs and Cu NWs, showed higher antifungal activity against Alternaria alternata. Its EC50 were 104.24 and 89.40 mg L−1, respectively, achieving comparable activity using a dose approximately 1.6 and 1.9-fold lower. Cu-based NMs could introduce the downregulation of melanin production and soluble protein content. In contrast to trends in antifungal activity, Cu2O NPs showed the strongest power in regulating melanin production and protein content and similarly exhibited the highest acute toxicity to adult zebrafish compared to other Cu-based NMs. These results demonstrate that Cu-based NMs could offer great potential in plant disease management strategies. Full article
(This article belongs to the Special Issue Nanotechnology Applications in Antimicrobials)
Show Figures

Graphical abstract

14 pages, 3234 KiB  
Article
Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin
by Kowsar Davoodi-Rad, Ardeshir Shokrollahi, Faezeh Shahdost-Fard and Kamal Azadkish
Biosensors 2023, 13(3), 374; https://doi.org/10.3390/bios13030374 - 12 Mar 2023
Cited by 22 | Viewed by 2887
Abstract
Inspired by laccase activity, herein, Cu-guanosine nanorods (Cu-Guo NRs) have been synthesized for the first time through a simple procedure. The activity of the Cu-Guo NR as the laccase mimicking nanozyme has been examined in the colorimetric sensing of rutin (Rtn) by a [...] Read more.
Inspired by laccase activity, herein, Cu-guanosine nanorods (Cu-Guo NRs) have been synthesized for the first time through a simple procedure. The activity of the Cu-Guo NR as the laccase mimicking nanozyme has been examined in the colorimetric sensing of rutin (Rtn) by a novel and simple spectrophotometric method. The distinct changes in the absorbance signal intensity of Rtn and a distinguished red shift under the optimum condition based on pH and ionic strength values confirmed the formation of the oxidized form of Rtn (o-quinone) via laccase-like nanozyme activity of Cu-Guo NRs. A vivid and concentration-dependent color variation from green to dark yellow led to the visual detection of Rtn in a broad concentration range from 770 nM to 54.46 µM with a limit of detection (LOD) of 114 nM. The proposed methodology was successfully applied for the fast tracing of Rtn in the presence of certain common interfering species and various complex samples such as propolis dry extract, human biofluids, and dietary supplement tablets, with satisfactory precision. The sensitivity and selectivity of the developed sensor, which are bonuses in addition to rapid, on-site, cost-effective, and naked-eye determination of Rtn, hold great promise to provide technical support for routine analysis in the real world. Full article
(This article belongs to the Special Issue Optical Biosensors for Health, Food and Environment (Bio)markers)
Show Figures

Figure 1

11 pages, 6132 KiB  
Article
Synthesis, Characterization, and Evaluation of Antimicrobial Efficacy of Reduced Graphene–ZnO–Copper Nanocomplex
by Varish Ahmad and Mohammad Omaish Ansari
Antibiotics 2023, 12(2), 246; https://doi.org/10.3390/antibiotics12020246 - 25 Jan 2023
Cited by 9 | Viewed by 2427
Abstract
The prevalence of antibiotic-resistant diseases drives a constant hunt for new substitutes. Metal-containing inorganic nanoparticles have broad-spectrum antimicrobial potential to kill Gram-negative and Gram-positive bacteria. In this investigation, reduced graphene oxide-coated zinc oxide–copper (rGO@ZnO–Cu) nanocomposite was prepared by anchoring Cu over ZnO nanorods [...] Read more.
The prevalence of antibiotic-resistant diseases drives a constant hunt for new substitutes. Metal-containing inorganic nanoparticles have broad-spectrum antimicrobial potential to kill Gram-negative and Gram-positive bacteria. In this investigation, reduced graphene oxide-coated zinc oxide–copper (rGO@ZnO–Cu) nanocomposite was prepared by anchoring Cu over ZnO nanorods followed by coating with graphene oxide (GO) and subsequent reduction of GO to rGO. The synthesized nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, elemental analysis, and elemental mapping. Morphologically, ZnO–Cu showed big, irregular rods, rectangular and spherical-shaped ZnO, and anchored clusters of aggregated Cu particles. The Cu aggregates are spread uniformly throughout the network. Most of the ZnO particles were partially covered with Cu aggregates, while some of the ZnO was fully covered with Cu. In the case of rGO@ZnO–Cu, a few layered rGO sheets were observed on the surface as well as deeply embedded inside the network of ZnO–Cu. The rGO@ZnO–Cu complex exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria; however, it was more effective on Staphylococcus aureus than Escherichia coli. Thus, rGO@ZnO–Cu nanocomposites could be an effective alternative against Gram-positive and Gram-negative bacterial pathogens. Full article
(This article belongs to the Special Issue Newer Therapies for Bacterial and Fungal Infections)
Show Figures

Figure 1

19 pages, 4678 KiB  
Article
CuO Nanorods Immobilized Agar-Alginate Biopolymer: A Green Functional Material for Photocatalytic Degradation of Amaranth Dye
by Akshara Bassi, Kushal Qanungo, Imran Hasan, Alanoud Abdullah Alshayiqi, Alanood Sulaiman Ababtain and Fahad A. Alharthi
Polymers 2023, 15(3), 553; https://doi.org/10.3390/polym15030553 - 21 Jan 2023
Cited by 12 | Viewed by 2820
Abstract
The contamination of water is increasing day by day due to the increase of urbanization and population. Textile industries contribute to this by discarding their waste directly into water streams without proper treatment. A recent study explores the treatment potential of copper oxide [...] Read more.
The contamination of water is increasing day by day due to the increase of urbanization and population. Textile industries contribute to this by discarding their waste directly into water streams without proper treatment. A recent study explores the treatment potential of copper oxide nanorods (CuO NRs) synthesized on a green basis in the presence of a biopolymer matrix of agar (AA) and alginate (Alg), in terms of cost effectiveness and environmental impact. The synthesized bio nanocomposite (BNC) was characterized by using different instrumental techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultra-violet spectroscopy (UV-Vis), scanning electron microscopy-energy dispersive X-ray-elemental analysis (SEM-EDX), transmission electron microscopy (TEM), selected area diffraction pattern (SAED) and X-ray photoelectron spectroscopy (XPS). The optical studies revealed that immobilization of CuO NRs with Alg-Agar biopolymer blend resulted in an increase in light absorption capacity by decreasing the energy bandgap from 2.53 eV to 2.37 eV. The bio nanocomposite was utilized as a photocatalyst for the degradation of amaranth (AN) dye from an aquatic environment under visible light irradiation. A statistical tool known as central composite design (CCD) associated with response surface methodology (RSM) was taken into consideration to evaluate the optimized values of process variables and their synergistic effect on photocatalytic efficiency. The optimized values of process variables were found to be irradiation time (45 min), AN concentration (80 ppm), catalyst dose (20 mg), and pH (4), resulting in 95.69% of dye degradation at 95% confidence level with desirability level 1. The rate of AN degradation was best defined by pseudo-first-order reaction based on the correlation coefficient value (R2 = 0.99) suggesting the establishment of adsorption-desorption equilibrium initially at the catalyst surface then photogenerated O2 radicals interacting with AN molecule to mineralize them into small non-toxic entities like CO2, H2O. The material used has high efficiency and stability in photocatalytic degradation experiments up to four cycles of reusability. Full article
(This article belongs to the Special Issue Functional Alginate-Based Materials III)
Show Figures

Figure 1

25 pages, 5275 KiB  
Article
Morphology-Controlled Green Synthesis of Magnetic Nanoparticles Using Extracts of ‘Hairy’ Roots: Environmental Application and Toxicity Evaluation
by Natalia Kobylinska, Dmytro Klymchuk, Olena Khaynakova, Volodymyr Duplij and Nadiia Matvieieva
Nanomaterials 2022, 12(23), 4231; https://doi.org/10.3390/nano12234231 - 28 Nov 2022
Cited by 15 | Viewed by 3077
Abstract
Magnetic nanoparticles (MNPs) were “green” synthesized from a FeCl3/FeSO4/CoCl2 mixture using ethanolic extracts of Artemisia tilesii Ledeb ‘hairy’ roots. The effect of chemical composition and reducing power of ethanolic extracts on the morphology, size destribution and [...] Read more.
Magnetic nanoparticles (MNPs) were “green” synthesized from a FeCl3/FeSO4/CoCl2 mixture using ethanolic extracts of Artemisia tilesii Ledeb ‘hairy’ roots. The effect of chemical composition and reducing power of ethanolic extracts on the morphology, size destribution and other features of obtained MNPs was evaluated. Depending on the extract properties, nanosized magnetic materials of spherical (8–11 nm), nanorod-like (15–24 nm) and cubic (14–24 nm) shapes were obtained via self-assembly. Microspherical MNPs composed of nanoclusters were observed when using extract of the control root line in the synthesis. Polyhedral magnetic nanoparticles with an average size of ~30 nm were formed using ‘hairy’ root ethanolic extract without any additive. Studied samples manifested excellent magnetic characteristics. Field-dependent magnetic measurements of most MNPs demonstrated a saturation magnetization of 42.0–72.9 emu/g with negligible coercivity (∼0.02–0.29 emu/g), indicating superparamagnetic behaviour only for solids with a magnetite phase. The synthesized MNPs were minimally aggregated and well-dispersed in aqueous medium, probably due to their stabilization by bioactive compounds in the initial extract. The nanoparticles were tested for magnetic solid-phase extraction of copper (Cu), cadmium (Cd) and arsenic (As) pollutants in aqueous solution, followed by ICP-OES analysis. The magnetic oxides, mainly magnetite, showed high adsorption capacity and effectively removed arsenic ions at pH 6.7. The maximum adsorption capacity was ~150 mg/g for As(III, V) on the selected MNPs with cubic morphology, which is higher than that of previously reported adsorbents. The best adsorption was achieved using Fe3O4-based nanomaterials with low crystallinity, non-spherical form and a large number of surface-localized organic molecules. The phytotoxicity of the obtained MNPs was estimated in vitro using lettuce and chicory as model plants. The obtained MNPs did not exhibit inhibitory activity. This work provides novel insights on the morphology of “green” synthesized magnetic nanoparticles that can be used for applications in adsorption technologies. Full article
Show Figures

Graphical abstract

13 pages, 2935 KiB  
Article
A Dual Fluorometric and Colorimetric Sulfide Sensor Based on Coordinating Self-Assembled Nanorods: Applicable for Monitoring Meat Spoilage
by Rana Dalapati, Matthew Hunter and Ling Zang
Chemosensors 2022, 10(12), 500; https://doi.org/10.3390/chemosensors10120500 - 25 Nov 2022
Cited by 11 | Viewed by 3209 | Correction
Abstract
Psychrotrophic bacteria, commonly called spoilage bacteria, can produce highly toxic hydrogen sulfide (H2S) in meat products. Thus, monitoring the presence of hydrogen sulfide in meat samples is crucial for food safety and storage. Here, we report a unique chemical sensor based [...] Read more.
Psychrotrophic bacteria, commonly called spoilage bacteria, can produce highly toxic hydrogen sulfide (H2S) in meat products. Thus, monitoring the presence of hydrogen sulfide in meat samples is crucial for food safety and storage. Here, we report a unique chemical sensor based on supramolecular nanorods synthesized via copper ion induced self-assembly of N,N-bis[aspartic potassium salt]-3,4,9,10-perylenetetracarboxylic diimide (APBI-K). The self-assembled nanorods can specifically detect sulfide with a detection limit of 0.181 μM in solution. The nanorods suspended in pure water show a turn-on fluorescence sensing behavior along with color change, acting as a dual fluorometric and colorimetric sensor. Spectroscopic investigation confirms the sensing mechanism due to copper ion displacement induced by the association with sulfide. Based on the high selectivity and sensitivity, supramolecular nanorod sensors were successfully employed to detect H2S in spoiled meat sample as well as dissolved H2S in water. Full article
(This article belongs to the Special Issue Chemosensors for Ion Detection)
Show Figures

Graphical abstract

Back to TopTop